Eocene Algae from Ishigaki-shima Ryūkyū-rettō

GEOLOGICAL SURVEY PROFESSIONAL PAPER 399-C

Eocene Algae from Ishigaki-shima Ryūkyū-rettō

By J. HARLAN JOHNSON

GEOLOGY AND PALEONTOLOGY OF ISHIGAKI-SHIMA, $RY\overline{U}KY\overline{U}$ -RETT \overline{O}

GEOLOGICAL SURVEY PROFESSIONAL PAPER 399-C

Descriptions of six new species from exceptionally well preserved specimens of Eocene limestone

UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1964

UNITED STATES DEPARTMENT OF THE INTERIOR

STEWART L. UDALL, Secretary

GEOLOGICAL SURVEY

Thomas B. Nolan, Director

The U.S. Geological Survey Library has cataloged this publication as follows:

Johnson, Jesse Harlan, 1892-

Eocene algae from Ishigaki-shima, Ryūkyū-rettō. Washington, U.S. Govt. Print. Off., 1964.

iii, 13 p. 7 plates, map, tables. 30 cm. (U.S. Geological Survey. Professional Paper 399–C) Geology and paleontology of Ishigaki-shima, Ryūkyū-rettō.

Bibliography: p. 12-13.

1. Algae, Fossil. 2. Paleobotany—Eocene. 3. Paleobotany—Ryukyu Islands. I. Title. (Series)

For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402

CONTENTS

-

Abstract
Introduction
Acknowledgments
The algal flora
Locality data for the Eocene algae
Ecological interpretations
Systematic descriptions
Rhodophyta (red algae)
Family Corallinaceae (coralline algae)
Subfamily Melobesioideae (crustose coral-
lines)
Genus Archaeolithothamnium Rothpletz,
1891
Genus Lithothamnium Philippi, 1837

Page	Systematic descriptions—Continued	
C1	Rhodophyta—Continued	
1	Family Corallinaceae—Continued	
1	Subfamily Melobesioideae—Continued	Page
1	Genus Mesophyllum Lemoine, 1928	$\mathbf{C7}$
1	Genus Lithophyllum Philippi, 1837	9
3	Genus Lithoporella Foslie, 1909	10
3	Genus Dermatolithon Foslie, 1899	10
3	Subfamily Corallinoideae (articulated coral-	
3	lines)	11
	Genus Corallina Linnaeus, 1758	11
3	Genus Jania Lamouroux, 1812	11
	Genus Amphiroa Lamouroux, 1812	12
3	Selected bibliography	12
5	· · ·	

ILLUSTRATIONS

[Plates follow index]

PLATE 1. Archaeolithothamnium.

I LATE	Т.	AI Chaeolithothamhtam.
	2.	Archaeolithothamnium, Lithothamnium, and Lithoporella.
	3.	Lithothamnium and Mesophyllum.
	4.	Lithothamnium and Mesophyllum.
	5.	Mesophyllum.
	6.	Mesophyllum and Lithophyllum.
	7.	Jania, Corallina, Lithothamnium, Lithophyllum, and Mesophyllum.
FIGURE	1.	Map of Ishigaki-shima showing Eocene algae localities

TABLES

		Page
1.	Measurements and distribution of Eocene species of Archaeolithothamnium	C3
2-4.	Measurements of—	
	2. Archaeolithothamnium fosteri Johnson, n. sp	3
	3. Archaeolithothamnium nummuliticum (Gümbel) Rothpletz	4
	4. Archaeolithothamnium cf. A. affine Howe	5
5.	Measurements and distribution of Eocene species of Lithothamnium	5
6-8.	Measurements of—	
	6. Lithothamnium faurai Lemoine	6
	7. Lithothamnium ishigakiensis Johnson n. sp	6
	8. Lithothamnium cf. L. moreti Lemoine	7
9.	. Measurements and distribution of Eocene species of Mesophyllum	8
10-14.	Measurements of—	
	10. Mesophyllum ishigakiensis Johnson n. sp	8
	11. Mesophyllum ryukyuensis Johnson n. sp	8
	12. Mesophyllum vaughanii (Howe) Lemoine	9
	13. Corallina cossmanni Lemoine	11
	14. Jania mayei Johnson, n. sp	12

Page

C2

GEOLOGY AND PALEONTOLOGY OF ISHIGAKI-SHIMA, RYŪKYŪ-RETTŌ

EOCENE ALGAE FROM ISHIGAKI-SHIMA, RYŪKYŪ-RETTŌ

By J. HARLAN JOHNSON

ABSTRACT

Well-preserved calcareous algae occur abundantly in some of the Eocene limestone at Ishigaki-shima, Ryūkyū-rettō. Most of the algae observed were red crustose corallines, but a few articulated corallines were also present. The green algae were represented by only a few fragments of *Halimeda*. With the exception of a few endemic species, the algae belong to a widely distributed Eocene flora that extended from the western Mediterranean region, across southern Asia, the East Indies, and much of the tropical Pacific.

Recognized were 6 species of Archaeolithothamnium, 10 species of Lithothamnium, 5 species of Mesophyllum, 3 species of Lithophyllum, 2 of Lithoporella, 1 of Dermatolithon, 3 of Corallina, 1 of Jania, and 1 of Amphiroa.

Described as new are: Archaeolithothamnium fosteri, Lithothamnium ishigakiensis, Mesophyllum ishigakiensis, Mesophyllum ryukyuensis, Lithoporella minus and Jania mayei.

INTRODUCTION

Calcareous algae occur abundantly in the Eocene limestone of the Miyara formation on Ishigaki-shima, Ryūkyū-rettō, and many are exceptionally well preserved. An unusually large number of the specimens collected contained conceptacles and sporangia. As a result, the study of the collections was exceptionally rewarding.

This study is based on several hundred thin sections and a score or so of specimens. Most of the slides were 2 by 2 inches or larger.

Most of the algae observed belong to the crustose corallines. Articulated corallines were relatively rare. Green algae were unusually scarce; only a few *Halimeda* segments were noted.

ACKNOWLEDGMENTS

H. L. Foster supplied the collections and the stratigraphic and locality data. She kindly read the manuscript and made helpful suggestions. The Colorado School of Mines supplied laboratory and library facilities and photographic equipment.

THE ALGAL FLORA

The flora, although containing several endemic species, consists mainly of species belonging to a widely

distributed Eocene flora that extended from the western Mediterranean region across southern Asia, the East Indies, and much of the tropical Pacific. It will be noted that many of the named species were originally founded on material from France, Spain, Italy, and Algeria. Most of them are known from previous collections made at Bikini, Saipan, and Guam in the Pacific.

LOCALITY DATA FOR THE EOCENE ALGAE

Locations of sample localities are shown in figure 1.

- F-49 Limestone from remnants that crop out in a near-sealevel valley 0.5 km north of Ō-saki on the Yarabu Peninsula.
 F-50 Limestone from hillside 0.6 km north of Ō-saki on the Yarabu Peninsula.
- F-51 Limestone overlying schist unconformably at about 1 km north of Ō-saki on the Yarabu Peninsula.
- F-80 Isolated limestone block at road junction on the east side of the Miyara-gawa along the coastal road 1 km northeast of Miyara.
- F-81 North of Inoda 0.5 km.
- F-83 North of Ibaruma 1.2 km. Erosional remnants of gray shaly appearing limestone.
- F-84 Northwest of Miyara 1.4 km. Chert pebble conglomeratic limestone that grades into light-gray limestone without pebbles.
- F-85 Limestone from near fault 1.6 km northwest of Miyara. F-95 2.7 km north of Hirae.
- F-163 Thin bed of limestone interbedded in shale exposed in streambed 1.3 km northwest of \bar{O} -saki, Yarabu Peninsula.
- F-176 Limestone remnants 0.3 km east of Dacho-zaki on the Hirakubo Peninsula.
- M-97 Bluff 1.4 km northeast of Miyara.
- M-106 1.8 km north of Miyara.
- M-121 Large remnant slabs of limestone on ridge of volcanic breccia 0.6 km northeast of Hoshino.
- M-236 Northern limestone knob 0.9 northwest of Hoshino.
- M-239 North slope of central limestone knob 0.5 km northwest of Hoshino.
- M-240 Base of limestone section on north face of southern limestone knob 0.4 km west of Hoshino.
- M-247 1.5 km north of Miyara.
- M-248 0.4 km northwest of Miyara.
- M-286 2.2 km north-northeast of Hirae.

FIGURE 1.—Map of Ishigaki-shima showing Eocene algae localities.

ECOLOGICAL INTERPRETATIONS

The flora grew in clear warm shallow marine waters that were rich in lime and had good circulation. The large number of branching forms suggests depths not greater than 60 feet, possibly considerably less.

SYSTEMATIC DESCRIPTIONS

RHODOPHYTA (red algae) Family CORALLINACEAE (coralline algae) Subfamily MELOBESIOIDEAE (crustose corallines) Genus ARCHAEOLITHOTHAMNIUM Rothpletz, 1891

denus ARCHAEOLIIIIOIMAMMIOM Rothpietz, 1891

Like other genera of the crustose corallines, this genus has a tissue containing both a hypothallus and a perithallus. The hypothallus consists of curved rows of cells. Commonly it is thinner than the perithallus. The characteristic feature of the genus is that the sporangia are not collected into conceptacles but occur isolated or in layers or lenses in the perithallic tissue.

