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HYDRAULIC GEOMETRY OF RIVER CROSS SECTIONS- 
THEORY OF MINIMUM VARIANCE

By GARNETT P. WILLIAMS

ABSTRACT
This study deals with the rates at which mean velocity, 

mean depth, and water-surface width increase with water 
discharge at a cross section on an alluvial stream. Such re­ 
lations often follow power laws, the exponents in which are 
called hydraulic exponents. The Langbein (1964) minimum 
variance theory is examined in regard to its validity and its 
ability to predict observed hydraulic exponents.

A major part of the study is devoted to identifying the 
important variables to use with the theory. These variables 
are velocity, depth, width, bed shear stress, friction factor, 
slope (energy gradient), and stream power. If the slope at 
a particular station is constant, only the first five of these 
variables need be considered.

The second aspect of the study tests the theory against 
field data. The 165 cross sections used reflect the following 
ranges of hydraulic exponents: 0.00=^6^0.82 (width), 
0.10^/^0.78 (depth), and 0.03^m^=0.81 (velocity). Flow 
conditions range from 0.000283 cubic meters per second 
(0.01 cubic feet per second) to 1,980 cubic meters per sec­ 
ond (70,000 cubic feet per second), widths from 0.31 meter 
(1 foot) to 579 meters (1,900 feet), mean depths from 
0.031 meter (0.1 foot) to 10.7 meters (35 feet), and median 
bed-material sizes from 0.06 millimeter to 100 millimeters. 
Most geographic regions of the contiguous United States 
are represented. The original theory was intended to produce 
only the average hydraulic exponents for a group of cross 
sections in a similar type of geologic or hydraulic environ­ 
ment. The present test shows that the theory does indeed 
predict these average exponents, with a reasonable degree 
of accuracy.

An attempt to forecast the exponents at any selected cross 
section was only moderately successful. Empirical equations 
are more accurate than the minimum variance, Gauckler- 
Manning, or Chezy methods. Predictions of the exponent of 
width are most reliable, the exponent of depth fair, and the 
exponent of mean velocity poor.

INTRODUCTION AND PROBLEM

Rivers have always been the arteries of civiliza­ 
tions. Because societies are so closely dependent 
upon the flow of water, people have for many years 
looked for methods of predicting the relations 
among the hydraulic features of a river—the water 
discharge, mean depth, width, mean velocity, and 
other variables. Such flow characteristics affect not

only man but also the plants and animals living in 
or along the river.

The subject of this study is the rates at which 
water-surface width, mean depth, and mean velocity 
change with water discharge at a given cross sec­ 
tion or station on a stream. Only streams that have 
loose particles on the bed will be considered. For 
such alluvial streams, there are no reliable ways to 
predict the rates of change of the flow variables 
mentioned above. Accurate methods are elusive be­ 
cause of the irregular shape of the cross section 
and the changing roughnesses of the flow boundary. 
The flowing water molds the loose particles into 
various patterns and configurations, and these 
roughness changes can vary with discharge. Bed 
roughness can also vary with distance across the 
stream. Under certain circumstances, such changes 
in bed roughness have been associated with abrupt 
changes in mean water depth and mean velocity. 
A search for general relationships can be compli­ 
cated further by the variability of bank roughness, 
which differs considerably with lithology, vegeta­ 
tion, and other factors.

This paper begins with a discussion of basic re­ 
lations and of the minimum variance theory (Lang­ 
bein, 1964). The rest of the paper has three main 
parts. The first part of the study examines the ques­ 
tion of which variables to use with the minimum- 
variance theory. The second, treated concurrently 
with the first, tests the theory in regard to its ability 
to predict the average rates (considering a large 
group of rivers and cross sections) at which mean 
velocity, depth, and water-surface width change 
with discharge. Finally, the third part is an at­ 
tempt to find an objective way to forecast the hy­ 
draulic relations at any given cross section on an 
alluvial channel.

I would like to thank Walter B. Langbein, Edward 
J. Gilroy, Marshall E. Moss, and William H. Kirby 
for their many helpful discussions on certain as-
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pects of the study. Others who have contributed use­ 
ful comments include William W. Emmett, Kenneth 
L. Wahl, Carl F. Nordin, Jr., Dallas D. Rhodes, M. 
Gordon Wolman, Edward J. Pluhowski, Henry C. 
Riggs, and Lucien M. Brush, Jr. U.S. Geological 
Survey personnel, too numerous to mention, at dis­ 
trict and subdistrict offices have been most helpful 
in providing streamflow records and other basic 
data.

BASIC VARIABLES AND RELATIONS

The multitude of variables that may be involved 
when water flows down an alluvial channel can 
be classified into flow properties (discharge, mean 
velocity, mean depth, etc.), water characteristics 
(temperature, specific weight, and viscosity), chan­ 
nel features (alinement or sinuosity, slope or energy 
gradient, shape of cross section), and sediment-re­ 
lated features (rates and grain sizes of sediment 
in transport, scour and fill, roughness of bed and 
banks, cohesiveness of bed and banks, sizes and 
shapes of boundary particles, and other aspects).

The flow variables of primary interest in this 
paper are the discharge or flow rate, Q; water- 
surface width, W; mean depth, D (defined as cross- 
sectional flow area A divided by W) ; and mean 
velocity V (defined as Q/A). The continuity rela­ 
tion specifies that Q = VDW.

Changes in these variables commonly are studied 
for two situations. The first is at a given station 
or cross section on a river, and the second is for 
a series of stations proceeding downstream on a 
river (Leopold and Haddock, 1953). Only the at- 
a-station case is treated in this paper.

A wealth of data (Leopold and Haddock, 1953; 
Stall and Yang, 1970; Fahnestock, 1963; and many 
others) shows that at cross sections on many rivers, 
canals, and laboratory flumes, the variables velocity, 
depth, width, slope S, and friction factor ff (defined 
later), all considered dependent, often change in 
proportion to some power of water discharge, con­ 
sidered independent. Thus

V oc Qm 

D « Qf 
W oc Q6 
S oc Q* 
ff « Qy

(D
(2)
(3)
(4)
(5)

where the exponents, called hydraulic exponents, 
represent the rate of change of the dependent vari­ 
ables with change in Q. Power relations of the sort

exemplified in equations 1-5 plot as straight lines 
on logarithmic paper. Leopold, Wolman, and Hiller 
(1964, p. 215-281) discuss these hydraulic rela­ 
tions in some detail.

Power functions do not necessarily hold for the 
complete range of flows at a given cross section 
(Richards, 1976). Some of the many factors that 
can interrupt or prevent consistent relations over 
a wide range of discharge are discussed later. Also, 
more than one power relation can exist for within- 
bank flows. For instance, very low flows may follow 
one power law, and flows approaching bankfull may 
follow another. Finally, Richards (1973) points out 
that for some cross sections simple power functions 
do not apply. He suggests quadratic or higher order 
curves for such sections.

Hydraulic relations change drastically when a 
river overflows its banks. Such overbank flow will 
not be considered in this paper.

The following discussion deals with equations 1 
through 5 and other equations of this form.

The general problem is to determine the hydraulic 
exponents wherever a power function relates the 
dependent and independent variables. Special atten­ 
tion will be devoted to the exponents of velocity, 
depth, and width (m, /, and b, respectively, in equa­ 
tions 1 through 3). This paper deals only with the 
exponents or rates of change. It does not consider 
methods of predicting absolute values of mean depth, 
width, and mean velocity.

Inserting the power equations 1 through 3 into 
the continuity relation Q = VDW gives Q^Q^QfQ*. 
The basic relation among exponents therefore, is

FACTORS THAT CAN INFLUENCE THE 
HYDRAULIC EXPONENTS

There is very little information on how water, 
channel, and sediment features affect hydraulic ex­ 
ponents. Intuitively, it can be reasoned that any 
water characteristic effects probably are small. For 
lack of evidence (admittedly not a proof of the as­ 
sumption), these water features will be neglected 
in this analysis.

Of the channel features, channel alinement could 
be important because the cross-sectional flow pat­ 
tern in a meander bend is different from that in a 
straight reach. Knighton (1975, p. 206), studying 
selected streams in England, found a lower rate of 
change of width on straight-reach sections than in 
meander sections. Channel alinement or sinuosity
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will largely be eliminated as a factor in this study 
by dealing only with stations located on straight or 
slightly curving reaches.

Water-surface slope, or energy gradient of the 
flow, is an important variable in many formulae 
for calculating discharge and mean velocity. A chan­ 
nel's slope is determined primarily by the general 
topography of the landscape, but the water-surface 
slope may vary somewhat with discharge at a 
station. In some parts of the present study, the 
slope at a station will be assumed constant, even 
though some error may thereby be introduced. The 
slope for the reach that includes the cross section 
will be studied in a later part of this investigation 
as a possibly important variable.

There may never be an accurate way to account 
for all channel-shape irregularities in alluvial chan­ 
nels. Some simplifications are unavoidable. Channel 
shape in this study is described by width/depth 
ratios, by the approximate average angle of inclina­ 
tion of the banks, and by certain other geometrical 
attributes of the cross section. These features are 
defined and examined later in this paper.

The hydraulic exponents for wide, flat channels 
(large values of width/depth) should differ from 
the exponents for deep, narrow ones. In a deep, 
narrow channel the water depth increases more 
rapidly with given increases in Q. The exponent of 
discharge associated with depth (hereafter called 
the exponent of depth, with symbol /) therefore 
should be higher in such channels, and ra and b 
should be correspondingly lower.

