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IV SYMBOLS

INTERNATIONAL SYSTEM OF UNITS (SI) AND 
INCH-POUND SYSTEM EQUIVALENTS

SI unit Inch-pound equivalent
Length

centimeter (cm) = 0.3937 inch (in)
meter (m)= 3.281 feet (ft)

kilometer (km) = 0.6214 mile (mi)

Area

centimeter2 (cm2)= 0.1550 inch2 (in2)
meter2 (m2)= 10.76 feet2 (ft2) 

kilometer2 (km2)= 0.3861 mile2 (mi2)

Volume

centimeter3 (cm3)= 0.06102 inch3 (in3) 
meter3 (m3) = 35.31 feet3 (ft3)

= 8.107x 10'4 acre-foot (acre-ft)

Volume per unit time

meter3 per second (m3/s)=35.31 feet3 per second (ft3/s)
= 1.585x 104 gallons per minute (gal/min)

Moss per unit volume
kilogram per meter3 (kg/m3) = 0.06243 pound per foot3 (lb/ft3) 

gram per centimeter3 (g/cm3) = 6.243 x 10'* pound per foot3 (lb/ft3)

Temperature

degree Celsius (°C) = (degree Fahrenheit-32)/1.8 (°F)

SYMBOLS

Symbol Definition

A Area of conveyance part of cross section
B Total top width of cross section
Bc Top width of conveyance part of cross section
Cd Water-surface drag coefficient
dA A finite elemental area
/ A function
/(/) Functional representation of a dependent variable
g Gravitational acceleration
i Subscript index that denotes a function's spatial location
j Superscript index that denotes a function's temporal location
k Flow-resistance coefficient function
q Lateral flow per unit length of channel
Q Flow discharge
Qm Flow discharge of mth branch at a junction
R Hydraulic radius of cross section
S Vector of state
t Time
At Time increment
Atj Time increment of jth interval
u Flow velocity at a point
u' X-component of lateral flow velocity
u Transformation matrix
M (O Transformation matrix of ith segment
!*  Transformation matrix of nth branch
U Mean velocity of flow
U Transformation matrix
U(n Transformation matrix of ith segment

Symbol Definition

U, Transformation matrix of nth branch
Ua Wind velocity
Wk Nodal flow at kth junction
x Distance along channel thalweg
Ax Distance increment
Ax, Distance increment of ith segment
Z Water-surface elevation
Zm Water-surface elevation of mth branch at a junction
a Angle between wind direction and x-axis
/3 Momentum coefficient
7 Flow-equation coefficient
5 Flow-equation coefficient
f Flow-equation coefficient
f Flow-equation coefficient
rj Flow-resistance coefficient similar to Manning's n
B Time weighting factor for spatial derivatives
X Flow-equation coefficient
H Flow-equation coefficient
£ Wind-resistance coefficient
g Water density
Q a Atmospheric density
ff Flow-equation coefficient
X Weighting factor for function values
\l/ Space weighting factor for temporal derivatives
co Flow-equation coefficient

	Superscript notation used to signify local constants
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By RAYMOND W. SCHAFFRANEK

ABSTRACT

Formulation of a one-dimensional model for simulating unsteady flow 
in a single open-channel reach or in a network of interconnected chan­ 
nels is presented. The model is both general and flexible in that it can 
be used to simulate a wide range of flow conditions for various channel 
configurations. It is based on a four-point (box), implicit, finite-difference 
approximation of the governing nonlinear flow equations with user- 
definable weighting coefficients to permit varying the solution scheme 
from box-centered to fully forward. Unique transformation equations 
are formulated that permit correlation of the unknowns at the ex­ 
tremities of the channels, thereby reducing coefficient matrix size and 
execution time requirements. Discharges and water-surface elevations 
computed at intermediate locations within a channel are determined 
following solution of the transformation equations. The matrix of 
transformation and boundary-condition equations is solved by Gauss 
elimination using maximum pivot strategy. Two diverse applications 
of the model are presented to illustrate its broad utility.