Structurally this is the most primitive genus of coralline algae that is still found in Recent seas. It reached its greatest development during the Late Cretaceous and Eocene time. It appears to have always lived in warm shallow marine waters.

In the collections from Ishigaki-shima, Archaeolithothamnium is represented by numerous specimens of six species. Table 1 shows their characteristic features and observed distribution.

TABLE 1.—Measurements, in microns, and distribution of Eocene species of Archaeolithothamnium

[From random sections]

Species	Hypothallic cells		Perithallic cells		Sporangia		Growth habit	Locality	
	Length	Width	Length	Width	Diameter	Height			
Archaeolithothamnium chamorrosum Johnson fosteri Johnson, n. sp cf. A. liberum Lemoine. nummuliticum (Gümbel) Rothpletz cf. A. parisiense Lemoine. cf. A. affine Howe	11-14 16-38 12-24 14-41 12-24 11-23	7-13 8-14 7-11 9-15 7-13 9-11	9–14 9–28 10–24 11–32 10–24 9–20	9-11 6-15 9-15 8-18 6-16 7-12	26-41 34-68 22-49 35-72 35-65 32-36	46-48 41-95 44-76 57-130 57-93 41-58	Crustose Crust with knobs Nodular crust with mammilae Crust with branches Long slender branches	$\begin{array}{c} F-49.\\ F-49, 50, 80, 163; M-239, 240.\\ M-240.\\ F-49, 50, 163; M-239, 240, 247.\\ F-49; M-239, 240.\\ F-49, 50; M-239, 240.\\ \end{array}$	

Archaeolithothamnium chamarrosum Johnson

Archaeolithothamnium chamorrosum Johnson, 1957, p. 217, pl. 39, figs. 3, 6.

Description.—Thallus crustose, 350μ -450 μ thick. Tissue quite regular with suggestions of growth zones. Hypothallus thin to moderately developed, consisting of curved rows of cells that measure 11μ -14 μ by 7μ -13 μ . Perithallic tissue formed of regular layers of rectangular cells, 9μ -14 μ by 9μ -11 μ . Sporangia oval to nearly spherical, 46μ -48 μ high and 26μ -41 μ in diameter.

Remarks.—This species resembles the material described from Saipan except for slightly shorter hypothallic cells. Only two specimens were recognized in the collection from Ishigaki-shima.

Locality: F-49.

Archaeolithothamnium fosteri Johnson, n. sp.

Plate 1, figures 1-6

Description.—Thallus forms a crust that may develop rounded knobs or short stubby branches. Hypothallus normally poorly developed or absent. When present, it consists of several curved rows of cells. Cells measure 16μ -38 μ long and 8μ -14 μ wide. Perithallic tissue fairly regular but horizontal partitions are poorly developed in much of the tissue. Cells 9μ -28 μ by 6μ -15 μ . Sporangia ovoid to rectangular, commonly rather closely packed in regular layers or lenses. Sporangia 41μ -95 μ high, and 34μ -68 μ in diameter. Detailed dimensions are given in table 2.
 TABLE 2.—Measurements, in microns, of Archaeolithothamnium

 fosteri Johnson, n. sp.

Slide	Hypoths	allic cells	Perithal	llic cells	Sporangia		
	Length	Width	Length	Width	Diameter	Height	
IS-F-49 (1)	21 -3 8	11-14	11-24 17-25	9-12 7-12	6368 4250	81-92 66-83	
IS-F-80 (2) IS-F-163 (2)	16-19	8-14	11-16 13-20	9-14 6-11	34-50 38-52	79-95 63-81	
IS-F-163 (4)	14-24	8-12	9–16 11–25	9-13 10-15	38-41 36-44	63-75 41-65	
IS-M-239 B IS-M-240 C			$13-23 \\ 11-28$	7-11 9-12	36-68 44-54	58-92 47-93	

Remarks.—This species suggests A. ascherson: Schwager and A. lugeoni Pfender but differs from them in having appreciably longer perithallic cells and sporangia with a much greater size range. It is named for H. L. Foster who collected many of the specimens. This species is the most abundantly represented Archaeolithothamnium in the collection from Ishigakishima.

Localities: F-49, 50, 80, 163; M-239, 240. Figured specimen: Holotype, slide IS-F-49 (1).

Archaeolithothamnium nummuliticum (Gümbel) Rothpletz

Plate 2, figures 1-3

Archaeolithothamnium nummuliticum (Gümbel).

(Gümbel) Rothpletz, 1891. Lemoine, 1927, p. 547, flg. 1. Airoldi, 1932, p. 61, pl. 9, flg. 1. Lemoine, 1939, p. 56. Description.—This species characteristically forms a crust from which develop short unramified branches. Several thalli may grow superimposed. Hypothallus thin but quite distinct, consisting of curved rows of cells. Cells 14μ — 41μ by 9μ — 15μ . Perithallus fairly regular, with cells in rows with distinct transverse partitions between the rows. Cells 11μ — 32μ by 8μ — 18μ . Sporangia numerous, ovoid to rectangular, or often quite irregular, in rows or layers, size 57μ — 130μ high and 35μ — 72μ in diameter. Detailed dimensions are given in table 3.

 TABLE 3.—Measurements, in microns, of Archaeolithothamnium

 nummuliticum (Gümbel) Rothpletz

Slide	Hypoth	allic cells	Peritha	llic cells	Sporangia	
-140	Length	Width	Length	Width	Diameter	Height
F-49(1) F-49L(2)	24-28	9–14	14–27 11–21	9–13 10–14	54-63 45-72	100-115
F-49L(5) F-50(2)			11-18 12-14	10-15 13-18	37-70 34-50	73–100 95–130
F-51(2) F-163(1)	14–19	11–15	14-18 13-24	10-15 8-14	45-63 35-59	79–105 75–97
F-163(4) F-163(4) M-239(2)			20-28 18-32 11-15	9-13 9-13 9-11	$36-42 \\ 40-58 \\ 58-72$	73-85 107-130 81-114
M-240(3) M-240C	30-41	9–11	11-23 15-29 10-10	8-12 9-12	49-57 56-77	65-98 61-114
M-240C M-240C M-247C			11-18 11-12	8-11 9-11	48-07 50-55 62-86	73-103
	}	l		l		

Remarks.—The Ishigaki material closely resembles the typical forms. This species is very widely distributed geographically; it has been reported from the West Indies, North Africa, southern Europe, the near East, southern Asia, and the East Indies. The species has considerable geologic range, extending from the Upper Cretaceous (Santonian-Campanian) through the Paleocene and Eocene into the lower part of the Oligocene. This species is one of the most common species in the collections from Ishigaki-shima.

Localities : F-49, 50, 51, 163; M-239, 240, 247.

Figured specimens: F-51-55(2); F-163(1); M-240-56C.

Archaeolithothamnium cf. A. parisiense (Gümbel) Lemoine

Plate 2, figure 4

Lithothamnium parisiense Gümbel, 1871, p. 32, pl. 8 a-b. Archaeolithothamnium parisiense (Gümbel) Lemoine, 1923, p. 63-64, pl. 6, figs. 1 a-c, 2.

Description.—The thallus forms a crust from which develop mammillae and in adult stage, short branches. The hypothallus is only slightly developed, consisting of curved rows of cells that measures $12\mu-24\mu$ by $7\mu-13\mu$. Cells of the marginal perithallus measured $10\mu-15\mu$ by $9\mu-16\mu$. The perithallus of the crusts and the tissue of the short branches shows an arrangement into nearly regular layers of cells. The cells measure $10\mu-$ 24μ by 6μ -15 μ . Sporangia irregular, rounded to ovoid, commonly in rather irregular layers or lenses. A few specimens show them in fairly regular rows, size 57μ - 93μ high and 35μ - 65μ in diameter.

Remarks.—The specimens from Ishigaki-shima closely resemble the material described by Lemoine (1923) from the Paris Basin. The cells fall within the same size range but do not reach the maximum lengths and widths given by Lemoine. This species closely resembles the form described as A. cf. A. liberum Lemoine described from Saipan in size of cells and sporangia but differs in developing short cylindrical branches instead of mammillae. Relatively rare in the collections from Ishigaki-shima.

Localities: F-49; M-239, and 240. Figured specimen: F-49-55L(4).

Archaeolithothamnium cf. A. liberum Lemoine

Archaeolithothamnium liberum Lemoine, 1939, p. 61, pl. 1, fig. 14; p. 62, fig. 26.

Archaeolithothamnium cf. A. liberum Lemoine. Johnson, 1957, p. 219, pl. 39, figs. 1-2.

Description.—Thallus crustose to nodular with mammillae, apparently growing unattached. Hypothallus poorly developed, consisting of only a few curved threads of cells. The cells measure $12\mu-24\mu$ by $7\mu-11\mu$. Perithallus quite regular, of rectangular cells $10\mu-24\mu$ by $9\mu-15\mu$. Sporangia ovoid $44\mu-76\mu$ high and $22\mu 49\mu$ in diameter. They are numerous in well-defined layers and lenses.