The angle of inclination of the banks should also 
affect the exponents (Lewis, 1966; Knighton, 1974). 
If the banks are firm and vertical, the width re­ 
mains constant with change in discharge, and the 
exponent of width (b in equation 3) is zero. At the 
other extreme, very flat banks would allow the width 
to increase considerably for a given increase in dis­ 
charge, and the exponent of width would then be 
large.

The cohesiveness or the credibility of the bed and 
bank material varies with the degree of consolida­ 
tion of the particles, the grain sizes and their size- 
frequency distribution, the orientation, packing, and 
specific weight of the grains, the electrochemical 
bond between particles, the bulk density of the 
particles, antecedent moisture content, the age of 
the deposit (in many instances), and the water 
temperature (American Society of Civil Engineers, 
1968; Partheniades and Paaswell, 1970; Fisk, 1952; 
Schumm, 1960; Raudkivi, 1967). These factors

exert their influence in various ways, but their net 
result generally appears in the channel shape. For 
example, Friedkin (1945, p. 17) found that deep, 
narrow channels developed where banks were highly 
resistant to erosion. He noted that as bank resistance 
decreased the channels became progressively wider 
and shallower. Schumm (1960) plotted data for 69 
rivers of the western United States and found that, 
for his data, the channel width/depth ratio was about 
inversely proportional to the percentage of silt and 
clay in the bed and banks. Wolman and Brush 
(1961) found that the force required to move the 
grains that make up the banks was a chief deter­ 
minant of the channel shape. Knighton (1974) con­ 
cluded that the bank silt-clay content is strongly 
correlated with bank inclination for 12 rivers in 
England. Thus, the way in which bank credibility 
affects hydraulic exponents will be accounted for in 
this study mostly by an evaluation of the shape of 
the channel cross section.

Little is known as to whether the rate of sediment 
transport independently exerts an influence on the 
mean velocity, mean depth and width, and on their 
hydraulic exponents. Evaluation of any such effect 
is beyond the scope of this study. The sediment 
transport rate is generally associated with the chan­ 
nel shape. Channels that carry relatively large quan­ 
tities of sediment, especially as bedload, tend to be 
wide and shallow. Those that carry small bed loads 
tend to be relatively narrow and deep. Considera­ 
tion of the channel shape, therefore, may reflect any 
influence of the prevailing sediment transport rates 
on the hydraulic exponents. Also, the sizes of the 
moving particles help determine the kind of bed 
roughness for a given discharge.

The changeable bed roughness is associated with 
the mean flow depth. Because of this interrelation, 
an influence of bed roughness on hydraulic ex­ 
ponents cannot automatically be ruled out. Bed 
roughness depends on the sizes of the bed particles 
(grain roughness) and on the bedforms into which 
the flowing water molds these particles (form 
roughness).

The way in which the sizes of bed particles affect 
the hydraulic exponents is unknown. However, tKere 
is evidence (for example, Hack, 1957) that this 
factor may be important in stream behavior. There­ 
fore, the sizes of the particles on the bed will be 
considered in this investigation.

The form roughness (ripples, dunes, and so forth) 
of alluvial channel beds often changes with dis-
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charge in a manner predictable only qualitatively. 
Some investigators believe that the change in water 
depth associated with the change in form rough­ 
ness for certain limited flow and sediment condi­ 
tions is a very important problem in alluvial 
streams. The hydraulic data plotted in this study 
cover many types of form roughness; however, the 
hydrographer rarely recorded the bedforms at the 
time of his discharge measurement. Therefore, this 
study will not analyze the role of changing bedform 
roughness on exponent values. The important point 
is that hydraulic exponents were readily definable, 
whatever the kinds of bed roughness. This suggests 
that if changes in depth did result from changes in 
bed-form roughness, such depth changes were not 
significant enough to disrupt the plotted power rela­ 
tions or could not be measured with sufficient ac­ 
curacy.

A frustrating practical problem on some sand- 
bed streams is the "discontinuous" stage-discharge 
relation that sometimes occurs (Colby, 1960). For 
a given discharge, the stage or elevation of the 
water surface (referenced to a fixed bench mark) 
can vary from day to day because of the sediment 
moving through the reach. Development of a sand 
bar, for example, can cause the water level to rise 
and can disrupt the previous relation of water level 
to discharge. Many of the 165 stations examined in 
the present study have sandy beds. A number of 
these are notorious "shifters"—stations where the 
discharge associated with a given water elevation is 
not constant with time. These stations nevertheless 
had consistent relations between mean depth and 
discharge. Therefore, even though the relation be­ 
tween water level and discharge may change with 
time, the relation between mean depth and dis­ 
charge may not be significantly affected.

Bank roughness could influence the exponents in 
that rough banks, for example, those with lots of 
vegetation, retard the water flow along the sides of 
the channel and, thereby influence the flow in the 
center. To eliminate this factor, the amount and 
kind of bank roughness should be constant for all 
stations. As this is impractical, some variation in 
observed exponents may be due to differences in 
bank roughness.

A number of features therefore could influence 
the hydraulic exponents. These relevant factors in­ 
clude width/depth ratios, average bank inclinations, 
other channel-shape aspects, channel slope, and the 
sizes and size distribution of bed particles. The 
channel-shape characteristics probably reflect the

cohesiveness of the bank sediments and any influ­ 
ence of prevailing sediment-transport rates and 
types.

MINIMUM VARIANCE

THEORY

Data collected for this study show a wide range 
of possible values for each of the three main ex­ 
ponents (m, /, and 6). What theories can explain 
the various observed exponents? Several different 
hypotheses would be desirable to insure greater im­ 
partiality when testing them against the data.

The literature contains at least seven theoretical 
or semitheoretical attempts to predict hydraulic ex­ 
ponents: the theory of minimum entropy produc­ 
tion (Leopold and Langbein, 1962), the minimum- 
variance theory (Langbein, 1964), the minimal 
channel-mobility theory (Tou Kuo-Jen, 1964), the 
similarity principle (Engelund and Hansen, 1967), 
the minimum energy-degradation theory (Brebner 
and Wilson, 1967), the threshold-channel theory 
(Li, 1974), and the conservation-sediment transport 
theory (Smith, 1974). Only two of these—those by 
Langbein (1964) and Li (1974)—deal with the 
at-a-station case.

Li's theory is restricted to streams having gravel 
or bounder bed and banks in small watersheds (less 
than about 26 to 52 km2 or 10 to 20 mi2 ). For 
this limited situation, the exponents are fixed at 
6 = 0.24, /=0.46, and m = 0.30, according to Li's 
theory.

Langbein's approach (Langbein, 1964, 1965; 
Scheidegger and Langbein, 1966) is flexible in re­ 
gard to the predicted values of the hydraulic ex­ 
ponents, and applies to a wide range of channel 
types. It applies to both the at-a-station and down­ 
stream cases. His theory takes a statistical or prob­ 
abilistic viewpoint and tries to provide the average 
exponents for a group of stations of approximately 
comparable environments. As it is the only theory 
generally applicable to all at-a-station situations, 
Langbein's theory will be explored in detail in this 
paper. No new theories are introduced here.

The philosophy underlying a statistical or prob- 
abilitistic approach is that average or most prob­ 
able relations are all that man can produce 
from theoretical considerations. This viewpoint 
holds that the particular complexities of any natural 
environment, such as the chance emplacement and 
distribution of rocks of various sizes on a stream-
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bed, are so numerous that the hydraulic exponents 
for any one spot can never be confidently and pre­ 
cisely calculated. For this reason, the minimum- 
variance theory was proposed as a method of fore­ 
casting the average relations for a group of rivers, 
with the understanding that any one case may not 
exactly agree with the expectation (see, for ex­ 
ample, Langbein and Leopold, 1964). If such a hy­ 
pothesis comes close to predicting observed rela­ 
tions, it may have the potential of becoming depend­ 
able enough to use in practical problems.

Many "laws" of science that have become estab­ 
lished are based on the concept of the minimization 
of effects. Examples are Fermat's principle of light- 
ray travel, the principle of least action or least work 
(de Maupertuis or Le Chatelier, respectively), the 
principle of least constraint (Gauss), the principle 
of the straightest path (Hertz), the law of the equi- 
partition of energy (Maxwell and others), the law 
of the survival of the fittest, and, in the business 
world, the law of supply and demand. The basic 
concept is that physical effects in the operations of 
nature, once having reached an equilibrium condi­ 
tion, change as little as possible from then on. In 
other words, a system tends to react to an imposed 
stress so as to minimize the disturbance, or to re­ 
store or to keep the previous conditions.

Consider the classical theorem of the equiparti- 
tion of energy (Resnick and Halliday, 1960, p. 506- 
510). This principle deals with the various kinds 
of energy of a gaseous system—mainly kinetic 
energy of translation of individual molecules, ki­ 
netic energy of rotation of individual molecules, 
kinetic energy of vibration of the atoms in a mole­ 
cule, and potential energy of vibration of the atoms 
in a molecule. These four kinds of energy represent 
different and independent ways in which the total 
energy of the system can be apportioned. An in­ 
crease in the total energy could be absorbed in 
varying proportions by the four different kinds of 
energy. The theorem of the equipartition of energy 
states that the total available energy of a system 
containing a large number of molecules distributes 
itself in equal shares to each of the various ways 
in which the molecules can absorb energy.