INTRODUCTION

In the past, the utility of numerical-simulation model­ 
ing was often limited by imposition of certain simplify­ 
ing assumptions that were both necessary and justifiable 
at the time-necessary because numerical methods and 
(or) computer capacity were deficient and justifiable 
because parametric evaluation techniques and (or) equip­ 
ment were lacking or inadequate. Today, for the most 
part, advances in numerical methods, computer tech­ 
nology, and hydrologic instrumentation have enabled 
model engineers to reduce the number of such restric­ 
tions, thus producing models that are more nearly formu­ 
lated on pure hydraulic considerations and have a greater 
potential to provide more comprehensive flow informa­ 
tion. Consequently, the scope and complexity of hydro- 
dynamic problems that are now tractable have expanded.

This expansion of the role of numerical-simulation 
modeling has stimulated the need for rapid, economical, 
and efficient techniques to compile and appraise proto­ 
type data and model results. Thus, it is insufficient for 
a numerical scheme to be developed merely to the state 
of being a model program. To achieve a state of useful­ 
ness as an operationally oriented investigative tool, the 
model program must be supported by a comprehensive

user-oriented data system and must provide a ready 
means of presenting output results in varied graphical 
forms.

In view of this need, the U.S. Geological Survey has 
developed a comprehensive, one-dimensional numerical- 
simulation model that is fully supported by a user-oriented 
system for modeling. The branch-network flow model, as 
it is called, is capable of simulating unsteady flow in a 
single open-channel reach or throughout a network of 
reaches composed of simply or multiply connected one- 
dimensional flow channels governed lay various time- 
dependent forcing functions and boundary conditions. 
Operational modeling capability is achieved by linking the 
model to a highly efficient storage-and-retrieval module 
that accesses a data base containing time series of bound­ 
ary values and by including an extensive set of digital 
graphics routines. These features help transform the 
model into a comprehensive tool for practical use in the 
conduct of hydrologic investigations.

Two illustrative applications of the model are presented. 
Application to a 274-m reach of Pheasant Branch near 
Middleton, Wis., demonstrates its capability in computing 
unsteady flow in short, upland-river reaches that can be 
highly responsive to climatological conditions. Application 
to a 25-branch schematization of the 50-km tidal river part 
of the Potomac Estuary near Washington, B.C., il­ 
lustrates its feasibility in simulating tidal flows in 
estuarine-type network environments that are frequent­ 
ly subject to extreme freshwater inflows and variable 
meteorological influences.

Graphical capabilities of the model are also identified 
and discussed. One particular form of output is presented 
to illustrate how the model can be used to track and 
display the movement of neutrally buoyant conservative 
substances through a riverine system and thereby evalu­ 
ate its transport and flushing properties.

TERMINOLOGY

To facilitate further discussion of the application of the 
model to either a single riverine channel or a system of
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channels, a few definitions are necessary. The terms 
"reach" and "branch" are used somewhat interchangeably 
to mean a length of open channel. The primary subdivi­ 
sion of a reach or branch is referred to as a "subreach" 
or "segment." A "network" is defined as a system of open 
channels either simply connected in treelike fashion or 
multiply connected in a configuration that permits more 
than one flow path to exist between certain locations in 
the system.

ONE-DIMENSIONAL 
UNSTEADY-FLOW EQUATIONS

One-dimensional unsteady flow in open channels can be 
described by two partial-differential equations express­ 
ing mass and momentum conservation. These well-known 
equations, frequently referred to as the unsteady flow, 
shallow water, or St. Venant equations (Baltzer and Lai, 
1968; Dronkers, 1969; Strelkoff, 1969; Yen, 1973) can be 
written

(1)

and

3Q dt '
dx

dZ qk

-qu'-£BJJl cos a = 0, (2)

in which the momentum coefficient, /8, the flow-resistance 
function, k, and the wind-resistance coefficient, £, are 
defined as

k =
1.49

(or, in SI units, as fc = r? 2),

and

(4)

(5)

In these equations, formulated using water-surface eleva­ 
tion, Z, and flow discharge, Q, as the dependent variables, 
distance along the channel thalweg, x, and elapsed time, 
t, are the independent variables. (Longitudinal distance, 
x, and flow discharge, Q, are positive in the downstream 
direction.) Other quantities in the preceding equations are 
defined as follows:

A, area of conveyance part of cross section;
B, total top width of cross section;
Bc , top width of conveyance part of cross section;
Cd , water-surface drag coefficient;

g, gravitational acceleration;
q, lateral inflow per unit length of channel

	(negative for outflow); 
R, hydraulic radius of cross section; 
u, flow velocity at a point; 
u', ^-component of lateral flow velocity; 
U, mean velocity of flow, =Q/A; 
Ua , wind velocity;
a, wind direction measured from positive x-axis;
r;, flow-resistance coefficient similar to Manning's

	 n;
Q, water density; and
Q a , atmospheric density.

Although hydraulic radius (R) is used in equation 2 and 
in subsequent expansions throughout this development, 
the commonly used substitution of hydraulic depth is 
employed in the model. This approximation (R»A/B) is 
assumed valid for shallow water bodies, that is, channels 
having a large width-to-depth ratio.

The momentum coefficient, /8, also called the Boussinesq 
coefficient, is present in the equation of motion to account 
for any nonuniform velocity distribution. (See eq. 3.)

Equations 1 and 2 are, in general, descriptive of 
unsteady flow in a channel of arbitrary geometric con­ 
figuration having both conveyance and overflow (or only 
conveyance) areas and potentially subject to continuous 
lateral flow and (or) the shear-stress effects of wind. In 
their formulation, it is assumed that the water is 
homogeneous in density, that hydrostatic pressure 
prevails everywhere in the channel, that the channel bot­ 
tom slope is mild and uniform, that the channel bed is 
fixed (i.e., no scouring or deposition occurs), that the reach 
geometry is sufficiently uniform to permit characteriza­ 
tion in one dimension, and that frictional resistance is the 
same as for steady flow, thus permitting approximation 
by the Chezy or Manning equation.

MODEL FORMULATION

Numerous varied mathematical methods and corre­ 
sponding numerical schemes exist that render approx­ 
imate solutions of the flow equations. However, new 
methods and alternative schemes that provide more ac­ 
curate approximations and are inherently more flexible 
and efficient are continually being sought. In the branch- 
network model formulation, the flow equations are ex­ 
pressed in finite-difference form using a weighted four- 
point (box) scheme. This technique, also used by Fread 
(1974) and by Gunge and others (1980), permits the model 
to be applied using unequal segment lengths and box- 
centered to fully forward discretizations. A unique 
transformation operation is applied to the segment flow 
equations in the branch-network model, however, to lower
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the order of the coefficient matrices and thereby reduce 
computer time and storage requirements. A general 
matrix solution algorithm is used to simultaneously solve 
the resultant branch-transformation and boundary- 
condition equations. The implicit solution method is 
employed because of its inherent efficiency and superior 
stability properties. An optional iteration procedure, con­ 
trollable by user-defined tolerance specifications, is addi­ 
tionally provided to permit improving the accuracy of the 
computed unknowns.

FINITE-DIFFERENCE TECHNIQUE

The space-time grid system shown in figure 1 depicts 
the region in which solution of the flow equations is 
sought. The symbols 0 and ^ represent weighting factors 
used to specify the time and location, respectively, within 
the Atj time increment and Ax, distance increment at 
which derivative and functional quantities are to be 
evaluated. The temporal and spatial derivatives of the 
functional value, /(/), that denotes the dependent 
variables   stage (water-surface elevation) and 
discharge  are discretized, respectively, as follows:

dt

and

(6)

t
1

V 
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IE 1.- Space-time grid system for finite-difference approximation.
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dx AXi AXi

Usually 6 is assigned in the range 0.5<0<1. A value 
of 0.5 yields the fully centered scheme used by Preissmann 
(1960) and by Amein and Fang (1970), whereas a value 
of 1.0 yields the fully forward scheme presented by 
Baltzer and Lai (1968).