Remarks.—This is the same species that was described under this name from Saipan. It is closely related to A. cf. A. *parisiense* Lemoine. It is relatively rare in the collections from Ishigaki-shima.

Locality: M-240.

Archaeolithothamnium cf. A. affine Howe

Archaeolithothamnium affine Howe, 1919, p. 11, pl. 4, fig. 1; pl. 5, figs. 1, 2.

Lemoine, 1939, p. 60, pl. 2, fig. 8, text fig. 25, p. 62.

Description.—A strongly branching form developing long, relatively slender branches, 2.5–3.3 mm in diameter. The tissue shows definite growth zones. The branches are differentiated into a medullary hypothallus and a perithallus. Cells of medullary hypothallus 11μ – 23μ long and 9μ – 11μ wide. Marginal perithallus 11μ – 23μ long and 9μ – 11μ wide. Marginal perithallus cells 9μ – 20μ by 7μ – 12μ . Sporangia 41μ – 58μ high and 32μ – 36μ in diameter. Detailed dimensions are given in table 4.

Remarks.—This closely resembles the widely distributed late Eocene and early Oligocene species in growth habit, cell size, and dimensions of sporangia.

Locality: F-49, 50; M-239, 240.

 TABLE 4.—Measurements, in microns, of Archaeolithothamnium

 cf. A. affine

		•				
Slide	Hypoth	allic cells	Peritha	llic cells	Sporangia	
	Length	Width	Length	Width	Diameter	Height
F-49L(2) F 50 M-239B(4) M-240A. M-240A (2)	11–18 16–23	10–12 9–11	10-12 9-10 10-20 9-18 9-18	10–12 9–11 7–11 7–12 8–12	34-44 32-36 33-47 28-41 29-33	39–50 41–52 49–76 49–65 37–59

Genus Lithothamnium Philippi, 1837

The tissue of *Lithothamnium* normally is differentiated into a hypothallus and a perithallus. The hypothallus commonly is formed of curved rows of cells. Basically the perithallus is formed of vertical threads of cells. The horizontal partitions of adjoining threads may or may not be at the same levels. Conceptacles of sporangia have many apertures for the escape of spores.

The plants develop a number of growth forms, varying from simple thin crusts to strongly branching forms.

The Eocene species from Ishigaki-shima and their characteristic features are shown in table 5.

 TABLE 5.—Measurements, in microns, and distribution of Eocene species of Lithothamnium

 [From random sections]

Species	Hypothallic cells		Perithallic cells		Conceptacles		Growth habit	Locality
-	Length	Width	Length	Width	Diameter	Height		
Lithothamnium cf. L. abrardi Lemoine crispithallus Johnson cymbicrusta Johnson cymbicrusta Johnson cf. L. moreti Lemoine	$\begin{array}{c} 13-30\\ 16-28\\ 14-24\\ 11-25\\ 14-27\\ 12-23\\ 12-24\\ 16-27\\ 12-20\\ \end{array}$	9-18 7-11 8-14 6-13 6-14 8-10 9-11 9-11 8-11	9-18 7-10 9-14 7-15 6-13 9-15 6-15 9-18 9-15 7-11	9-12 6-8 7-12 6-11 8-12 6-12 9-13 7-11 7-10	$\begin{array}{r} 225-265\\ 359\\ 360-450\\ 450-810\\ 150-385\\ 210-290\\ 530-579\\ 220-475\\ 246-465\\ \end{array}$	110 108 90-180 88-296 85-175 78-100 168-176 80-200 116-176	Thin, irregular crust. Thin crust. Thin irregular crust. Crust with protuberances. Thin crusts. 	$\begin{array}{c} F-50\\ M-247\\ F-85, 163\\ F-49, 50, 83, 163\\ F-49, 50, 80, 163\\ F-84, 163\\ F-84, 163\\ F-84, 83;\\ F-84, 83;\\ M-286\\ M-239\\ M-247\\ \end{array}$

Lithothamnium cf. L. abrardi Lemoine

Lithothamnium abrardi Lemoine, 1934, p. 274, fig. 3. Lithothamnium cf. L. abrardi Lemoine. Johnson, 1957, p. 221,

pl. 41, figs. 6–7 ; pl. 42, figs. 1, 5.

Description.—Thallus thin and irregular with a welldeveloped hypothallus and perithallus. Hypothallus 150μ -300 μ thick, formed of curved rows of cells measuring 13μ -30 μ long and 9μ -18 μ wide. Perithallus moderately regular with well-defined vertical rows of cells and fairly regular horizontal partitions. Perithallic cells measure 9μ -18 μ by 9μ -12 μ . Conceptacles small, about 225 μ by 265 μ in diameter and 110 μ high. Sporangia in a conceptacle 65μ -67 μ high and 11μ -12 μ in diameter.

Remarks.—This appears to belong to the same species described by the writer as *L*. cf. *L. abrardi* Lemoine from the Eocene of Saipan. It approximates the type material from the Mediterranean region but has slightly larger perithallic cells. The conceptacles of the European specimens are not known.

Age: Eocene. Locality: F-50. Specimen: IS-F-50.

Lithothamnium cf. L. andrusovi Lemoine

Plate 2, figure 5

Lithothamnium andrusovi Lemoine, 1934, p. 274, fig. 2. Lithothamnium cf. L. andrusovi Lemoine, 1939, p. 67.

Description.—Thallus consists of a very thin crust

 $(300\mu-350\mu$ thick) with a thick hypothallus and a thin perithallus. Hypothallus of curved rows of rectangular cells $(170\mu-290\mu$ thick). Cells are relatively narrow with a considerable range in length. They measure $12\mu-23\mu$ by $8\mu-11\mu$. Perithallus thin $(80\mu-90\mu)$ with fairly regular tissue, cells measure $7\mu-11\mu$ by $7\mu-10\mu$. No conceptacles present.

Remarks.—This closely resembles the species described by Lemoine from Hungary and Algeria, with its thick hypothallus of rectangular cells and small perithallic cells. The cell measurements of the specimens from Ishigaki-shima are almost the same except that the maximum attained by the hypothallic cells is not so great.

Locality: M-247.

Figured specimen: IS-M-247-56B.

Lithothamnium cf. L. bofilli Lemoine

Plate 4, figures 1, 2

Lithothamnium bofilli Lemoine, 1928b, p. 92-107, 20 text figs. 1939, p. 70-71.

Description.—Thallus forms a thin crust from which develop projections or branches. Hypothallus $76\mu-175\mu$ thick, with cells $12\mu-24\mu$ by $9\mu-11\mu$ with curved rows of cells or a plumose structure. Perithallus quite regular, with a tendency to horizontal layering of cells. Cells $6\mu-15\mu$ by $6\mu-12\mu$. Conceptacles $530\mu-579\mu$ in diameter and $168\mu-176\mu$ high. One shows sporangia $35\mu-62\mu$ high and $18\mu-40\mu$ in diameter. *Remarks.*—This closely resembles Lemoine's *L. bofilli* from Spain and Algeria, except that it does not seem to develop such long spines.

Locality: F-83.

Figured specimens: F-83-55(2) L.

Lithothamnium crispithallus Johnson

Lithothamnium crispithallus Johnson, 1957, p. 223, pl. 42, figs. 6-8.

Description.—Thallus develops a thin probably unattached crust, with distinct but thin hypothallus and perithallus. Hypothallic cells $16\mu-28\mu$ by $7\mu-11\mu$. Perithallic cells $7\mu-12\mu$ by $6\mu-11\mu$. Conceptacles flat, diameter $282\mu-359\mu$, height $99\mu-108\mu$.

Remarks.—This is similar to the form described from Saipan except that the hypothallic cells are longer.

Locality: M-247.

Lithothamnium cymbicrusta Johnson

Lithothamnium cymbicrusta Johnson, 1957, p. 224, pl. 40. figs. 1, 6, 7; pl. 41. fig. 8.

Description.—Thallus develops a thin irregular crust 200μ -500 μ thick. Hypothallus well developed, consisting of rows of cells that curve gently from the center toward the top and the bottom. Hypothallic cells 14μ - 24μ by 8μ - 14μ . Secondary hypothallic tissue with slightly shorter cells were observed on several specimens developing scar tissue. Perithallic tissue fairly regular, cells 9μ - 14μ by 7μ - 12μ . Conceptacles 360μ - 450μ in diameter and 90μ - 180μ high. Sporangia observed in several of the conceptacles, measuring 80μ - 82μ high and 18μ - 25μ in diameter.

Remarks.—The specimens from Ishigaki-shima agree with the type material from Saipan in all respects except that in some specimens from Ishigaki-shima the hypothallic cells attain a greater length.

Age: Eocene. Locality: F-163, 85. Specimens: IS-F-163-55(4), IS-F-85-55(2).

Lithothamnium faurai Lemoine

Plate 4, figures 3, 4

Lithothamnium faurai Lemoine, 1927, v. 6, p. 545–551, 6 text figs. 1928b, p. 97, fig. 8.

1939, p. 74, text figs. 36–37, p. 79.