The Langbein (1964) theory applies such a con­ 
cept to the changes that occur in the variables of 
a river system. In keeping with the minimal prin­ 
ciple, the changes in the variables are such that 
the total effect, action, work, or adjustment is a 
minimum. For a cross section on a river, the theory 
would suggest that all variables strive to resist any

imposed change (maintain original equilibrium con­ 
ditions), with the net result being that all of them 
change equally, insofar as possible. In other words, 
the dependent variables adjust by an equal percent­ 
age of their former values, su,bject to the restric­ 
tions of the situation. A typical restriction might 
be steep, cohesive banks that prevent the water- 
surface width from changing significantly as dis­ 
charge increases.

A number of investigators have noted the appli­ 
cability of such a minimization principle to alluvial 
channels. Examples are Velikanov (1947, p. 304), 
Mackin (1948, p. 492), Rubey (1952, p. 135), Leo­ 
pold and Maddock (1953, p. 46), and Bretting 
(1958).

HYDRAULIC EXPONENTS BASED ON THE CONCEPT 
OF MINIMUM ADJUSTMENT

According to the minimum-variance theory just 
described, the problem is to find those particular 
hydraulic exponent values that, subject to any local 
physical restrictions, represent a minimum and 
equal adjustment to a change in the independent 
variable, usually water discharge. The thesis is that 
for these exponent values the sum of the squares 
of the exponents is a minimum. The logic behjnd 
this approach is best seen by analogies, presented 
below. Such a minimization approach is used in 
various branches of science and engineering to solve 
problems of indeterminate systems.

Consider a system with two dependent variables, 
say V and D. The question is how these variables 
will change in response to a new discharge. Select 
a discharge and plot the associated values of log 
V and log D on a graph (fig. 1) obtaining point X-L. 
(Power laws relate the variables, and log units are 
used here for the convenience of working with 
straight Ilines on arithmetic paper.) Now it rains 
upstream, and soon there is a new discharge at the 
station. This forces log V and log D to change by 
some magnitude, producing a new point x2 on fig­ 
ure 1. The changes are Alog V and Alog D. Assum­ 
ing that neither depth nor velocity will decrease 
with the increase in discharge, point x2 will lie 
somewhere in the quadrant that is bounded by a 
vertical line from x± (zero change in V, entire 
change absorbed by D) and a horizontal line from 
»i (zero change in D, entire change absorbed by V).

Given that the new Q causes the variables to move 
to some new point x2 , the total adjustment can be 
represented graphically by the straight-line distance 
s between xt and x2 . This distance, being the hypote-
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logD
AlogD

Alog V

log V

FIGURE 1.—Hypothetical change in two dependent vari­ 
ables, with resultant change represented by resultant 
or hypotenuse s; s2=(Alog Z>) 2+ (Alog V) 2.

nuse of a right triangle, is related to Alog V and 
Alog D by

sz = (Alog F) 2 + (Alog D) 2 . (6)
The change in the independent variable, Alog Q, is

the same for both Alog V and Alog D. Dividing all
terms in equation 6 by the common constant (Alog
Q) 2 gives

(Alog F) 2 + (AlogD) 2
(Alog Q) 2 (Alog Q) 2 (Alog Q) 2 

/Alog F\ 2 /Alog D\2
) \Alog Q) .

(7)
\Alog Q \Alog Q

This equation is, therefore, another way of expres­ 
sing the amount of adjustment of the system.

The terms in parentheses on the right-hand side 
of equation 7 are hydraulic exponents. For example, 
from Fa Qm we have

Alog Vm = ———— .
Alog Q 

Equation 7 therefore can be written as

——-——— = m2 + /2 . (8) 
(Alog Q) 2

The left-hand side of this equation includes only the 
distance s and the constant Alog Q and therefore 
reflects s, the amount of adjustment. Thus, the mag­ 
nitude of the adjustment, as indicated by the left- 
hand side of the equation, is proportional to the 
sum of the squares of the hydraulic exponents. Fur­ 
thermore, least total adjustment occurs when s is a 
minimum, that is, when the sum of the squares of 
hydraulic exponents is the lowest number.

This type of relation can be extended to three or 
more dimensions to include any number of dependent

variables. The least total adjustment for the entire 
system would be that for which the sum of squares 
of the hydraulic exponents is the lowest possible 
number, consistent with any local restrictions (for 
example, vertical rock banks) that may apply. 
Knighton (1977) derives this same principle from 
an entirely different viewpoint, namely Euclidean 
space.

Another analogy is the determination of the cen­ 
ter of gravity of a two- or three-dimensional group 
of points. The center of gravity is that point from 
which the squared distances to all other points add 
up to the lowest number.

Examples that Langbein (Scheidegger and Lang- 
bein, 1966, p. C7) gave wherein the minimum sum of 
squares of changes corresponds to least total work 
are the displacement of joints in a truss and the 
distribution of the QH products (H being head loss) 
in a network of pipes.

The analogies thus far have suggested that mini­ 
mizing the sum of the squares of the hydraulic ex­ 
ponents corresponds to least total change for the 
system as a whole. In addition, minimizing the 
sum of squares of exponents corresponds to an equal 
division of any change in an independent variable. 
Consider, for example, the analogy used in figure 1, 
whereby the entire increase in discharge was ab­ 
sorbed by V and D. The total adjustment (length of 
hypotenuse s of the triangle whose other sides are 
Alog D and Alog V in fig. 1) is greatest when the 
hypotenuse becomes equal to either Alog D or Alog 
V, such that the other is zero. As Alog D becomes 
more equal to Alog V, the hypotenuse (magnitude 
of adjustment) decreases, and it reaches its mini­ 
mum value when Alog D = Alog V. In other words, 
the smallest net adjustment occurs when the de­ 
pendent variables divide the imposed change equally 
amongst themselves.

A second example of this principle involves the 
many possible ways in which velocity, depth, and 
width can adjust to an increase in discharge. Con­ 
sider the basic relation of the exponents, m+f+b 
= 1.0. For the hypothetical situation where no other 
variables are involved and where all three dependent 
variables ( V, D, W) are unrestricted, the minimum 
sum of squares for all possible combinations of m, 
f, and b occurs when m=/=& = l/3. Mathematically, 
this sum of squares is (.33) 2 + (.33) 2 + (.33) 2 
= 0.3267. Trial calculations show that any other 
values of m, f, and b, where m+/+& = 1.0, produce 
a sum of squares that is greater than this minimum. 
For example, if m-0.72, /=0.21, and 6 = 0.07, the 
sum of squares is 0.5674, which is greater than than
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0.3267. Thus the variables absorb the change in Q 
equally when the squares of their exponents add up 
to the lowest number. Note also that the sum of 
squares of the exponents m, f, and b is a maximum 
(1.0000) when the change is wholly concentrated in 
one of the three dependent variables, such that the 
other two remain constant and their exponents are 
zero. A river would be least likely to adjust by 
changing in this manner, and it seems significant 
that the sum of squares of exponents is furthest 
from being a minimum for such a situation.

The concept of minimizing the sum of squares of 
changes or deviations is very similar to the well- 
known and widely accepted least-squares method 
for finding the best-fit relation to a group of values. 
The least-squares method can be used to approxi­ 
mate the "best-fit" relation not only to two variables 
or dimensions but also to three or more variables. 
Multiple regression and trend surface analysis are 
two examples.

What is the meaning of the term "variance" as 
used in Langbein's theory? Any group of water 
depths, mean velocities, and other values for a sta­ 
tion can be analyzed statistically; for example, in 
regard to the arithmetic average of the depths, the 
standard deviation of those depth values, the vari­ 
ance (the square of the standard deviation), and 
so forth. The section "Statistical Variance and a 
Hydraulic Exponent" at the end of this report shows 
that if we take all the mean velocities measured for 
a station, list the logarithms of these velocities and 
compute the variance of this group, such a variance 
will be proportional to the square of the hydraulic 
exponent m (the exponent of velocity). The same is 
true of the other dependent variables and their re­ 
spective exponents. Thus the square of a hydraulic 
exponent is proportional to the variance of the logs 
of the dependent variable, where variance is defined 
as the square of a standard deviation, as in normal 
statistical usage. Because of this close relationship 
and because the word "variance" is a convenient 
term which is already established in connection with 
the present theory, "variance" is used as a replace­ 
ment for the more accurate phrase "square of hy­ 
draulic exponent." Thus, from DxQf the square 
of the exponent (f2 ) is called the variance of depth. 
The process of finding those exponents whose 
squares add up to the lowest possible number is 
termed "minimizing the variances." This concept 
of minimum variance is similar to, but not exactly 
the same as, the minimum variance of conventional 
statistics.

COMPUTATION OF MINIMUM VARIANCE

In calculating the most probable exponents in the 
hydraulic geometry relations, the simple laws of 
exponents apply. When two quantities are multi­ 
plied, their exponents are added ; when one quantity 
is divided by another, the exponent of the latter is 
subtracted from that of the former. Shear stress 
in wide channels (T), for example, is proportional 
to depth times slope. Substituting equations 2 and 4 
into this expression, we have shear ccDSccQfQ* 
<xQf+ s. The variance of shear ("var shear") there­ 
fore is expressed by squaring the sum of the ex­ 
ponent of depth (/) and the exponent of slope (z), 
that is, var shear =(/+z) 2 . The Darcy-Weisbach 
friction factor (ff) in wide channels equals 8gDS/V2, 
where g is acceleration due to gravity. This friction 
factor is proportional to depth times slope divided 
by the square of velocity, or ff<x'QfQ*/Q2m, and var

Because m + /+6 = 1.0, the variance of width, 
62 , can be written in an alternate way as (1 -m-f) 2 . 
Similarly, f=l — m — b and^ m = I — b — f. Also, one ex­ 
ponent may be known to have a certain relation 
to another, such as 6 = 0.25/. In the latter case, the 
quantity 0.25/ would be substituted for b, and the 
variances can all be written in terms of /. Finally, 
one exponent may be known in advance, permitting 
all variances to be written in terms of just one un­ 
known. For instance, if & = 0.10, then m + /=0.90 
and m = 0.90-/. Substituting 0.10 for b and 0.90 -/ 
for m allows all unknown variances to be written 
in terms of /. These many alternative ways of writ­ 
ing variances are used extensively to reduce the 
number of unknowns in the analysis.