In a manner similar to treatment of the spatial 
derivatives, the cross-sectional area, top width, hydraulic 
radius, and discharges in nonderivative form in the equa­ 
tion of motion, denoted/(/), are discretized as follows:

(8)

Thus, these functional values can be represented on the 
same time level as the spatial derivatives or at any other 
different level within the time increment. The weighting 
factor x may be assigned in the range 0<x^l-

COEFFICIENT MATRIX FORMULATION

The partial-differential flow equations 1 and 2 are 
transformed into finite-difference expressions by applica­ 
tion of the operators defined in equations 6-8 (Schaf- 
franek and others, 1981). Using tilde (7) notation to 
signify quantities taken as local constants, updated 
through iteration in the computation process, the equa­ 
tion of continuity can be reduced to

-Qr1 -*, (9)

(10)
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and

e=  (1-0)

-V- (1-0)
gA 38

z
V-1 Ua cos a.gAe

Equations 9 and 10, which define the flow in the Ax, seg­ 
ment, can then be expressed in the following matrix form:

1 1 i

7 -
-1 (11)

EQUATION TRANSFORMATION PROCEDURE

Equation 11 can be applied to all A#, segments within 
the network and the resultant equation set solved direct­ 
ly using appropriate boundary conditions and initial 
values. In the branch-network model, however, trans­ 
formation equations are developed from the segment flow 
equations to correlate the unknowns at the ends of the 
branches, that is, at the junctions.

From a two-component vector of state for the ith cross 
section,

Qf
the following transformation equation for the ith segment 
can be written

S-+l = U(i )S- +«(,->, (12)

in which S£ is the vector of state for the (i + l)th cross 
section. The transformation matrices of the ith segment, 
U(i) and «< , in which the subscript (i) denotes the seg­ 
ment, follow from the previously defined coefficient 
matrices:

7(0 
1

-7(o

and

 (0

Successive application of the segment-transformation 
equation 12 to all segments contained in a branch results 
in an expression that relates the unknowns at the end 
cross sections 1 and ra of the nth branch,

sj;i =unsr+ Un . as)
The transformation matrices of the nth branch, Un and 
« , in which the subscript n denotes the branch, are ob-

tained through successive substitution of the segment- 
transformation equation from the (ra- l)th segment down 
to the first segment. These branch-transformation 
matrices,

and

(14)

(15)

describe the relationship between the vectors of state, SC1 
and S£l , at the end cross sections of the branch, that is, 
at the junctions.

After applicable boundary-condition equations are for­ 
mulated, the resultant equations are solved simultane­ 
ously, yielding stages and discharges at the termini of the 
branches (at the junction cross sections). Intermediate 
values of the unknowns at the internal segment ends (at 
cross sections between junctions) are subsequently deter­ 
mined through successive solution of the segment-trans­ 
formation equation 12. This transformation procedure ef­ 
fects significant reductions in the model's requirements 
for computer memory and execution time. For example, 
if segment flow equations are used, a network consisting 
of AT sequentially connected branches, each composed of 
MI segments, would form a coefficient matrix of minimum 
order 2M+2, where M is the total number of segments 
in the network, that is, the sum of the Af/s for the N- 
branch system. By combining segments into branches and 
using branch-transformation equations instead of segment 
flow equations, the size of the coefficient matrix can be 
reduced to order 4AT.

BOUNDARY CONDITIONS

To solve the branch-transformation equations implicit­ 
ly, boundary conditions must be specified at internal junc­ 
tions located at branch confluences within the network 
as well as at external junctions located at the extremities 
of branches, for example, where branches physically ter­ 
minate or are delimited for modeling purposes. Equations 
describing the boundary conditions at internal junctions 
are automatically generated by the model, whereas 
boundary-condition equations for external junctions are 
formulated by the model from user-supplied time-series 
data or from user-specified functions.

Discharge and stage compatibility conditions can be ex­ 
pressed for internal junctions by neglecting velocity-head 
differences and turbulent energy losses. At a junction of 
n branches, discharge continuity requires that

(16)



MODEL APPLICATIONS

where Wk is zero or some user-specified external flow (in­ 
flow or outflow) at junction k, and stage compatibility re­ 
quires that

Zm =Zm+l, m=l, 2, (17)

Various combinations of boundary conditions can be 
specified for external junctions. A null discharge condi­ 
tion (as, for example, at a dead-end channel), known stage 
or discharge as a function of time, or a known, unique 
stage-discharge relationship can be prescribed.