Description.—Thallus develops strong branches with growth zones that are not conspicuous. Cells of branches 9μ -18 μ by 8μ -13 μ . Several examples of secondary hypothallus developed as scar tissue have cells 16μ -27 μ by 9μ -11 μ . Conceptacles abundant, 220μ -475 μ in diameter and 88μ -200 μ high. Detailed dimensions are given in table 6.

Remarks.—The specimens from Ishigaki-shima fit the the material described by Lemoine from Spain and Algeria.

 TABLE 6.—Measurements, in microns, of Lithothamnium faurai

 Lemoine

Slide	Hypotha	allic cells	Peritha	llic cells	Conceptacles	
	Length	Width	Length	Width	Diameter	Height
2532 F-83-55L 2538	16–20 18–27	7-9 9-11	9–16 9–17 11–14	7-11 8-13 8-11	440-467 220-470 335-440	88-99 118-220 112-145
2536 2530 M-286-56 F-49-55(5)			11-18 10-18 11-18 11-17	8–11 9–13 10–13 9–11	$211-338 \\ 308 \\ 415 \\ 407$	88-144 132 264 234

This species closely resembles L. marianae Johnson from Saipan, differing slightly in cell dimensions but mainly in having poorly defined growth zones whereas L. marianae has well-defined lenticular growth zones. Also the horizontal alignment of cells is poor in L. faurai and pronounced in L. marianae.

Localities: F-49, 83; M-286. Figured specimens: 2532, F-83-55 L, 2538.

Lithothamnium ishigakiensis Johnson, n. sp.

Plate 3, figures 1, 2

Description.—Thallus develops as a thin sheet or irregular mass. Several may grow connected or superimposed to form an irregular crust, a nodular mass, or an irregular plate with long warty protuberances that externally suggest branches. Each thallus consists of a well-developed hypothallus, commonly 100μ -175 μ thick, consisting of curved rows of cells. The perithallus is thin, consisting of regularly arranged rows of cells. Conceptacles abundant, large, flat topped, and the roof is pierced by many apertures. Cell and conceptacle measurements for eight specimens are given in table 7.

 TABLE 7.—Measurements, in microns, of Lithothamnium ishigakiensis Johnson, n. sp.

Slide	Hypotha	allic cells	Perithal	llic cells	Conceptacles	
	Length	Width	Length	Width	Diameter	Height
$\begin{array}{c} \text{IS-F-49-55L}(4) \\ \text{IS-F-50-55L} \\ \text{IS-F-83-55L} \\ \text{IS-F-83-55L}(5) \\ \text{IS-F-83-55L}(5) \\ \text{IS-F-83-55L}(5) \\ \text{IS-F-83-55(1)} \\ \text{IS-F-163-55(1)} \\ \text{IS-F-163-55(1)} \\ \text{IS-F-163-55(1)} \\ \end{array}$	$15-25 \\ 11-15 \\ 14-24 \\ 13-16 \\ 14-20 \\ 11-18 \\ 11-20 \\ 11-2$	6-11 8-11 8-10 6-8 7-11 8-12	10-157-1111-1410-1310-1312-147-99-15	8-11 6-10 9-12 8-12 7-10 9-11 7-10 8-11	$\begin{array}{r} 396-687\\ 630\\ 810\\ 792\\ 453-675\\ 450-670\\ 726\\ 669\end{array}$	$\begin{array}{r} 88-176\\ 176\\ 195\\ 194\\ 123-176\\ 180-200\\ 296\\ 132\end{array}$

The large range in size of conceptacles probably is largely the result of the accidental position of the section that might be through the center or might be near the edge. The larger figures are probably the closest to the true diameter.

Remarks.—This species differs considerably from any previously described Eocene *Lithothamnium* known to the author. The peculiar growth forms resulting from the combined growth of numerous thalli, the large size of the conceptacles, the well-developed but thin hypothallus and perithallus, and the cell size are considered to be distinctive features of the species.

Ishijima, 1954, described a species, *L. boninensis*, that has unusually large conceptacles, but it differs in size of cells, growth habit, and in having a poorly developed hypothallus and a very thick perithallus.

Age: Eocene.

Localities: F-49, 50, 83, 163.

Figured specimens: Holotype, IS F-83-55(4); also figured, IS F-83-55(3), IS F-163-55(1).

Lithothamnium marianae Johnson

Lithothamnium marianae Johnson, 1957, p. 226, pl. 41, figs. 1-3.

Description.—A strongly branching form. Branches show pronounced growth zones and a well-defined tendency for a horizontal as well as a vertical alignment of the cells. Cells measure 9μ -15 μ by 7μ -11 μ . Conceptacles 247 μ -465 μ in diameter and 116 μ -176 μ high. Sporangia present, at least 21 μ -48 μ high.

Remarks: Similar to the material described from Saipan. Locality: M-239.

Lithothamnium cf. L. moreti Lemoine

Plate 3, figure 3

Lithothamnium moreti Lemoine, 1927, p. 547, fig. 2. Johnson, 1957, p. 225, pl. 38, fig. 7.

Description.—Thallus thin, encrusting. Several may grow superimposed. Thallus thin, normally about 100μ -200 μ . It consists of curved rows of cells. The perithallus is well defined but shows a considerable variation of thickness in different specimens. Conceptacles common. The dimensional data for five specimens are given in table 8.

 TABLE 8.—Measurements, in microns, of Lithothamnium cf.

 L. moreti Lemoine

Slide	Hypotha	allic cells	Peritha	llic cells	Conceptacles		
	Length Width		Length	Width	Diameter	Height	
IS-F-80-55(2) IS-F-163-55(3)	14–23 15–27	7-9 6-11	7-9 6-13	7-9 7-8 (10)	200-235 198	85-95 65	
IS-F-163-55(2) IS-F-49 IS-F-50(2)	15–20 16–23 16–21	8–9 9–13 10–14	7–10 9–13 7–10	6–7 8–10 7–11	$\substack{195-256\\285-290\\385}$	112–158 100–170 175	

Remarks.—This form is common in the slides from Ishigaki-shima. The growth habit, cell dimensions, and conceptacle size are similar to the material described from Saipan by this author and from the Mediterranean region by Lemoine. The material from Ishigakishima, however, differs in having slightly larger perithallic cells and by having a better developed hypothallus. Age: Eocene.

Localities: F-49, 50, 80, 163. Figured specimens: IS-F-80-55(2), IS-F-163-55.

Lithothamnium cf. L. tagpotchaense Johnson

Lithothamnium tagpotchaense Johnson, 1957, p. 223, pl. 37, fig. 7; pl. 39, fig. 7.

Description.—Thallus forms a thin irregular sheet. Hypothallus and perithallus thin. Hypothallus 50μ – 150μ thick, consisting of curved rows of cells. Cells 12μ – 23μ by 8μ – 11μ . Perithallus with well-defined vertical rows of cells. Cells 9μ – 15μ by 8μ – 12μ . Conceptacles 210μ – 290μ in diameter and 78μ – 100μ high. Some of the conceptacles show sporangia 60μ – 67μ high and 23μ in diameter.

Remarks.—In appearance and growth habit the Ishigaki-shima specimens closely resemble the type *L. tagpotchaense* Johnson from Saipan. The conceptacles are about the same size. There is a slight difference, however, in the size of the perithallic cells. It also closely resembles *L. grahami* Johnson and Stewart but differs in character of hypothallus and in having a much thinner perithallus.

Age: Eocene.

Localities: F-84, 163.

Genus MESOPHYLLUM Lemoine, 1928

This genus is intermediate between *Lithothamnium* and *Lithophyllum* structurally. It has tissue similar to *Lithophyllum* and conceptacles that have many apertures like those of *Lithothamnium*. It includes both crustose and branching species. In most species the tissue shows pronounced irregular growth zones.

The genus has a known range extending from the Eocene to the Recent. In the Ishigaki collections it is abundantly represented by numerous specimens belonging to a few species.

The detailed dimensions and locality data for the Ishigaki species are shown in table 9.

Mesophyllum ishigakiensis Johnson, n. sp.

Plate 5, figure 4

Description.—The plant forms large, very irregular crusts that have wide rounded protuberances. The hypothallus and perithallus are strongly differentiated. The hypothallus is very irregular, being thin in some places and then thickening rapidly. Thickness ranges from 150μ to more than 600μ . It may develop a plumose structure. Where thin it consists of strongly curved rows of cells; where thick it consists of many rows of cells which curve from the center toward the top and bottom. Hypothallic cells $16\mu-25\mu$ by $10\mu-13\mu$. Detailed dimensions are given in table 10.

TABLE 9.-Measurements, in microns, and distribution of Eocene species of Mesophyllum

[Based on slices in thin sections]

Species	Hypothallic cells		Perithallic cells		Conceptacles		Growth habit	Locality	
	Length	Width	Length	Width	Diameter	Height			
Mesophyllum ishigakiensis Johnson, n. sp ryukyuensis Johnson, n. sp nauchanii (Howe) Lemoine	16-25 12-22 9-22	10-13 8-12 7-13	10-17 9-11 8-18 9-19	11-12 8-9 6-12 6-19	250-425 250-325 176-528	135-160	Crusts with rounded protuberances Crusts with branches or knobs	F-49, 50 F-49, 50, 81, 83, 163 F-51, 81, 83, 163, 176;	
sp. A	13-20	9–12	11-18 9-21	9–10 11–18	1056	298	Long, slender branches Crust with protuberances	M-121, 239, 240 F-176 M-239, 286	

 TABLE 10.—Measurements, in microns, of Mesophyllum ishigakiensis Johnson, n. sp.