Some factors may vary over a certain restricted 
range or are fixed so they do not change at all 
(remain constant). Such limitations are known as 
constraints. A constraint is merely a physical con­ 
dition that governs the extent to which a variable 
can change. Examples are the fixed, constant width 
in flume experiments and the constant slope typical 
of certain reaches of some natural rivers and 
streams. The importance of a constraint is that it 
limits or otherwise influences the values that other 
variables can take. Constraints are usually present 
in nature, and in most cases they preclude a per­ 
fectly uniform distribution of any change in an 
independent variable. Partly for this reason, we 
rarely find a case where m = / = 6 = 0.33.

One way of determining those particular values 
of the exponents that provide the minimum sum of
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variances is by trial and error. A case that Lang- 
bein (1965) used illustrates this method. Consider 
a river cross section where the banks are rigid and 
vertical so that the width is constant. The water- 
surface slope at some stream stations does not 
change significantly for a range of flow conditions 
(Leopold and Haddock, 1953, p. 36), so slope will 
also be considered constant for this example. Let 
the bed of the channel consist of unconsolidated 
sand, so that the channel resistance is adjustable. 
Now an increased water discharge arrives at the 
station. The question is how this and other in­ 
creases in discharge will be reflected among the 
various pertinent dependent variables.

With the width constant, mean velocity and depth 
must absorb all of the new discharge. Changes in 
such factors as bed shear stress will also occur. 
Assume for illustrative purposes that this bed shear 
and the resistance to flow (friction factor), along 
with velocity and depth, are the only important de­ 
pendent variables whose exponents are not already 
known. The problem is to find the values of the 
hydraulic exponents of these dependent variables.

The first step is to identify the variances of the 
dependent variables. In so doing, we must consider 
the constraints of constant width and constant slope. 
Because Q = VDW, or Q1 = QmQfQ° (width constant), 
this continuity expression specifies that w + /=1.0. 
The variance of velocity, m2 , can therefore be writ­ 
ten in an alternate way as (I — /) 2 . Shear in wide 
channels is ordinarily proportional to depth times 
slope or QfQs, so that the variance of shear would 
normally be (f+z) 2 ; however with slope constant its 
exponent z = 0, shear stress varies only with depth, 
and the variance of shear is simply equal to /2 . The 
friction factor, proportional to DS/V2, is propor­ 
tional to D/V2 or Qf/Q2m when slope is held constant. 
The variance in friction factor, being by definition 
the square of the exponent relationship, is, there­ 
fore, (/-2m) 2 . Substituting w = l-/ in order to put 
this expression in terms of /, as the variances of the 
other variables are expressed, then gives the var 
ff as (3/-2) 2 . The variances of the selected de­ 
pendent variables, when width and slope are con­ 
stant, are therefore

velocity 
depth 
shear 
friction

(I-/) 2
P
f2
(3/-2) 2

(For this initial example, it has been possible to 
write all variances in terms of one unknown, /. Al­

though this will not be possible in many other cases, 
the alternative ways of writing variances should be 
used whenever possible in order to reduce the num­ 
ber of unknowns involved in the computation.)

The goal is that value of / for which the sum of 
all variances is a minimum. The theory holds that 
only under such a condition is the change in Q 
distributed as uniformly as possible among the de­ 
pendent quantities. Suppose we guess that the ex­ 
ponent /—the rate of change in depth with change 
in discharge—is 0.3. We then compute the variances 
of each of the four dependent variables. Var vel, for 
example, is m2 = (l-/) 2 = (1.0-0.3) 2 = 0.49. (See 
column 3 of table 1.) After the separate variances

TABLE 1.—Trial and error example of finding f for which 
the sum of variances is a minimum

Variable Variance
Computed variance for value of /

0.3 0.4 0.5 0.6 0.7 0.58

Velocity ___ (

Friction -.--.(

!-/)'
ff2
3/-2;

' ----- 0.49
____ .09
____ .09
I 2 __ 1.21

0.36 
.16
.16
.64

0.25 
.25
.25
.25

0.16 
.36
.36
.04

0.09 
.49
.49
.02

0.176 
.336
.336
.068

Sum of variances — l.i 1.32 1.00 .92 1.09 .916

are each computed in this manner, they are summed. 
Table 1 shows that when /=0.3, the sum of the 
variances is 1.88. Is this the minimum sum attain­ 
able? Continuing the trial and error method, the 
sum of variances turns out to be the lowest number 
when /=0.58. In other words, the change in Q is 
accommodated as equally as possible by the four 
major dependent variables when /=0.58, that is, 
when the rate of increase in log depth with in­ 
crease in log Q is 0.58. The exponent of velocity, m, 
is therefore m = l-/=0.42. Width and slope are 
already known to be constant, so b and z both equal 
zero. Shear increases directly with depth, so the ex­ 
ponent of shear is 0.58 in this case. The rate of 
change in friction factor with increase in Q is equal 
to Qf/Q2m or Q~° 26 . The friction factor thus varies 
with the —0.26 power of discharge.

Such trial and error computations are laborious. 
Fortunately there is a quick, easy method of ar­ 
riving at the answer /=0.58. The goal is that value 
of / that takes all of the variances, when added to­ 
gether, to a minimum. Therefore, add the variances 
figuratively and designate that their sum goes to a 
minimum : 
var vel + var depth + var shear

+ var friction-»minimum
(3/-2) 2-»minimum 

Squaring as indicated gives
(1-2/+ /2 ) + /2 + /2 + (9/2 -12/+ 4) -^minimum.
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Collecting the like terms:
12/2 -14/+ 5->mi«imum.

The value of /, representing the slope of the depth- 
discharge relation, is obtained by taking the first 
derivative. Because the function goes to a minimum, 
the derivative according to the rules of basic cal­ 
culus is set equal to zero. Setting the first deriva­ 
tive equal to zero gives

24/-14 = 0 
24/=14 

/ = 0.58.
(In fact, setting the first derivative equal to zero 

can give either a minimum or maximum value for 
a function, but in this case, the foregoing trial-and- 
error procedure has shown that /=0.58 is the mini­ 
mum value. Taking the first derivative for all other 
minimum variance computations also gives a mini­ 
mum value, as can be verified by taking the second 
derivative. If the second derivative of a function 
is positive, then the first derivative has produced 
the minimum value. The second derivative of all 
minimum variance relations is alway positive.)

The summarized steps in the minimum variance 
computation are:

1. Determine an independent variable and write 
all other pertinent variables (dependent or 
constant) as power functions of the inde­ 
pendent variable. Thus, if Q is independent, 
then V<xQM, DxQf, slope <xQz, shear <xDS 
ocQ/Q*, etc.

2. Define the variances (the square of the expon­ 
ent) of all variables, using the same un­ 
knowns insofar as possible. Thus, for example, 
with m + /+6 = 1.0 and with m and / neces­ 
sarily involved, express var width as (1-m 
-/) 2 rather than b 2 .

3. Write the variances in a group and designate 
that the sum of the variances goes to a mini­ 
mum.

4. Square any "compound" variances (a variance 
consisting of a sum of letters and possibly 
numbers) and collect like terms for the com­ 
plete group.

5. Set the first derivative equal to zero and solve. 
If more than one unknown is present after 
step 4 is completed, set the derivative of each 
unknown equal to zero in turn while holding 
any other unknowns constant. Then solve the 
resulting equations simultaneously for the 
values of the unknowns.

Taking a more complex example, again presented 
only to demonstrate the method of computation, con­ 
sider a reach of stream where width and slope are 
free to vary rather than being constant. The bed 
is deformable, as with the last example. Suppose a 
change in Q, as the independent variable, will be re­ 
flected in the dependent variables velocity, depth, 
width, bed shear, and frictional resistance. Ac­ 
cording to the minimum variance theory, what are 
the most probable hydraulic exponents in the power 
equations that relate these factors to discharge?

Each of the steps just listed is applied, in turn, 
to obtain the expected hydraulic exponents. Writing 
the variables as power functions of Q (step 1) and 
defining the variances (step 2) :

Step 1 (relations)

SacQ*

Step 2 (variances) 

1
m2

(l-m-f) 2
z2

x Qf+z-*» (f+z-2m) 2

Writing the variances (of V, D, W, T and ff for this 
example) as a group and designating this sum to be 
a minimum (step 3) :
var vel + var depth + var width + var shear

+ var friction factor^minimum
m2 + f- + (I-m-f)* + (f+z) 2

+ (f+z-2m) 2 -^minimum
Squaring the compound variances and collecting like 
terms (step 4) gives
6m2 + 4/2 + 2z2 +1 - 2m-2f-2mf

+ 4/2 — 4mz-»minimum.
Next the first derivative with respect to m is set 
equal to zero, holding / and z temporarily constant 
(step 5). This gives

12m-2/-4z-2=0.
Then the first derivative with respect to / is set 
equal to zero, holding m and z constant:

-2w + 8/+4z-2 = 0.
Finally, holding m and / constant, setting the first 
derivative with respect to z equal to zero gives

In this manner, three equations are obtained 
(these last three, for this example) which are 
solved simultaneously for the three unknowns. For 
the present example, this solution produces m = 0.14,
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/=0.43, and z = 0.29. Since m + /+5 = 1.0, 6 = 0.43. 
Velocity, therefore, varies as Q°- 14 ; mean flow depth, 
D, varies as Q°-43, and so forth

INFLUENCE OF CHOICE OF VARIABLES

The present theory, like many statistical theories, 
unfortunately does not tell a person what variables 
to use in the computation. And the variables in­ 
cluded in (or excluded from) the analysis have a 
strong effect on the values of the predicted ex­ 
ponents. For example, with width constant, ve­ 
locity and depth absorb a change in Q; whereas, 
if width also takes up some of the change, then 
velocity and depth will change by lesser amounts, 
and their exponents will be smaller. This same prin­ 
ciple applies to other variables such as shear stress 
and stream power. If such variables absorb some of 
the change in flow conditions, then the predicted 
exponents are affected. So a very important prob­ 
lem is the question of which variables to include in 
the analysis.