Together, the internal and external boundary conditions 
provide a sufficient number of additional equations to 
satisfy requirements of the solution technique.

SOLUTION METHOD

The solution process begins at time t0 by use of specified 
initial conditions and proceeds in Ai time increments to 
the end of the simulation at time tn . Gauss elimination us­ 
ing maximum pivot strategy is employed to solve the 
system of equations. Iteration within a time step is per­ 
formed to provide results within user-specified tolerances. 
The primary effect of iteration is to improve on the quan­ 
tities taken as local constants within the time step, which 
in turn increases the accuracy of the computed unknowns. 
User-defined accuracy requirements are typically 
achieved in two or fewer iterations per time step.

MODEL APPLICATIONS

The thoroughness of the equation formulation on which 
a model is based largely governs the range of complexity 
of flows it can accommodate. The choice of numerical com­ 
putation scheme primarily determines whether or not the 
model will be stable, convergent, accurate, and computa­ 
tionally efficient given that it is correctly and precisely 
implemented. However, for any model to be useful it must 
be subsequently transformed into a functional user- 
oriented simulation system, and its accuracy, reliability, 
and versatility must be adequately proved and demon­ 
strated.

The branch-network model is being used to simulate the 
time-varying flows of several coastal and upland water 
bodies, as identified in table 1. These represent a broad 
spectrum of hydrologic field conditions, depicting such 
diverse hydraulic and field situations as hydropower-plant- 
regulated flows in a single upland-river reach, tide-induced 
flows in riverine and estuarine reaches and networks, 
unsteady flow in a residential canal system, and 
meteorologically generated seiches and wind tides in a 
multiply connected network of channels joining two large 
lakes.

Four types of model application are identified in table 
1. The simplest of these is the single-branch type, which

TABLE I.-Applications of the branch-network flow model

State Water body location Application type

Alabama __Coosa River near Childersburg.

Alabama River near 
Montgomery.

Alaska___Knik/Matanuska River Delta 
near Palmer.

California __Sacramento River from Sacra­ 
mento to Freeport.

Sacramento River from Sacra­ 
mento to Hood.

Sacramento Delta between Sac­ 
ramento and Rio Vista.

Threemile Slough near Rio 
Vista.

Connecticut _ Connecticut River near Middle- 
town.

Connecticut River downstream 
from Hartford.

Florida ___Cape Coral residential canal 
system.

Peace River from Arcadia to
Fort Ogden. 

Peace River from Fort Ogden
to Harbour Heights.

Idaho____Kootenai River near Porthill. 

Kentucky _ 

Louisiana _

Ohio River downstream from 
Greenup Dam.

Atchafalaya River near Morgan
City.

Wax Lake Outlet near Calumet.

Calcasieu River between Lake 
Charles and Moss Lake.

Quachita River from Monroe to 
Columbia.

Vermillion River from Lafayette 
to Perry.

Loggy Bayou near Ninock.

Mermentan River from
Mermentan to Lake Arthur. 

Maryland __Potomac River near 
Washington, D.C.

35.2-km multiple 
branch.

21-branch multi- 
connected 
network.

20-branch multi- 
connected 
network.

17.4-km single 
branch.

34.3-km multiple 
branch.

24-branch multi- 
connected 
network.

5.2-km single 
branch.

9.8-km single 
branch.

41.2-km multiple 
branch.

16-branch multi- 
connected 
network.

30-km multiple 
branch.

21-branch multi- 
connected 
network.

54.8-km multiple 
branch.

21.7-km single 
branch.

8-branch multi- 
connected 
network.

15-branch multi- 
connected 
network.

13-branch multi- 
connected 
network.

78.9-km multiple 
branch.

48.3-km multiple 
branch.

9.2-km single 
branch.

25.7-km multiple 
branch.

25-branch multi- 
connected 
network.
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TABLE I.-Applications of the branch-network flow model- Continued

State Water body location Application type

Michigan__Detroit River near Detroit.

Saginaw River near Saginaw.

Missouri __Osage River near Schell City. 