Slide	Hypotha	allic cells	Peritha	llic cells	Conceptacles		
	Length	Width	Length	Width	Diameter	Height	
F-50 F-50 F-49(1)	16-25 21-27	10-13 10-14	10–15 9–16 13–14	9-12 9-12 10-14	250-400 275-425 189-370	125-150 135-160 112-125	

The perithallus is thick and irregular. At the base it is fairly regular with thin growth zones of layers of cells, but above it becomes very irregular, appearing to be composed of small lenticular growth zones. Conceptacles are numerous and add to the irregularity of the tissue. The growth zones commonly contain longer cells in the lower layers than in the upper ones. Cells in the lower layers are $10\mu-17\mu$ by $11\mu-12\mu$, middle layers $11\mu-12\mu$ by $11\mu-12\mu$, upper layers $9\mu-11\mu$ by $8\mu-9\mu$. Conceptacles small, very numerous, and crowded with sporangia. Diameter of conceptacles $250\mu-425\mu$, height $135\mu-160\mu$. Sporangia $45\mu-78\mu$ high and $14\mu-45\mu$ in diameter.

Remarks.—The growth form, very irregular tissue, and small high conceptacles make this species quite distinctive.

The cell dimensions and size of conceptacles fall within the range of those attributed to M. vaughanii (Howe) Lemoine, but in the latter the crust is insignificant and the branches and spines are more characteristic. Although the tissue of M. vaughanii is zoned also, the zones are larger and the tissue more regular.

M. ishigakiensis differs from M. ryukyuensis Johnson by having a much more irregular perithallic tissue and by lack of branches.

Localities: F-49, 50. Figured specimen: Holotype, F-50(1).

Mesophyllum ryukyuensis Johnson, n. sp.

Plate 5, figures 1-3; plate 7, figure 6

Description.—Thallus forms a crust from which develop short flat-topped knobs or branches. The basal hypothallus is thin but well defined. It consists of curved rows of cells. Cells measure $12\mu-22\mu$ long and 8μ -12 μ wide. Numerous specimens show a secondary hypothallus developed as a scar tissue. The tissue of the branches shows growth zones; these are shaped like an inverted saucer. Commonly the zones contain 6–14 layers of cells. In many of the lower layers the cells are longer than in the upper layers. Cell dimensions range from 8μ to 18μ long by 6μ to 12μ . They average about 9μ -13 μ by 8μ -11 μ . Conceptacles numerous with diameters as much as 325μ . Many contain sporangia. These show lengths as much as 75μ and diameters as much as 35μ .

The dimensional data for a number of specimens are given in table 11.

 TABLE 11.—Measurements, in microns, of Mesophyllum ryukyuensis Johnson, n. sp.

Slide	Hypotha	llic cells	Perithal	lic cells	Conceptacles	
	Length	Width	Length	Width	Diameter	Height
$\begin{array}{c} \text{IS} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	12-22 13-17 12-17 	8-10 7-9 9-11 	$\begin{array}{c} 9-16\\ 9-14\\ 10-12\\ 12-15\\ 12-17\\ 9-18\\ 9-15\\ 8-12\\ 10-13\\ 9-11\\ 9-15\\ 11-15\\ \end{array}$	9-12 8-10 9-12 8-10 9-11 9-11 9-10 6-8 8-9 7-9 9-11 8-11	$\begin{array}{c} 264-323\\ 210-310\\ 290-310\\ 250-270\\ 190-250\\ 280-290\\ 9770\\ 191-275\\ 133-165\\ 184-191\\ 153-244\\ 176-245\\ \end{array}$	61-85 100-120 128-180 90-108 90-100 100-110 108 98-127 81-112 84-92 61-79 65-75

Remarks.—This is the species most abundantly represented in the Eocene slides studied from Ishigakishima. It rather closely resembles *M. pfenderae* Lemoine but has smaller cells and considerably smaller conceptacles. It approaches *M. ishigakiensis* Johnson but differs in having a more regular tissue and by developing branches.

Localities: F-49, 50, 81, 83, 163; M-239.

Figured specimen: Holotype, IS-F-49-55 L(1); also figured, IS-F-49-55 L(4).

Mesophyllum vaughanii (Howe) Lemoine

Plate 3, figure 4 ; plate 6, figures 4, 5, 6

Lithothamnium vaughani Howe, 1918, p. 6-7, pls. 7, 8. Mesophyllum vaughanii (Howe) Lemoine, 1939, p. 89-90, pl. 1. Description.—Thallus forms a crust from which develop numerous short branches or spines as much as 5 mm long and 3 mm wide. The tissue of the branches is strongly zoned and is composed of lenticular masses of cells, each lens being formed of layers of cells. In some of these layers the cells are of equal length, in others the lower layers contain longer cells than the upper ones. Cells measure 9μ - 19μ by 6μ - 19μ . Some of the thicker branches have a fairly well defined outer or marginal perithallus, others do not.

There is a small but well-defined basal hypothallus to the crust, consisting of curved cell rows. Cells 14μ - 27μ by 9μ - 13μ . Some of the specimens studied show strips of secondary hypothallic tissue that apparently developed as scar tissue. Conceptacles are abundant and pierced by numerous pores. Conceptacle diameters are as much as 528μ . Some specimens show traces of the sporangia.

Dimensional data for 14 specimens are given in table 12.

 TABLE 12.—Measurements, in microns, of Mesophyllum

 vaughanii (Howe) Lemoine

Slide	Basal hy cel	pothallic lls	Cells of 1	oranches	Conceptacles		
	Length	Width	Length	Width	Diameter	Height	
F-51(1)	14-26	9–13	14–19	11-15	525	125	
F-51(2)	12-18	9–12	13 - 20	7-11	320 - 430	150 - 170	
F-81(1)			10 - 12	9-12	290 - 310	128 - 180	
F-83(1)	13-17	7-9	12-15	8-10	250-289	90-108	
F-83(1)	15-19	7-10	9–15	7 - 10	220-383	88-100	
F-163(4)			8-11	9-16	338-504	117 - 139	
F-176(2)	9–17	5-10	11-18	7-10	202 - 229	66-77	
M-97(1)			10 - 12	6-11	370-396	185-198	
	19-27	7-11	13-19	9-12	202-396	202-220	
M-121(1)	26-35	9–11	11-25	9–13	204-414	132-147	
			12-25	8-13	312-528	130-149	
M-239D(3)	14-28	9-11	10-19	7-12	264-506	84-194	
M-239A(1)L			11-17	6-10	176-440	114-159	
			9–15	9-11	396-508	119-132	
M-240C			10-19	8-11	191-330	101-132	
M-247A			9-14	7-10	189-341	118-132	
	14-28	9–13					
	1		l 9–19	6-16	528	l . . .	

Remarks.—This is the most common species of algae found in the collections from Ishigaki-shima. It suggests M. pfenderae Lemoine but has smaller cells and conceptacles. It approaches M. ishigakiensis Johnson in cell size but differs in having a more regular tissue, larger conceptacles, and by developing branches. It is close to M. ryukyuensis Johnson but differs in having a tissue with more pronounced growth zones and in developing long, slender branches.

Localities: F-51, 81, 83, 163, 176; M-121, 239, 240, 247. Figured specimens: F-83-55(4); M-240-56C, and F-163-

Mesophyllum sp. A Plate 6, figure 1

Description.—Develops long, slender branches. These are composed of a thick medullary hypothallus and a narrow marginal perithallus. The hypothallus shows numerous growth zones, each about 10 layers of cells thick, composed of cells measuring $13\mu-20\mu$ by $9\mu-12\mu$. The marginal perithallus contains cells $11\mu-18\mu$ by $9\mu-10\mu$. No conceptacles observed.

Remarks.—The long, slender spinelike branches and the cell dimensions of this form differ from any described Eocene species. With only a few infertile branches available for study however, it does not seem desirable to give it a specific name.

Locality ; F-176.

Figured specimen: IS-F-176-55(2).

Mesophyllum sp. B

Plate 4, figure 5

Description.—Thallus develops a crust with small protuberances or mammillae. Hypothallus moderately developed; cells $18\mu-25\mu$ by $9\mu-12\mu$. Perithallic tissue fairly regular, with cells $9\mu-21\mu$ by $9\mu-18\mu$. Conceptacle chamber $1,056\mu-1,320\mu$ by $298\mu-310\mu$.

Remarks.—Represented by two fragments but of interest because of its unusually large conceptacle.

Locality: M-239 and 286.

Figured specimen: M-286-56(1).

Genus LITHOPHYLLUM Philippi, 1837

This genus has the tissue differentiated into hypothallus and perithallus. Most of the species have a coaxial basal hypothallus but some have a hypothallus consisting of a few irregular or curved threads of cells. The perithallus is regular, showing layers of cells. Branching species have a well-developed coaxial medullary hypothallus, surrounded by a thinner marginal perithallus. The tetrasporangia are collected into conceptacles having a single large aperture in the roof.