A simple example will show the extent to which 
the predicted exponents can vary with different sets 
of variables. Suppose the variables likely to be im­ 
portant are the discharge (independent), velocity, 
depth, friction factor, and shear stress. (All other 
factors constant or not influential.) The relations 
and variances are:
velocity ocQm
depth ocQ'
shear «Q/Q°ocQ/
friction <xQfQ0/Q2m <xQf~ 2m

m2
f2 or (1-ra) 2
f2 or (1-ra) 2
(/-2ra) 2 = 9ra2 -6ra + l

Table 2 shows the predicted exponents for all pos­ 
sible combinations of variables. As far as the group­ 
ing of variables is concerned, this table is not based 
on sound hydrologic reasoning nor on any theory— 
it merely lists in a systematic manner the different 
possible ways of combining two or more of the four 
dependent variables.

Each exponent in table 2 has a considerable range 
of values, depending on which particular set of 
variables is involved in the minimization. The range 
of ra, for example, is from 0.30 to 1.0, and the ex­ 
ponent of the friction factor ranges from —2.00 to 
+ 0.10. Some values of exponents can be produced 
by more than one combination of variables (group 
nos. 1 and 2, 5 and 6, and 8 and 9), because slope 
is constant and hence shear stress varies directly 
with depth.

TABLE 2.—Rate of change of dependent variables with in­ 
crease in discharge, for different sets of variables

Group 
No.

1
2

4
5
6
7
8
9

10
11

Dependent 
variables

V, D
V, T
V, ff
D, T
D, ff
T, ff
V, D. T
V, D, ff
V, r.ff
D, r, ff
V, D, T, ff

V 
Velocity

(m)

0.50
.50
.30

1.00
.40
.40
.67
.36
.36
.45
.42

Values

D 
Depth

(./)

0.50
.50
.70
.00
.60
.60
.33
.64
.64
.55
.58

of exponents

T
Shear
(/)

0.50
.50
.70
.00
.60
.60
.33
.64
.64
.5&
.58

ff 
Friction 
factor

(/— 2w)

— 0.50
— 0.50

.10
— 2.00
— .20
— .20
— 1.00
— .08
— .08
— .35
— .26

In view of the wide range of mathematically pos­ 
sible exponent values, how does one know what com­ 
bination of variables to use in the minimum variance 
analysis ?

In his original paper (1964), Langbein dealt with 
the components of stream power, QS, or velocity, 
depth, width, and slope as functions of discharge. 
Subsequently, (Langbein, 1965; Scheidegger and 
Langbein, 1966), for at-a-station cases, he added 
shear and friction factor to the group. He stated 
(1965, p. 304) that "there might be questions as 
to the proper variables, but these are used for con­ 
sistency in the several examples." In the 1966 paper 
(p. C8), he suggested that a large set of problems 
can be explained by using as dominant factors the 
width, hydraulic radius, velocity, shear, and friction 
factor. Actually, depth was used in place of hy­ 
draulic radius in all the examples given. Langbein 
(1965) chose the combination of V, D, W, T, and 
ff for at-a-station situations because minimizing the 
variances of these variables produced exponents 
closest to those of the few case samples he cited.

In both the 1965 and 1966 papers, Langbein 
treated the downstream cases—rivers and straight 
canals—as special or different from the at-a-station 
situation. For downstream cases, he minimized the 
variances of five different aspects of stream power.

The problem of selecting the correct combination 
of variables is very similar to that encountered in di­ 
mensional analysis, where you have a list of dimen- 
sionless terms and must decide which terms are in­ 
significant. The variables used in earlier pages of this 
paper (shear, friction factor, and so forth) may or 
may not be the most important variables, and, unfor­ 
tunately, the concept of least total adjustment by 
itself cannot suggest the most important factors. 
Two possible solutions are (1) introduce another
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theory to show which variables should be involved, 
and (or) (2) compare actual field data to the ex­ 
ponents predicted by various combinations of vari­ 
ables. Any "proof" of the minimum variance theory, 
in fact, must include the latter sort of comparison, 
and it is the second approach that will be followed 
in this paper. If the predictions for a given group 
of variables match the field observations, the correct 
or best combination of variables has been found and 
the theory acquires a certain degree of reliability. 
On the other hand, if no combination of variables 
produces exponents close to the field data, the mini­ 
mum-variance theory could then be said to lack a 
firm factual basis.

An alternative to dealing with a standard set of 
variables is to use different combinations of vari­ 
ables for various hydraulic situations (Haddock, 
1969). The difficulty with this procedure is knowing 
which variables to use for any given situation 
(Dozier, 1976).

TEST OF MINIMUM-VARIANCE THEORY WITH 
FIELD DATA

COLLECTION OF DATA

The U.S. Geological Survey has for many years 
measured the water discharge at selected stream 
stations throughout the United States. In making 
such measurements, the hydrographer obtains data 
that yield V, D, W, Q, and the shape of the channel 
cross section. Records of this sort afforded an op­ 
portunity to test the theory against actual data. 
Although the Geological Survey monitors thousands 
of stations, the selection criteria dictated by the 
present study eliminated the vast majority of sites. 
These criteria were that the stream have (a) a 
movable bed (silt, sand, gravel, cobbles, and (or) 
boulders), (b) no artificial or natural control or 
apron on the bed at the measuring site, (c) neg­ 
ligible influence on flow variables from bridge piers, 
(d) no history of wide-scale dredging, (e) no dam 
immediately upstream or any other feature that 
caused observable net degradation or aggradation 
along the gaging station reach, (f) no extremely 
heavy bank vegetation significantly affecting the 
flow range interest, and (g) a range of discharge 
preferably encompassing at least one log cycle over 
which the plotted hydraulic data showed well-de­ 
fined power relations.

When making a discharge measurement, the hy­ 
drographer commonly walks as much as several 
hundred feet upstream or downstream from the 
gage to find a cross section that is easy to wade. 
The records for a given station therefore, often

consist of measurements made at many cross sec­ 
tions along a reach. Unless the channel shape re­ 
mains approximately constant along the entire 
reach, the plots will show a certain amount of 
scatter attributable to the variety of measuring sites 
(Wolman, 1955, p. 11; Lewis, 1965, p. 12-13). It 
was therefore necessary to inspect the original 
streamflow measurement notes and, for each gaging 
station, to select only data taken at the same cross 
section. In almost all cases, this task was accom­ 
plished by accepting data taken either at the same 
wading site or from cableways, as recorded in the 
hydrographer's field notes. In rare instances, the 
channel shape was sufficiently constant along the 
reach to permit the use of data taken anywhere 
along the reach. The requirement that measurements 
be made at the same section eliminated many of the 
stations that had passed the seven criteria listed 
in the previous paragraph.

Table 11 (appended to the end of this report) 
lists the 165 stations finally accepted for analysis. 
For each of these stations, I plotted values of W, D, 
and V versus Q on log paper and measured the hy­ 
draulic exponents graphically.

The 165 stations were chosen to represent many 
physiographic regions. Included are streams in dif­ 
ferent climates, soils, lithologies, and types of land­ 
scape; streams, with beds of very small grains and 
streams with large cobblestones and even boulders 
on the bed; streams a few feet wide and streams 
many hundred feet wide, with a correspondingly 
wide range of typical discharges, depths, and veloci­ 
ties ; and streams with banks ranging from firm and 
steep to rather flat and easily erodible. Some of the 
selected stations are on ephemeral reaches.

The observed exponents range from 0.00 to 0.82 
for b, 0.10 to 0.78 for /, and 0.03 to 0.81 for m. The 
channel widths, or rather the values on the hy­ 
draulic-geometry plots, range from 0.31 m (1 ft) 
(minimum width on W versus Q relation) to a maxi­ 
mum of about 579 m (1,900 ft). Depths range from 
about 0.031 m (0.1 ft) to 10.7 m (35 ft). The 
smallest bed-material size (median diameter) is 
0.06 mm, and the largest is about 100 mm (table 
11). The lowest discharge on a hydraulic-geometry 
power relation is 0.000283 m3/s (0.01 ft3/s) (Belle 
Fourche River below Moorcroft, Wyo.) and the 
highest is about 1,980 m3/s (70,000 ft3/s) (Skagit 
River near Mt. Vernon, Wash.)

The period of time covered by the various dis­ 
charges on any one plot averaged about 3 to 5 yr 
and ranged from about 1 to 17 yr, depending mainly
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on how often the more extreme discharges flowed 
and on how frequently the different flows were 
measured.