New York_ 

N. Dakota__ 

S. Carolina.

S. Dakota __. 

Washington . 

Wisconsin _.

Hudson River from Albany to
Poughkeepsie. 

Red River of the North at
Grand Forks. 

Intracoastal Waterway near
Myrtle Beach. 

Cooper River at Diversion
Canal. 

Cooper River at Lake Moultrie
Tailrace. 

Back River near Cooper River
confluence. 

James River near Hecla.

.Columbia River downstream
from Rocky Reach Dam. 

Pheasant Branch near
Middleton. 

Menomonee River near
Milwaukee. 

Milwaukee Harbor at
Milwaukee.

12-branch multi- 
connected
network. 

14-branch dendritic
network. 

2.6-km single
branch. 

9-branch dendritic
network. 

1.3-km single
branch. 

36.7-km multiple
branch. 

6.3-km single
branch. 

1.5-km single
branch.

2.2-km single
branch. 

8.5-km multiple
branch. 

3.1-km single
branch. 

0.27-km single
branch. 

0.61-km single
branch.

12-branch multi- 
connected
network.

is an application to a single reach of channel delimited by 
a pair of external boundary conditions. The multiple- 
branch type is an application to a channel, again delimited 
by a pair of external boundary conditions, but schematized 
as a series of sequentially connected reaches. The den­ 
dritic-network type is an application to a channel system 
composed of branches connected in treelike fashion. The 
multiply connected network type is likewise an applica­ 
tion to a channel system, but one in which the branches 
are interconnected, thereby permitting multiple flow 
paths between certain locations in the system.

To illustrate the diverse capabilities of the model, two 
applications identified in table 1 are discussed briefly 
herein. These particular applications were selected to 
demonstrate the flexibility of the model in accommodating 
a wide range of hydrologic conditions and field situations.

PHEASANT BRANCH NEAR MIDDLETON, WIS.

Pheasant Branch is a tributary to Lake Mendota near 
the city of Middleton in Dane County, Wis. A 5-year study

has been conducted by the U.S. Geological Survey, in 
cooperation with the city of Middleton and the Wiscon­ 
sin Geological and Natural History Survey, to determine 
the sediment transport, streamflow characteristics, and 
stream-channel morphology in the Pheasant Branch 
drainage basin. In support of this effort, a short reach of 
Pheasant Branch was modeled to provide data on stream- 
flow. Backwater effects from the lake and storm- 
generated transient flows necessitate use of an unsteady 
flow model.

The Pheasant Branch reach, which begins in marshland 
and ends 274 m downstream at Lake Mendota, is treated 
as a single segment in the model. Under typical flow con­ 
ditions, the channel is on the order of 6.5 m wide, with 
a maximum depth of 1.5 m.

Water-surface elevations used as boundary conditions 
(identified as station 05-4279.52 at the upstream end and 
05-4279.53 at the downstream end) for simulating flow 
in Pheasant Branch during June 15-21,1978, are shown 
in the upper part of figure 2. Discharges computed by the 
model at the upstream end of the reach are illustrated in 
the lower part of figure 2. Some rapid oscillations in the 
boundary-value data, identified as noise caused by wind- 
generated waves, are discernible, particularly in the stage 
hydrograph recorded at the downstream end of the reach 
near Lake Mendota. These oscillations in the boundary- 
value data are reflected and accentuated in the hydro- 
graph of computed discharges.

The Pheasant Branch model results plotted in figure 2 
were computed using a 15-minute time step. The 
weighting factors 6 and x were set at 0.8. A value of 
0.0385 was used for 77, and the momentum coefficient, 13, 
was assigned a value of 1.0. These parameter values were 
determined in model calibration tests conducted using 
discharges measured at the mouth of Pheasant Branch 
during other flow periods.

The June 15-21 simulation required 1.6 CPU seconds 
to complete on an Amdahl 470/V71 computer. The model 
required less than one (0.9) iteration per time step, on the 
average, during the simulation.

The computed results indicate that this stream is ex­ 
tremely responsive and sensitive to changing climato- 
logical conditions; therefore, these factors must be ac­ 
curately represented by the model.

POTOMAC RIVER NEAR WASHINGTON, D.C.