For some reason *Lithophyllum* is not abundant in the Eocene rocks from Ishigaki-shima. Only three species were observed.

Lithophyllum cf. L. ovatum (Capeder) Lemoine

Lithothamnium ovatum Capeder, 1900, p. 177, pl. 6, figs. 5 a, b. Lithophyllum ovatum (Capeder) Lemoine, 1926, p. 245-246, fig. 3.

Airoldi, 1932, p. 70, pl. 10 [1933].

Johnson, 1957, p. 228, pl. 45, figs. 4, 8.

Description.—Thallus forms a thin crust. Several may grow superimposed. Hypothallus is thin $(44\mu-98\mu$ thick), and coaxial, having cells $12\mu-24\mu$ by $7\mu-12\mu$. Perithallus is $250\mu-600\mu$ thick, of regular cell rows. Cells are $6\mu-13\mu$ by $6\mu-11\mu$. Conceptacle chambers $176\mu-365\mu$ in diameter and $58\mu-84\mu$ high.

Remarks.—This species closely resembles the species described by Lemoine (1926) from Italy except that the

55(4).

hypothallic cells are shorter. It is similar to the material from Saipan which was attributed to that species.

Localities: F-49, 163; M-247, 248.

Lithophyllum cf. L. pfenderae Lemoine

Plate 6, figures 2, 3

Description.—Small slender branches, possibly developing from a thin crust. Tissue shows growth zones. Tissue of branches of layers of cells is $9\mu-18\mu$ by $7\mu-11\mu$. Thin growths of hypothallic tissue over conceptacles have cells $20\mu-31\mu$ by $7\mu-11\mu$. Conceptacles are $176\mu-552\mu$ in diameter, highly arched, having a single large long-necked aperture.

Remarks.—The growth habit and size of cells and conceptacles closely resemble those given by Lemoine (1928b, p. 99) for *L. pfenderae* from Catalonia, Spain, The branches, however, are a little smaller and the maximum length of cells is less.

Localities: M-239, 240, 247; F-83. Figured specimens: M-239B(3), and 240A(2).

Lithophyllum sp. D

Plate 7, figure 7

Description.—Thallus forms an irregular crust, a millimeter or more thick, composed of a thin poorly developed hypothallus $(50\mu\pm)$ and a thick perithallus. Perithallic tissue shows irregular growth zones, and cells are $9\mu-18\mu$ by $9\mu-13\mu$. Conceptacles are small— $132\mu-215\mu$ in diameter and $50\mu-77\mu$ high and have a long thick aperture.

Remarks.—This form is quite different in cell size, character of tissue, and conceptacle size from any hitherto described Eocene *Lithophyllum*. It is represented, however, by only a single specimen that cuts the hypothallus obliquely and thus is considered inadequate for giving it a specific name.

Locality: M-236. Figured specimen: IS-M-236-56L.

Genus Lithoporella Foslie, 1909

The thallus of *Lithoporella* is composed of a single layer of large cells that are elongated vertically and slightly obliquely. (They contain the longest cells found among the crustose corallines, although some of the articulated corallines have cells equally long. Conceptacles have a single large roof pore. The plants form thin, often circular crusts growing on other plants, coral, Foraminifera shells, pebbles, and other firm objects.

Specimens belonging to this genus are found in the Ishigaki collection but for some reason are not nearly as common as in most of the Eocene collections studied from the Pacific area.

Lithoporella melobesioides

- Mastophora (Lithoporella) melobesioides Foslie. Weber van Bosse and Foslie, 1904, p. 73-77, figs. 30-32.
- Melobesia (Lithoporella) melobesioides Foslie. Lemoine, 1939, p. 108-110, figs. 78-79.
- Lithoporella melobesioides (Foslie) Foslie. Lignac-Grutterink, 1943, p. 292–293, pl. 2, fig. 8.
- Lithoporella (Melobesia) melobesioides (Foslie) Foslie. Johnson and Ferris, 1949, p. 196-197, pl. 37, figs. 4-5; pl. 39, fig. 2.
- Lithoporella melobesioides (Foslie) Foslie. Johnson and Ferris, 1950, p. 18, pl. 8, fig. A.
 - Johnson, 1957, p. 234, pl. 37, fig. 5; pl. 43, figs. 1, 2; pl. 49, fig. 4; pl. 56, fig. 6.

Description.—Thallus thin, consisting of a single layer of long narrow cells 81μ - 92μ long and 15μ - 18μ wide. No conceptacles are present.

Remarks.—This ubiquitous species with very long cells is surprisingly scarce in the collections from Ishi-gaki-shima. All the specimens were infertile.

Age: Eocene. Locality: F-95.

Lithoporella minus Johnson n. sp.

Plate 2, figure 6

Description.—Thalli small and very thin, consisting of a single layer of vertically elongated cells. Cell dimensions, in microns:

> 24μ -27 μ by 15μ -18 μ 21μ -24 μ by 11μ -16 μ 22μ -26 μ by 11μ -14 μ 22μ -25 μ by 11μ -15 μ

Conceptacle chambers average 135μ in diameter and 65μ high.

Remarks.—Superficially this looks very similar to *Melobesia? cuboides* Johnson from the Eocene of Saipan. The cells, however, are elongated vertically and slightly obliquely instead of horizontally, and the cells are longer and narrower.

Age: Eocene. Locality: F-84. Figured specimen: Holotype, IS-F-84-55(1).

Genus DERMATOLITHON Foslie, 1899

The thallus forms a thin crust that is circular or irregular in outline. These grow on other algae, coral, shells, and other objects. Thalli may grow on one another. The hypothallus consists of one or two layers of cells that are vertically and obliquely elongated. Perithallus contains only a few layers of nearly cubic cells. Conceptacles slightly to strongly convex, the roof pierced by a single aperture. Only a few specimens of a single species were observed in the slides.

Dermatolithon nitida Johnson

Dermatolithon nitida Johnson, 1957, p. 235, pl. 57, figs. 2, 3.

Description.—Thallus is thin and encrusting. Hypothallus consists of a single layer of vertically elongated cells 42μ - 63μ by 11μ - 19μ . Perithallus formed of a few layers of nearly cubic cells 20μ - 32μ by 16μ - 21μ . No conceptacles present.

Remarks.—This is similar to the species described from the Eocene of Saipan.

Locality: M-239.

Subfamily CORALLINOIDEAE (articulated corallines) Genus CORALLINA Linnaeus, 1758

The plants are bushy clusters of segmented stems that branch at close intervals, ordinarily in a plane. Segments mainly clavate or flattened cylindrically, quite variable in size and shape. Segments mainly of hypothallic tissue, composed of lenticular layers of long narrow cells. Marginal perithallus is weakly developed. Conceptacles are lateral or terminal.

Corallina cf. C. cossmanni Lemoine

Plate 7, figures 4, 5

Description.—Flattened segments of a frond. Segments consist of curved layers of long narrow cells that measure 58μ -121 μ long and 5μ -12 μ wide at middle of cell layers. Several specimens show the nodes formed of a single layer of very long cells, 246μ -264 μ long and 8μ -11 μ wide. No conceptacles were observed. The detailed measurements of eight specimens are given in table 13.

Remarks.—These specimens fit very closely Lemoine's species from the lower Miocene of Martinique (Lemoine, 1917) and the material attributed to that species by Lignac-Grutterink (1943) from the Eocene of the Malaysian archipelago.

Localities: M-121, 239, 247, 248.

Figured specimens, slides: M-121-56 L, M-248-56C(2).

 TABLE 13.—Measurements, in microns, of specimens of Corallina

 cossmanni
 Lemoine

Slide	Size segments	Num- ber of layers of cells in seg- ments	Cell	size	No	de		
			Length	Width	Length	Width	Marginal cells	
				<u> </u>				
M-121-56L	1012×572 1056×572	17 18	62-83 53-90	7–12 7–10	264	467		
M-239B(4)	660×462	8	75-121	8-11			8-10× 8-9	
M-239D(3)	924×294	14	62 - 91	5-10				
M-247 B	660×440	8	86-109	8-11			9-11×9-11	
M-247B	860×500	12	62-101	6-11	300	396		
M-247 B	528×247	8	58-79	7-9				
M-248C(2)	1452×704	21	6084	8-12				
			l					

Corallina matansa Johnson

Corallina matansa Johnson, 1957, p. 238-239, pl. 44, flgs. 3, 4.

Description.—Segments flattened, sharply tapering, 1–1.4 mm long. Hypothallic cells in center of layers 47μ -78 μ long.

Remarks.—Represented by a number of abraded segments which appear to belong to the same species described from Saipan.

Localities: M-97, 106, 121.

Corallina prisca Johnson

Corallina prisca Johnson, 1947, p. 239–240, pl. 37, fig. 4; pl. 40, fig. 10; pl. 44, figs. 1, 2, 7–11.

1961, p. 907-950, pls. 267-280, figs. 288-289.