SOURCES OF ERROR

The basic data (Q, V, D, and W) for every sta­ 
tion involve a certain amount of measurement error 
that could affect the hydraulic exponents. A dis­ 
charge measurement is made by observing the total 
depth and the velocity at one or more intermediate 
depths, at each of many successive verticals across 
a stream (Buchanan and Somers, 1969). The mean 
velocity and an applied cross-sectional flow area at 
each vertical give the discharge for a subsection, 
and the various subsection discharges are summed 
over the entire stream width to get the total dis­ 
charge. Carter and Anderson (1963) analyzed and 
discussed in detail some of the sources of error in 
such measurements. They concluded that with nor­ 
mal stream-gaging procedures, the errors due to the 
instrument and the general current-meter method 
would be about ± 2 percent or less in most cases and 
would be randomly distributed. However, in natural 
streams, such features as water waves and bed 
forms, especially in shallow depths and at extremely 
high and low discharges, add to the errors involved. 
The hydrographer estimates the accuracy of each 
discharge measurement by rating it excellent (2 
percent error), good (5 percent), fair (8 percent), 
or poor (over 8 percent), according to the flow-, 
channel-, and instrument characteristics at the time 
of the measurement. Nearly all of the data in the 
present study were rated good or fair. The error 
in the plotted Q-, V-, and D-values, in other words, 
probably is no more than about 8 percent in most 
cases. Water-surface widths could be measured quite 
accurately and should have a negligible error for 
the present purposes.

Trial calculations with typical best-fit lines in­ 
dicated that errors of 8 percent in the measurement 
of Q, V, and D could cause a difference of about 20 
percent in the exponents of velocity and depth if 
many errors at each end of the best-fit line happened 
to be distributed so as to cause the maximum pos­ 
sible deviation in slope of the line. Similarly, 
the exponent of width could have a maximum of 
about 5 percent error. However, measurements of 
Q, V, D, and W have an equal chance of being off on 
either side of their true value, and, therefore, such 
measurement errors should tend to offset one an­ 
other over a number of observations. Hence, any

errors in the exponent values due to errors in mea­ 
suring Q, V, D, and W probably are not significant.

The number of points on any one plot ranged 
from 10 to 105 and averaged 30 per graph for the 
entire study.

The lines on the plots of velocity, depth, and 
width versus discharge were, in most cases, fitted 
by eye. Those for stations 15, 41, 48, and 69 were 
fitted by least squares.

Figures 2 and 3 show the plots for two of the 
stations. These examples were selected because they 
represent approximately the least scatter (fig. 2) 
and the most scatter (fig. 3) for the 165 stations 
studied.

The amount of scatter on all 495 graphs (3 graphs 
for each of the 165 stations) was measured and is 
expressed in table 11 as an approximate percentage 
of the best-fit-line value of the dependent variable 
for any given discharge. The percentages encompass 
about 90 percent of the total number of plotted 
points for each station and were determined as 
follows.

On each hydraulic-geometry graph, two lines par­ 
allel to the best-fit line were drawn. One line ex­ 
cluded the 5 percent of the points having the 
greatest positive or upward departure from the 
best-fit line, and the lower line excluded the 5 per­ 
cent of the points having the greatest downward 
departure from the best-fit relation. These two 
parallel lines thus included about 90 percent of the 
total number of plotted points. (This figure was 
selected in order to exclude the occasional outliers.) 
For any given discharge, the value of the dependent 
variable, as indicated by the upper line, was read 
and expressed as the percentage of the best-fit-line 
value by which it exceeded the latter. The corre­ 
sponding percentage for the lower line is the per­ 
cent of the best-fit line value by which the lower 
line falls below the best-fit line. These two per­ 
centages are both listed for each graph. They in­ 
dicate the approximate range of percentage within 
which nearly all (that is, about 90 percent) of the 
plotted points fell, relative to the best-fit line. For 
example, a listing of 82/51 for velocity means that 
90 percent of the plotted points fall between two 
parallel lines that are, respectively, 82 percent above 
and 51 percent below the best-fit line, at any given 
discharge. Incidentally, the popular correlation co­ 
efficient proved unsuitable for the present purpose 
because it varied with the slope of the line and 
the extent of the discharge range, as well as with 
the scatter. A line with a low slope gave a low
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1.0

DISCHARGE, IN CUBIC FEET PER SECOND 
10.0 100.0

0.1 1.0 
DISCHARGE, IN CUBIC METERS PER SECOND

10.0

FIGURE 3.—Hydraulic-geometry plots for Prairie Dog Town Fork Red River near Childress, Tex. (station 60, this 
study). Dashed lines include about 90 percent of the plotted points.

correlation coefficient, which presumably implies a 
poor relation, even though all of the plotted points 
fell virtually right on the best-fit line.

The scatter on the log-velocity versus log-dis­ 
charge graphs ranged from 2 to 110 percent with an 
arithmetic mean of 23 percent. For depth versus

discharge, the range was from 2 to 120 percent with 
a mean of 24 percent. And for width versus dis­ 
charge, from 1 to 110 percent with a mean of 21 
percent.

The plots shown in figure 2 have scatter of about 
3/4 percent for velocity, 5/4 percent for depth and
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2/2 percent for width. On figure 3, the scatter is 
about 87/50 percent for velocity, 78/34 percent for 
depth, and 110/53 percent for width.

The final source of analysis error is the error due 
to fitting the lines by eye rather than by least 
squares (assuming least squares would be the best 
possible way). To evaluate this error, the exponents 
for 10 randomly selected stations were computed by 
least squares and compared to the corresponding 
eye-drawn exponents, the latter having been deter­ 
mined first in all cases.

For the 30 test plots (10 stations) examined, the 
maximum discrepancy between an exponent deter­ 
mined by least squares versus one fitted by eye was 
±0.03 exponent units (table 3). The average ab­ 
solute error or discrepancy, computed without re­ 
gard to the sign, was about 0.01 exponent units for 
each of the three exponents. Drawing lines of best 
fit by eye, therefore, was reasonably accurate and 
reliable.

TABLE 3.—Comparison of exponents determined by least 
squares with those fitted by eye

Station
Least-squares 

exponents
Eye-fitted 
exponents Discrepancy

1 „
16 _.
31 ..
47 —
64 _.
81 __
98 ..

115 ._
132 ._
149 ._

Average
absolute
error

m

0.51
.34
.52
.36
.42
.20
.25
.48
.35
.71

/

0.42
.59
.49
.42
.53
.16
.14
.50
.26
.24

6

0.07
.07
.01
.22
.06
.67
.60
.04
.39
.05

m

0.51
.35
.52
.36
.40
.18
.25
.47
.37
.72

/

0.43
.60
.48
.41
.56
.15
.13
.50
.23
.24

b

0.07
.08
.01
.21
.05
.65
.61
.02
.40
.04

m

0.00
.01
.00
.00

—.02
.02
.00

—.01
.02
.01

.009

/

0.01
.01

—.01
—.01

.03

.01
—.01

.00
—.03

.00

A,-! 9*\JL£t

b

0.00
.01
.00

—.01
—.01

.02

.01
—.02

.01
—.01

.010

COMPARISON OF MEASURED TO THEORETICAL 
HYDRAULIC EXPONENTS

A number of variables, as discussed earlier, might 
have some influence on the hydraulic exponents. 
However, Langbein's papers suggest that most such 
factors cannot be taken into account individually in 
a minimum-variance analysis because their effects 
usually cannot be determined separately. He believes 
that in spite of the interaction and net influence of 
such variables, there will result in nature a statis­ 
tical array of exponent vaues in which certain values 
(the averages) are more common. These most com­ 
mon values of m, /, and b represent a central tend­ 
ency, and the correct combination of variables is 
that for which the minimization of variances yields 
the most common exponents.

Five cases, including four that Langbein (1965) 
specified, are tested here. The first case deals with 
stations where the water-surface width is approxi­

mately constant. The banks are firm and are steep 
enough to prevent the width from changing signifi­ 
cantly with discharge. This category was arbitrarily 
defined as including all stations for which 6^0.03. 
These stations, a total of 22, are labeled "A" in 
table 11. For the second case, the banks again are 
firm but, in this case, they are not steep enough to 
keep the water-surface width approximately con­ 
stant (76 stations). In table 11, these stations are 
labeled "B". Also, a few are labeled "R" for rock 
banks, or B/R for one rock bank and one firm- 
sediment bank. The third case (labeled "C") in­ 
cludes channels where the entire flow boundary is 
loose and easily eroded. The present study has 16 
such stations. A fourth case (B/C, C/R) consists 
of the 51 stations having one firm bank and one 
noncohesive bank. Langbein (1965) did not examine 
this case.

In all four of the above cases, the energy gradient, 
or water-surface slope, is specified to remain essen­ 
tially constant as discharge varies. (On some 
reaches, this may be only approximately true and 
may account for some unknown amount of discrep­ 
ancy between predicted and observed results.)

The fifth case (D) consists of stations where 
the entire flow boundary is loose and readily erod- 
ible and the water-surface slope varies with dis­ 
charge. None of the present stations were measured 
for slope changes and are here considered to have 
virtually constant slopes. However, some flume data 
from other studies are available for case D.

Classification of general bank firmness for each 
station was done subjectively from U.S. Geological 
Survey unpublished descriptions of the channel and 
banks at each station and from verbal descriptions 
given by Geological Survey hydrographers.

It is first necessary to find out whether a central 
tendency of exponent values exists for each of these 
cases. The few data for case D are insufficient to 
determine any clustering or distribution trend. For 
the other four cases, figure 4 summarizes the field 
data collected. The exponents for most cases have 
quite a wide range of values. However, with the 
possible exception of the exponent b for B/C sta­ 
tions, the distribution of exponent values for a 
given case and exponent does show an observable 
peak. Thus, a central tendency does exist for each 
exponent.