In October 1977, the Water Resources Division of the 
U.S. Geological Survey instituted a 5-year interdisci­ 
plinary study of the tidal Potomac River and Estuary 
(Callender and others, 1984). The research areas under­ 
taken in this investigation included historical geologic

1 Use of firm or trade names in this report is for identification purposes only and does not 
constitute endorsement by the U.S. Geological Survey.
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FIGURE 2.-Measured water-surface elevations and computed 
discharges for Pheasant Branch near Middleton, Wis.

studies, geochemistry of bottom sediments, nutrient 
cycling, sediment transport and tributary loading, wet­ 
land studies, benthic ecology, and hydrodynamics. The ob­ 
jective of the hydrodynamics project was to devise, imple­ 
ment, calibrate, and verify a series of numerical 
flow/transport simulation models in support of the other 
research efforts. To quantify the hydrodynamics of the 
tidal river, the branch-network model was applied to the 
50-km segment of the Potomac, including its major 
tributaries and inlets from the head of tide at the fall line 
in the northwest quadrant of Washington, D.C., to Indian 
Head, Md., as shown in figure 3.

The Potomac River downstream from Chain Bridge is 
confined for a short distance (approximately 5 km) to a 
narrow, deep, but gradually expanding channel bounded 
by steep rocky banks and high bluffs. Farther downstream

the river consists of a broad, shallow, and rapidly expand­ 
ing channel confined between banks of low to moderate 
relief. Seven cross-sectional profiles illustrating the chan­ 
nel geometry are plotted in figure 3. The cross-sectional 
area and corresponding channel width expand more than 
fortyfold between Chain Bridge and Indian Head. In 
general, the depth varies from about 9 m at Chain Bridge 
to about 12 m at Indian Head.

Flow in the upstream portion of the tidal river is typical­ 
ly unidirectional and pulsating; bidirectional flow occurs 
in the broader downstream portion. The location of the 
transition from one flow pattern to the other varies, 
primarily in response to changing inflow at the head of 
tide but also to changing tidal and meteorological 
conditions.

The tidal river system is schematized as shown in figure 
4. The network is composed of 25 branches (identified by 
roman numerals) that join or terminate at 25 junction loca­ 
tions (identified by numbered boxes). Junctions that do 
not constitute tributary or inlet locations in figure 4 were 
included in the network schematization to accommodate 
potential nodal flows (point source inflows or outflows 
such as sewage treatment outfalls or pump withdrawals) 
or to account for abrupt changes in channel character­ 
istics.

A total of 66 cross sections were used to depict the chan­ 
nel geometry in 52 flow segments. Whereas the coeffi­ 
cient matrix of segment flow equations would require 
15,376 computer words, use of branch-transformation 
equations reduces the matrix size to 10,000 words. The 
computational effort required to effect a solution is also 
proportionally reduced.

In the tidal Potomac River model, flow discharges de­ 
rived at a rated gaging station (01-6465.00) 1.9 km 
upstream from Chain Bridge are used as boundary values 
at junction 1. Water-surface elevations recorded at a gag­ 
ing station (01-6554.80) at Indian Head are used as the 
downstream boundary values at junction 19. All other ex­ 
ternal boundary conditions are fulfilled by specifying that 
zero discharge conditions prevail at the upstream tidal ex­ 
tent of the particular channel or embayment.

Water-surface elevations recorded near Key Bridge 
(station 01-6476.00), near Wilson Bridge (station 
01-6525.88), and near Hains Point (station 01-6521.00) 
were used to calibrate and verify the model. (See figs. 3 
and 4.) Model-computed discharges were also compared 
with discharges measured for complete tidal cycles at 
Daingerfield Island, Broad Creek, and Indian Head.

In the model calibration process, values of 0.6 and 0.5 
were assigned to weighting factors 6 and x, respectively. 
Eta values in the calibrated model range between 0.0275 
at Chain Bridge and 0.019 at Indian Head. A value of 1.06 
was used for the momentum coefficient, /3, and a 
15-minute time step was used in the simulations. Using
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FIGURE 4.-Schematization of the tidal Potomac River 
system for the branch-network flow model.

these parameter assignments, the model has satisfied con­ 
vergence criteria, set at 0.46 cm and 3.54 m3/s for water- 
surface elevations and flow discharges, respectively, in 
fewer than two iterations per time step.