Description.—Fronds composed of slender nearly cylindrical segments. Hypothallic cells 80μ -110 μ by 6μ -10 μ . Perithallic cells 10μ -28 μ by 8μ -15 μ .

Remarks.—These are the same species originally described from Saipan and later found in the Eocene limestone of many of the Pacific Islands.

Localities: F-84, 95.

Genus JANIA Lamouroux, 1812

The plants consist of bushy masses of slender dichotomously branching fronds. Each frond is a series of slender segments formed of tiers of medullary hypothallic cells surrounded by a very narrow marginal perithallus. Commonly this is only one layer thick with small rectangular cells. The cells of the hypothallus tend to be wider in proportion to their length than in most genera of the articulated corallines. Many of the hypothallic cells are wedge shaped, wider at the top than at the bottom; and the boundary between the layers of cells is irregular.

One plant, a new species, is described.

Jania mayei Johnson, n. sp.

Plate 7, figures 1, 2

Description.—Long, slender nearly cylindrical segments composed of layers of cells. Irregular boundaries between the cell layers. Cells measure $19\mu-34\mu$ by $8\mu-11(14)\mu$. Marginal cells $9\mu-14\mu$ by $7\mu-9\mu$. Dimensions of four specimens are given in table 14.

Remarks.—This species has considerably smaller cells than any previously described Eocene species and tends to develop long segments.

This is based on many broken segments, so the total length and number of tiers of cells in segment is greater than the observed figures. Named for Harold May who collected most of the material.

Localities: F-176; M-239, 248.

Figured specimens: Holotype, M-248-C; also figured, F-176-55L.

 TABLE 14.—Measurements, in microns, of Jania mayei

 Johnson, n. sp.

Slide	Size of	Tiers of cells in a	Cells of	tiers	Marginal cells		
	segment	segment	Length	Width	Length	Width	
M-248C F-176 M-239B(4) M-248(2)	1012×156 704×139 507×102 1474×130	36+24+18+59+	19–28 26–35 26–34 22–33	9–11 9–12 8–11 9–14	9–14 9–12	8-9 7-8	

Genus AMPHIROA Lamouroux, 1812

The plants form tufts or clusters of segmented fronds that branch dichotomously or trichotomously at regular intervals. Conceptacles are lateral. The segments are cylindrical to flattened or are flattened but thicker at the center than at the margins. The medullary hypothallus is well developed and formed of gently arched tiers of cells. In many of the Recent species one or more tiers of long cells regularly alternate with single tiers of short cells. The marginal perithallus is moderately to well developed.

The genus is represented by only a few badly worn segments in the slides of Eocene material from Ishigakishima.

SELECTED BIBLIOGRAPHY

- Airoldi, Marco, 1931, Die alcune Corallinacee fossili delle Carnarie: R. Accad. Nazionale. Lincei, Cl. sci. fis., mat. e nat., Atti, Rend., ser. 6, v. 13, pt. 7, p. 532–535, 1 text fig.
- 1932, Contributo allo studio delle Corallinacee del Terziario Italiano; 1, Le Corallinacee dell'Oligocene Ligure-Piemontese: Palaeontographia Italica, v. 33 (new ser., v. 3), p. 55-83, pls. 9-12 [1933].
- Capeder, Giuseppe, 1900, Contribuzione allo studio dei Lithothamnium Terziari: Malpighia, v. 14, p. 172–183, pl. 6.
- Conti, Sergio, 1943, Contributo allo studio delle Corallinacee del terziario Italiano. Pt. 2—Corallinacee del Miocene Ligure-Piemontese: Palaeontographia Italica, v. 41 (new ser., v. 11), p. 37-61, pls. 5-8, figs. 1-3.
- Foslie, M. H., 1900a, Calcareous algae from Funafuti: Kgl. Norske vidensk. selsk. Skr., no. 1, p. 1-12.
- 1900c, The Lithothamnia of the Maldives and Laccadives: The fauna and geography of the Maldive and Laccadive Archipelagoes, v. 1, pt. 4, Cambridge, p. 460–471, pls. 24, 25.
- Foslie, M. H., and Printz, Henrik, 1929, Contributions to a monograph of the *Lithothamnia*: Klg. Norske vidensk. selsk. mus. Mon., 60 p., 75 pls.
- Gümbel, C. W., 1871, Die sogenannten Nulliporen (*Lithothamnium* und *Dactylopora*) und ihre Betheiligung an der Zusammensetzung der Kalkgesteine : K. Bayerische Akad.

Wiss., Munich, Abh., Kl. II, Math.-naturw., v. 11, no. 1, 42 p., 8 pls.

- Howe, M. A., 1918, Contributions to the geology and paleontology of the Canal Zone, Panama . . . On some fossil and recent Lithothamnieae of the Panama Canal Zone: U.S. Natl. Mus. Bull. 103, p. 1–13.
- 1919, Tertiary calcareous algae from the islands of St. Bartholomew, Antigua, and Anguilla : Carnegie Inst. Washington Pub. 291, p. 9–19, 6 pls.
- 1922, Two new Lithothamnieae, calcareous algae, from the lower Miocene of Trinidad, British West Indies: U.S. Natl. Mus. Proc., v. 62, art. 7, 3 p., 4 pls.
- 1934, Eocene marine algae (Lithothamnieae) from the Sierra Blanca limestone: Geol. Soc. America Bull., v. 45, p. 507-518, pls. 52-56.
- Ishijima, Wataru, 1942a, On the Coralline Algae from the Ryukyu limestone of Kotosyo (Botel Tobago Island): Taiwan Tigaku Kizi, v. 13, nos. 2–3.
- 1942b, Description of two new species of Archaeolithothamnium from Taiwan: Taiwan Tigaku Kizi, v. 13, no. 4, p. 119-121 (in Japanese, English résumé).
- 1943, On some fossil Corallinae algae from the Ryukyu limestone of the Ryukyu Islands and Formosa (Taiwan):
 Tohoku Univ., Fac. Sci., Mem., ser. 3, v. 1, no. 3, p. 49-76, 4 pls.
- ——— 1954, Cenozoic Coralline algae from the western Pacific: Tokyo (Privately published), 87 p., 49 pls.
- Johnson, J. H., 1954, Bikini and nearby atolls, Marshall Islands, Pt. 4. Paleontology. Fossil calcareous algae from Bikini Atoll: U.S. Geol. Survey Prof. Paper 260-M, p. 537-545, pls. 188-197.
- 1957, Geology of Saipan, Mariana Islands, Pt. 3. Paleontology. Calcareous algae: U.S. Geol. Survey Prof. Paper 280-E, p. 209-246, pls. 2, 4, 37-60.
- ——— 1961, Fossil algae from Eniwetok, Funafuti, and Kita-Daito-Jima: U.S. Geol. Survey Prof. Paper 260-Z, p. 907-950, pls. 267-280, figs. 288-289.
- Johnson, J. H., and Ferris, B. J., 1949, Tertiary Coralline algae from the Dutch East Indies: Jour. Paleontology, v. 23, no. 2, p. 193-198, pls. 37-39.
- ——— 1950, Tertiary and Pleistocene Coralline algae from Lau, Fiji : B. P. Bishop Mus. Bull. 201, 27 p., 9 pls.
- Johnson, J. H., and Tafur, I. A., 1952, Coralline algae from the Eocene Atascadero Limestone: Jour. Paleontology, v. 26, p. 537-543, pls. 62-94.
- Lamouroux, J. V., 1812, Classification des Polypiers coralligenes: Nouv. Bull. Sci. par la Soc. Philomat., [no.] 3, p. 186.
- 1816, Histoire des Polypiers coralligenes flexibles: Caen, p. 226-302.
- Lemoine, Mme. Paul, 1911, La structure anatomique des Mélobésiées: Theses presenteés a la Faculté des Sciences de Paris, *in* Annales Inst. Océanographie de Monaco, v. 2, pt. 2.
- 1917, Corallinacées fossiles de la Martinique: Soc. géol. France Bull., ser. 4, v. 17, p. 256–279, 23 text figs. [1918].
- 1923, Les Mélobésiées du Calcaire pisolithique du Bassin de Paris: Soc. géol. France Bull., ser. 4, v. 23, p. 62–69, pl. 6, 8 figs.
- 1926, Revision des Mélobésiées tertiaires d'Italie décrites par M. Capeder: Soc. Savantes Sci., Cong., 1925, Comptes rendus, p. 241–259, 17 figs.