Some of the distributions in figure 4 are not sym­ 
metrical. However, plotting the data on both log- 
probability and arithmetic-probability paper showed 
that the distributions tend to be much more sym-
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metrical on arithmetic than on log scales. (The 
only exception was case B, B/R, and R for the 
exponent b, where all ^-values < 0.04 were arbi­ 
trarily eliminated beforehand for use in case A.)

In practice, the average exponent for a number of 
field stations may not represent the true central 
tendency, depending on the number of stations for 
which data have been acquired and on how close 
to the "ideal" case these stations are. As a first 
approximation, however, the average of a given ex­ 
ponent for the stations of each category should be 
reasonably representative. Two averages — the arith­ 
metic mean and the mode — were used for all cases.

The next questions are, can the minimum-variance 
theory predict these average or most common ex­ 
ponents and, if so, what combination of variables 
provides those average values ?

CASE A
The simplest at-a-station situation consists of 

cross sections at which both width and slope are 
approximately constant. As far as V, D, and W are 
concerned, any change in discharge is absorbed only 
by V and D. The exponent b, therefore, is approxi­ 
mately zero (taken as ^ 0.03 for present purposes), 
and ra + /«1.0. The field data (table 11) have means 
of /=0.52 (modal / = 0.55) and ra = 0.47 (modal 
w = 0.46) for the 22 applicable stations. Standard 
deviations are 0.13 and 0.13 exponent units for m 
and /. What group of variables, if any, predicts 
these average exponents in a minimum-variance 
computation ?

Table 4 lists the theoretical exponents produced 
by minimizing the variances of various combinations 
of variables. The variables included in this table (V, 
D, T, ff and VS, with width and slope constant) are 
those which can vary and which are deemed most 
likely to be important — a subjective but unavoidable 
approach. (QS and QS/W, proportional to stream 
power and stream power per unit bed area, respec-

TABLE 4. — Theoretical rates of change of dependent quanti­ 
ties with increase in discharge, for different sets of variables

I'Case A: width and slope constant. Average field values: m = 0.47 (mode 
0.46); /=0.52 (mode 0.55)]

Value of exponents

NnmhpT- Dependent Number variables

1 
2 
3 
4 
5 
6 
7 
8

V, D 
V, D, T 
V, D, ff 
V, D. VS 
V, D, T, ff 
V, D, T, VS 
V, D, ff, VS 
V, D, T, ff, VS

V
Velocity 

(m)

0.50 
.67 
.36 
.33 
.43 
.50 
.33 
.38

D 
Depth 

(/)

0.50 
.33 
.64 
.67 
.57 
.50 
.67 
.62

r 
Shear 

(/)

0.50 
.33 
.64 
.67 
.57 
.50 
.67 
.62

ff 
Resist­ 
ance 

(/-2m)

—0.50 
— 1.00 
— .08 

,00 
— .29 
— .50 

.00 
— .14

VS 
Power 

per 
unit 

weight 
(m)

0.50 
.67 
.36 
.33 
.43 
.50 
.33 
.38

tively, may also be important and will be considered 
later. For this case these two variables both vary 
directly with Q and do not influence the computed 
exponents.) VS is proportional to stream power per 
unit weight of water. Yang (1972) believes this 
variable governs the nature of a stream network, 
the formation and behavior of meanders, the river 
profile, the formation of riffles and pools, and the 
rates of sediment transport.

Inspection of the predicted exponents shows an 
expected range of values for each exponent. No 
combination in table 4 exactly corresponds to the 
field averages of m = 0.47 or 0.46 and /=0.52 or 0.55. 
Three groups (numbers 1, 5, and 6 in the table) 
produce exponents rather close to these values: (a) 
V and D, the minimization of which yields ra = 0.50 
and /=0.50; (b) V, D, T and ff, the minimization 
of which yields m = 0.43 and /=0.57; and (c) V, D, 
r and VS, for which m = 0.50 and /=0.50. The evi­ 
dence for stations having constant width and slope 
therefore suggests that if the minimum-variance 
theory is valid, one of the three combinations just 
listed may be the basic or best group of variables. 
For more general cases, these groups could also in­ 
clude one or more of W, S, QS, and QS/W, factors 
that are constant or noninfluential for case A. In 
fact, since the width W always absorbs some of a 
change in discharge (except, of course, where the 
banks are firm and vertical), width must be included 
as an indispensable variable. Thus, if minimizing 
the variances of one group of variables applies to 
all at-a-station situations, field data for case A 
narrow the choice to three general groups: (a) 
V, D, and W, possibly with S, QS, and (or) QS/W] 
(b) V, D, W, T, and ff, possibly with S, QS, and (or) 
QS/W; or (c) V, D, W, T, and VS, possibly with 
S, QS and (or) QS/W.

CASE B
Case B consists of stations with cohesive but non- 

vertical banks with the water-surface slope again 
constant. The water-surface width, in other words, 
increases with increase in discharge but is controlled 
or constrained by the firm banks. The rate of change 
of width depends, at least in part, on the shape of 
the cross section or angle of the banks at various 
flow stages. Because of this control which the firm 
banks exert on the exponent of width b, Langbein 
(1964) felt that some relationship reflecting such 
control should be incorporated into the minimum- 
variance analysis. For this case, he introduced the 
constraint b = 0.55/, saying this relation obtains for 
the stable channel described by one of Nizery and
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Braudeau's (1955) sine equations. (See also Chow, 
1959, p. 178, eq. 7-12). The equation supposedly 
describes a stable hydraulic section, such as the 
cross section of an erodible channel (canal) in which 
no erosion will occur at a minimum water area for 
a given discharge. The formula is

, „ /r tan0 "1 v .7. eosH ——|X (9)

where Y = the depth at a horizontal distance X from 
the channel center, Y0 = the maximum depth at the 
channel center, and 6 is the angle between the hori­ 
zontal and the bank at bankfull stage and is taken 
to be the angle of repose of sand grains (about 33°).

For such a channel, the relation 6-0.55/ results 
from taking the bankfull-stage cross section as 
given by the above equation, choosing various 
water-surface widths for different stages, getting 
the cross-sectional flow area corresponding to each 
width, computing the mean depth associated with 
each water-surface width and flow area, and finally 
plotting water-surface width (on the ordinate) ver­ 
sus mean depth on logarithmic paper. The points 
thus plotted follow a power law and have a slope 
of 0.55, which means W <x D°- 55 . Thus, b/f = 0.55 or 
b = 0.55/.

Kennedy, Richardson, and Sutera (1964, pp. 338- 
339) legitimately asked whether the above cosine 
equation—a theoretical one intended for canals— 
does, in fact, describe the shape of river channels 
having movable beds and relatively firm banks. 
Thus, for testing the minimum-variance theory, an 
important question centers on the validity of Lang- 
bein's assumed relation 6 = 0.55/. Data accumulated 
for the present study should be sufficient to deter­ 
mine whether this relation is accurate.

Table 11 shows 76 stations labeled B, R, or B/R; 
however, two of these (stations 20 and 25) possibly

should be classified as having at least one "loose" 
boundary. To be safe, these two stations were elimi­ 
nated for this minimum variance analysis, leaving 
74 stations for testing case B.

Of these 74 stations, the value b//=0.55 is ap­ 
proximated or exceeded in only three instances. For 
the vast majority of stations, b is a relatively low 
percentage of /. The average value of b/f for all 
74 stations is 0.19, with two-thirds of the cases 
falling within the range 0.09 ^(b//)^0.28. The 
average value of b/f, therefore, is reasonably well 
defined, and the assumption 6// = 0.55 definitely is 
not justified for the stations studied here.

In keeping with the policy of dealing with average 
values, case B was tested using the contraint that 
b = 0.19/. This empirical relation presumably ac­ 
counts for the control that the firm banks exert 
on the hydraulic exponents. However, a plot (not 
shown) of b versus / for the 74 stations shows that 
b tends to decrease with increase in /, rather than 
increasing as the equation 6 = 0.19/ suggests. An 
eye-fitted line on the graph yields the very approxi­ 
mate relation 6 = 0.12-0.06/. This may express the 
relation between b and / as well as the former equa­ 
tion and was used in an alternate test of case B. 
As a matter of fact, the value of b for all 74 firm- 
bank stations tends to be low. The average is 0.08, 
and two-thirds of the cases fall within the range 
0.04^6^0.11. It is, therefore, not unreasonable to 
take b = 0.08 as an average, for these 74 stations. A 
third test of case B, accordingly, was made using the 
constraint that 6 = 0.08, so that /+m = 0.92.