In figure 5, model-computed discharges are plotted 
against discharges measured at Indian Head from 2015 
hours on June 3 to 0830 hours on June 4, 1981. This 
15-hour simulation, from 1900 hours on June 3 to 1000 
hours on June 4, required 10.3 CPU seconds on an Am­ 
dahl 470/V7 computer. On the average, 1.4 iterations were 
required per time step. As is evident from the plot, there 
is excellent agreement between computed and measured
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FIGURE 5.-Model-generated plot of computed versus measured 
discharges for the Potomac River at Indian Head, Md., on June 3-4, 
1981.
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discharges. Computed and measured ebb and flood vol­ 
ume fluxes compare within +0.6 and -2.3 percent, 
respectively.

This application of the model clearly demonstrates its 
adaptability to the simulation of unsteady flow in a net­ 
work of interconnected channels.

MODEL USE

Mathematical/numerical models can address a variety 
of practical hydrologic field problems. They can be used, 
for example, to provide flow information for complex 
interdisciplinary riverine and estuarine investigations, to 
appraise hydraulic project-design alternatives, and to sup­ 
port environmental-impact assessments. Such varied uses 
emphasize the need, however, for models and (or) their 
supporting data base systems to provide efficient means 
of inputting and managing the required data and of 
analyzing and displaying computed flow information in 
a variety of graphical, pictorial, and alphanumeric forms.

To satisfy this need, the branch-network model has a 
wide range of graphical-display capabilities for computer 
generation of line-printer-drawn, mechanically drafted, 
or optically produced plots. These graphical capabilities 
not only help expedite model calibration and verification, 
but also provide a unique, rapid, and economical 
mechanism for portraying the flow and transport infor­ 
mation required for various water-resources investiga­ 
tions. As an example, in figure 6 the particle-tracking 
capability of the model is illustrated in a model-derived 
plot. The time-of-travel graph of figure 6 depicts the 
movement of seven simultaneously injected index par­ 
ticles (labeled A through G) along the main Potomac River 
channel. The inflow-discharge hydrograph representing 
the upstream boundary condition is plotted above the 
time-of-travel graph. The stage hydrograph representing 
the downstream boundary condition is plotted below the 
time-of-travel graph. Model output such as this can be 
used to gain insight into the tidal-cycle variability in the 
concentration and dispersal of nutrients and sediments, 
as these are alternately or concurrently influenced by 
freshwater inflow conditions, meteorological effects, and 
tidal fluctuations.

SUMMARY AND CONCLUSIONS

An operationally oriented, usable model has been 
developed to compute flow and transport information for 
a single open-channel reach or an interconnected network 
of open channels. The branch-network flow model, along 
with its supporting operational data systems (Schaffranek 
and Baltzer, 1978; Regan and Schaffranek, 1985), con­ 
stitutes a complete one-dimensional numerical-simulation 
system. Based on a comprehensive set of unsteady flow 
equations and structured to accommodate a diversity of

2.4

1.8_ £g£
u z % en - - "  oc
F? < Q £tj i ̂  i_

u ^ C 1.2

i i r

30 60 90 120 150 180 

TIME, IN HOURS

FIGURE 6.-Time-of-travel plot of injected particles for the Potomac 
River from midnight of November 30, 1980, to noon of December 8, 
1980.

complex open-channel configurations, the model has a 
wide range of utility, as is exemplified by the numerous 
applications cited. Two specific applications are il­ 
lustrated. The model includes numerous graphical display 
capabilities that provide both model engineers and water 
managers with flow information compiled and condens­ 
ed into easily comprehensible formats tailored to suit their 
specific requirements. One specific output type designed 
to depict the transport properties and flushing capacity 
of a riverine network is illustrated herein; others have 
been reported elsewhere (Lai and others, 1978; Schaf­ 
franek and Baltzer, 1978; Lai and others, 1980; Schaf­ 
franek and others, 1981; Schaffranek, 1982).
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