C12

- Lemoine, Mme. Paul, 1927, Quelques algues calcaires du Nummulitique de la Haute-Savoie: Mus-natl. historie nat. Bull., v. 6, p. 545-551, 6 figs.
 - ----- 1928a, Un nouveau genre de Mélobésiées : Mesophyllum : Soc. Bot. France Bull., 5th ser., v. 75, p. 251–254.
 - 1928b, Corallinacées fossiles du Catalonie et de Valence: Inst. Catalaña Historia Nat. Bull., ser. 2, v. 8, nos. 5–6, p. 92–107, 20 text figs.
 - 1929, Les Mélobésiées recueillies par M. Viennot dans le Miocène de la Province de Grenade: Soc. géol. France Bull., ser. 4, v. 29, p. 263–272, pl. 24, 5 text figs. [1930].
- 1934, Algues calcaires de la famille des Corallinacées recueillies dans les Carpathes occidentales par M. D. Andrusov: Czechoslovakia, Státní Geol. Ústav. Věstník, v. 10, pt. 5, p. 269–289, 16 figs.
- 1939, Les algues calcaires fossilles de l'Algérie: Matériaux pour la Carte géol. de l'Algérie, ser. 1, Paléontologie, no. 9, 128 p., 3 pls., 80 figs.
- Lignac-Grutterink, L. H., 1943, Some Tertiary Corallinaceae of the Malaysian Archipelago: Geol.-mijnb. genoot. Nederland en Kolonien Verh., Geol., ser., v. 113, p. 283–297, 2 pls., 4 figs.
- Manza, A. V., 1937, The genera of the articulate corallines: Natl. Acad. Sci. Proc., v. 23, no. 2, p. 44-48.
 - 1940, A revision of the genera of articulated corallines: Philippine Jour. Sci., v. 71, no. 3, p. 239–316.

- Newton, B., and Holland, R., 1902, On some fossils from the Islands of Formosa and Riukiu (Loo Choo): Tokyo Univ. Coll. Sci. Jour., v. 17, art. 6, p. 2–24.
- Pfender, J., 1926, Sur les organismes (du nummulitique de la colline de San Salvador) près Camarasa (prov. de Lerida, Catalogne) : Soc. española historia nat. Bol., v. 26, p. 321– 330, pls. 7–15.
- Rao, L., and Pia, Julius, 1963, Fossil algae from the uppermost Cretaceous beds (the Niniyur Group) of the Trichinopoly district, South India: India Geol. Survey Mem., Palaeontologia Indica, new ser. 21, no. 4, 49 p., 6 pls., 47 figs.
- Rothpletz, A., 1891, Fossile Kalkalgen aus den Familien der Codiaceen und der Corallinaceen: Deutsche geol. Gesell. Zeitschr., v. 43, p. 295–323, pls. 15–17.
- Sripada Rao, K., 1943, Fossil Algae from Assam: 1. The Corallinaceae: Natl. Acad. Sci. India Proc., sec. B, v. 13, pt. 5, p. 265–299.
- Weber van Bosse, Anna, and Foslie, M. H., 1904, The Corallinaceae of the *Siboga* Expedition: *Siboga*-Expeditie Mon. 61, 110 p., 16 pls.
- Yabe, H., 1912, Ueber einige gesteinbildende Kalkalgen von Japan and China: Tohoku Univ. Sci. Repts., ser. 2 (geology), v. 1, no. 1, p. 1–9.
- Yendo, K., 1902, Corallinae verae Japonicae: Tokyo Univ. Coll. Sci. Jour., v. 16, p. 1-36, pls. 1-7.

PLATES 1-7

.

FIGURES 1-6. Archaeolithothamnium fosteri Johnson, n. sp. (p. C3).

- 1. A crustose mass with a well-developed hypothallus and perithallus and several layers of sporangia (\times 50). USGS loc. D962, holotype specimen A788a.
- 2. Another area of the same (\times 50).
- 3. Vertical section of another crust (\times 50). USGS loc. D969 [F-163(4)], specimen A824.
- 4. Nearly vertical section of another crust (\times 50). USGS loc. D962 [F-49], specimen A789.
- 5. Section through a rounded mass (\times 50). USGS loc. D962, specimen A789.
- 6. Detail of a thick crust (\times 100) showing perithallic tissue, suggestions of growth zones, and several layers of sporangia. USGS loc. D969, specimen A825.

GEOLOGICAL SURVEY

PROFESSIONAL PAPER 399-C PLATE 1

FIGURES 1-3. Archaeolithothamnium nummuliticum (Gümbel) Rothpletz (p. C3).

- 1. A slightly oblique section of the tissue showing numerous sporangia $(\times 40)$, M-240-56C.
 - 2. Detail of tissue and sporangia (\times 100), F-163(1).
 - 3. Section of a small knob or branch with several layers of sporangia (\times 50), F-51-55(2).
- 4. Archaeolithothamnium cf. A. parisiense Gümbel Lemoine (p. C4).
 - Section of a branch (\times 40) showing tissue and several layers of sporangia, F-49-55L(4).
- 5. Lithothamnium cf. L. andrusovi Lemoine. (p. C5).
- Section showing detail (\times 40), M-247-56B.
- 6. Lithoporella minus Johnson, n. sp. (p. C10).
 - Several superimposed thalli (\times 100), F-84-55(1).

GEOLOGICAL SURVEY

PROFESSIONAL PAPER 399 C PLATE 2

ARCHAEOLITHOTHAMNIUM, LITHOTHAMNIUM, AND LITHOPORELLA

FIGURES 1, 2. Lithothamnium ishigakiensis Johnson, n. sp. (p. C6).

- 1. Several crusts each showing a hypothallus and perithallus. A large conceptacle chamber on top shows numerous apertures for the escape of spores (\times 50). Holotype F-83-55.
- 2. Detail of tissue and a large conceptacle chamber (\times 100) with indications of multiple apertures, F-83-55.
- 3. Lithothamnium cf. L. moreti Lemoine. (p. C7).
 - Section (\times 100) through several thin crusts. The upper one contains a conceptacle chamber with sporangia (somewhat recrystallized), F-163-55.
- 4. Mesophyllum vaughanii (Howe) Lemoine. (p. C8).
 - Section through a colony showing tissue and numerous conceptacle chambers (\times 50), F-163-55.

PROFESSIONAL PAPER 399-C PLATE 3

LITHOTHAMNIUM AND MESOPHYLLUM

GEOLOGICAL SURVEY

FIGURES 1, 2. Lithothamnium cf. L. bofilli Lemoine (p. C5).

- 1. A section (\times 100) showing hypothallus, perithallus, and a conceptacle filled with sporangia, F-83(2).
- 2. Section of a crust with well-developed hypothallus, a perithallus, and conceptacle chamber with numerous apertures (\times 100), F-83(2)L.
- 3, 4. Lithothamnium faurai Lemoine (p. C6).
 - Detail of tissue and a conceptacle chamber at top. Below it is another chamber partly covered by a secondary hypothallus which developed as scar tissue (\times 100), F-49.
 - Section of a branch (\times 40).
 - 5. Mesophyllum sp. B (p. C9).
 - Details of a worn and worm-bored specimen (\times 100), M-286-56.

GEOLOGICAL SURVEY

PROFESSIONAL PAPER 399-C PLATE 4

4

LITHOTHAMNIUM AND MESOPHYLLUM

5

- FIGURES 1-3. Mesophyllum ryukyuensis Johnson, n. sp, (p. C8).
 1. Section of a branch (× 40). USGS loc. D962 [F-49], holotype specimen A787a.
 - 2. Detail of the same (\times 100) showing tissue and conceptacles filled with sporangia.
 - 3. Section of a small knob (\times 50). USGS loc. D962, specimen A826.

4. Mesophyllum ishigakiensis Johnson, n. sp. (p. C7).

Slightly oblique section of a branch (\times 50) showing the numerous irregular growth zones and conceptacles filled with sporangia. USGS loc. D962, specimen A789b.

GEOLOGICAL SURVEY

1.3

PROFESSIONAL PAPER 399-C PLATE 5

FIGURE 1. Mesophyllum species A (p. C9).

- Section of a branch showing the growth zones (\times 50), F-176(2).
- 2, 3. Lithophyllum cf. L. pfenderae Lemoine (p. C10).
 - 2. A small growth showing tissue and conceptacle chambers with a single large long-necked aperture (\times 50) M-240A(2).
 - 3. A similar smaller growth (\times 50), M-239D(3).
- 4-6. Mesophyllum vaughanii (Howe) Lemoine (p. C8).

4. Several branches arising from a thin crust (\times 9), F-83.

- 5. A nearly complete branch showing tissue and multiple apertured conceptacles (\times 40), F-83(4).
- 6. Detail of a fragment of a branch with conceptacle chambers (\times 50) M–240C.

GEOLOGICAL SURVEY

PROFESSIONAL PAPER 399-C PLATE 6

MESOPHYLLUM AND LITHOPHYLLUM

FIGURES 1, 2. Jania mayei Johnson n. sp. (p. C11).

- 1. A nearly complete segment (\times 100), F-176.
- 2. A larger segment (the type) (\times 100), M-248-56C.
- 3. Lithothamnium cf. L. bofilli Lemoine (p. C5).
 - A thin crust with well-developed hypothallus, perithallus, and a conceptacle chamber (\times 50), M-286.
- 4, 5. Corallina cf. C. cossmanni Lemoine (p. C11).
 - 4. Two segments with connecting node (\times 40), M-121.
 - 5. Several segments (\times 50), M-248C(2).
 - 6. Mesophyllum ryukyuensis Johnson, n. sp. (p. C8).
 - Section of a branch, shows the growth zones and conceptacles with sporangia (× 50), F-49(4).
 7. Lithophyllum sp. D (p. C10).

 - A crust with conceptacle chambers (\times 50), M-236-65L.

JANIA, CORALLINA, LITHOTHAMNIUM, LITHOPHYLLUM, AND MESOPHYLLUM