Table 5 shows the exponent values predicted by 
minimizing the variances of those combinations of 
variables that survived case A. The variables S and 
QS are constant and noninfluential, respectively, for 
case B; for brevity, they are not included in the

TABLE 5.—Theoretical rates of change of dependent factors with increase in discharge for groups of variables surviving
case A and for different constraints

[Case B: firm banks. Average field values: m = 0.42 (mode 0.40); / = 0.50 (mode 0.48); 6 = 0.08 (mode 0.07), for 74 stations]

Values of exponents
Sets of 

dependent Constraint 
variables

V, D, W 6 = 0.19/
V, D, W, QS/W
V, D, W, T. ff
V, D, W, r, ff, QS/W
V, D. W, r, VS
V, D, W. r, VS, QS/W
V, D, W 6 = 0.12 — 0.06/
V, D, W, QS/W
V, D, W, r, ff
V, D, W, T, ff, QS/W
V, D, W, r, VS
V, D, W. r, VS, QS/W
V, D, (W) 6 = 0.08
V, D, (W), r.ff
V, D, (W), T, VS

V
Velocity 

(m)

0.42
.34
.36
.35
.42
.38
.47
.49
.38
.39
.47
.48
.46
.38
.46

D 
Depth

(/)

0.49
.55
.53
.55
.49
.52
.44
.41
.53
.52
.44
.43
.46
.54
.46

W 
Width 

(6)

0.09
.11
.11
.10
.09
.10
.09
.10
.09
.09
.09
.09

( .08)
( .08)
( .08)

T
Shear 
(/)

0.49
.55
.53
.55
.49
.52
.44
.41
.53
.52
.44
.43
.46
.54
.46

ff 
Friction 
factor 

(/-2m)

—0.35
— .13
— .19
— .15
— .35
— .24
— .50
— .57
— .23
— .26
— .50
— .53
— .46
— .22
— .46

QS/W 
Power per 
unit area 
(1-6)

0.91
.89
.89
.90
.91
.90
.91
.90
.91
.91
.91
.91

——

VS 
Power per 

unit weight 
(m)

0.42
.34
.36
.35
.42
.38
.47
.49
.38
.39
.47
.48
.46
.38
.46
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table, but the possibility that they are part of the 
best group of variables has not yet been ruled out. 
Also, for the situation where Z> = 0.08, QS/W al­ 
ways varies as 1 — b or 0.92. Hence where b = 0.08 the 
factor QS/W is not included in the minimizations nor 
in the table.

Consider first the effects of the three different 
constraints, for a given combination of flow vari­ 
ables. (Incidentally, note that in case B, it seems 
necessary to incorporate an empirical relation—the 
constraint involving b—along with the theory.) As 
far as predicted exponents are concerned, values of 
b are essentially the same for all three constraints 
and range from 0.08 to 0.11. The exponents m and / 
show some differences—mostly minor—depending 
on the constraint.

The average field values for the 74 stations are: 
for m, mean = 0.42, mode = 0.40; for /, mean = 0.50, 
mode = 0.48; and for b, mean = 0.08, mode = 0.07. 
Standard deviations are 0.13, 0.14, and 0.05 for m, 
f, and b, respectively. All predictions in table 5 are 
within a reasonable range of these average measured 
exponents. Thus the case B test is inconclusive. All 
groups of variables examined for this case, includ­ 
ing S and QS, will therefore be considered in the 
next test (case C).

CASE C
Case C consists of streams in which the slope at 

the station remains constant but the entire flow 
boundary is loose and readily eroded. The entire 
channel, in other words, is developed in noncohesive 
material—usually sand or sandy gravel. The loose 
"banks" in such channels may be reshaped from 
one flow to the next, and a change in discharge often 
alters the channel shape by erosion or deposition or 
both. The channel width is completely free to adjust 
to each new discharge.

Sixteen of the 165 stations listed in table 11 
(appended to end of report) qualify for this case. 
Most of the 16 stations are sandy streams for which 
the flow data have been plotted for low-flow condi­

tions. The entire flow boundary for these low flows 
would be defined as the bed during large discharges. 
Average exponents (arithmetic means) for the 16 
stations are m = 0.21, /=0.26, and & = 0.54. Modal 
values are m = 0.22, /=0.27, and & = 0.45. The stand­ 
ard deviations are 0.07, 0.07, and 0.09 exponent 
units for m, /, and b respectively.

Table 6 shows the exponents predicted by the 
various combinations of variables, with S and QS 
again being omitted because they have no effect on 
the exponents for this case. Three of the combina­ 
tions (groups 1, 4, and 6) predict ^-values that are 
markedly discrepant from measured averages. Two 
groups are fairly close to the field values: (a) V, D, 
W, T and ff, which predicts m = 0.22, /=0.30 and 
& = 0.48, and (b) V, D, W, r and VS, which yields 
m = 0.25, / = 0.25 and & = 0.50. Both of these com­ 
binations deserve to remain in the competition. The 
sixth group (V, D, W and QS/W) predicts m rather 
accurately (forecasting w = 0.20) but is about one 
standard deviation away for both / and b. It will be 
included in the next test, although it was not as 
impressive as the two groups just mentioned for 
case C. Neither S nor QS nor both combined have 
yet been eliminated as possibly relevant.

CASE B/C
The fourth major test involves stations having 

one firm and one loose bank (labeled B/C and C/R 
in table 11), with slope still constant. Fifty one of 
the stations are in this category.

An expression for the constraining effect of the 
firm bank should be incorporated into the minimum 
variance analysis. For the 51 applicable stations, I 
obtained such an expression by plotting & as a func­ 
tion of /. A definite trend appeared although with 
some scatter. Two-thirds of the plotted points fall 
within ±0.11 exponent units of the value indicated 
by the eye-drawn best-fit line. The line through the 
plotted points has the equation & = 0.84 —1.45/. This 
relation was used in minimizing the variances of the 
three groups of variables remaining in the compe­ 
tition.

TABLE 6.—Theoretical rates of change of dependent quantities with increase in discharge, for different sets of variables
[Case C: slope constant; loose, noncoherent banks allowing complete freedom for width to adjust. Average values for 16 field sites: m = 0.2l mean,

0.22 mode; / = 0.26 mean, 0.27 mode; and 6 = 0.54 mean, 0.45 mode]

Value of exponents
Group ~ 

No.

1
2
3
4
5
6

Dependent 
variables

V, D, W
V, D, W, QS/W
V, D, W, T, ff
V, D. W, T, ff QS/W
V, D, W. T, VS
V. D, W, T, VS, QS/W

V 
Velocity 

(m)

0.33
.20
.22
.14
.25
.16

D 
Depth 

(/)

0.33
.20
.30
.20
.25
.17

W 
Width 

<&)

0.33
.60
.48
.66
.50
.67

T
Sheaor 
(/)

0.33
.20
.30
.20
.25
.17

ff 
Resistance 
(/-2m)

—0.33
— 20
— .14
— .08
— .25
— .15

QS/W 
Power per 

unit bed area 
(1-6)

0.67
.40
.52
.34
.50
.33

VS 
Power per 

unit weight 
(m)

0.33
20

.22

.14

.25

.16



20 HYDRAULIC GEOMETRY OF RIVER CROSS SECTIONS

Because slope is constant, the variables S and QS 
are not included in the minimization. Minimizing the 
variances of V, D, W, T, and ff yields ra = 0.28, 
/=0.27, and 6 = 0.45. For V, D, W, r, and VS the 
predictions are m = 0.27, /=0.24, and b = 0.49. Mini­ 
mizing the variances of V, D, W, and QS/W pro­ 
duces m = 0.24, / = 0.17, and fc = 0.59.

The average field values for the 51 stations are 
ra = 0.30 (mode 0.27), /=0.31 (mode 0.25), and 
fc = 0.40 (mode 0.45, poorly defined). Standard de­ 
viations are 0.10, 0.14, and 0.19 exponent units for 
m, /, and b, respectively.

All three groups of variables are fairly close in 
predicting m. For / and b the combination V, D, W, 
and QS/W is not as close as the other two groups. 
This combination also was less accurate in the pre­ 
vious test (case C). The combinations V, D, W, T, 
and ff and V, D, W, T, and VS again are reasonably 
close to the field values. The results therefore show 
that, for the four cases examined thus far, these 
latter two combinations are the only ones that con­ 
sistently yield exponents close to the average ob­ 
served exponents. Also, because slope has been 
assumed constant in the four cases examined above, 
there has been no way of determining whether S 
and (or) QS should be included in the complete set 
of variables. One test remains.

CASE D

The fifth test includes channels in loose, readily 
erodible material, as with case C, but now the water- 
surface slope varies with discharge rather than re­ 
maining constant. Measurements for such stations 
are extremely scarce. Only three sets of data could 
be found for this case: two of them are the Wolman 
and Brush (1961) flume study of 0.67 mm and 2.0 
mm sand, respectively, and the third is Ackers' 
(1964) flume study with 0.16 mm and 0.34 mm sand.

Table 7 shows the measured hydraulic exponents 
for the three flume studies. Ackers' values are those 
published in his paper and were determined by least 
squares. His graph of slope versus discharge showed 
sufficient scatter that he decided no relation could be 
defined; however, the plot strongly suggests a nega­ 
tive value for the exponent z. To get the Wolman and 
Brush exponents, I plotted their experimental data 
and, except for the z-values (determined by least 
squares), drew lines of best fit by eye. The plots of 
slope versus discharge, as with the Ackers data, 
show a decidedly negative exponent, but the scatter 
is such that the values of z, while definable, are not

TABLE 7.—Measured and predicted values of hydraulic ex­ 
ponents for stations having variable slope, with bed and 
banks readily erodible

Measured values
Wolman and Brush (1961), 0.67 mm sand. 
Wolman and Brush (1961), 2.0 mm sand.. 
Ackers (1964), 0.16 mm and

0.19 
.11

15

0.39 0.48 —0.34 
.54 .38 — .74

.42 .43
Average values of the above data _ .15 .45 .43 — .54

Theoretical values (minimum variance)
V, 
V
V, 
V, 
V, 
V, 
V
V

D, 
D
D, 
D, 
D, 
D, 
D
D

W,
W
W, 
W, 
W. 
W, 
W
W

,ff ,ff, s
, ff, QS 
,ff, S, QS, vs , vs, s

, VS, QS
. VS. S. OS

0.14 
.19 
.03 
.10 
.33 
.30 
.40 
.36

0.43 
.35 
.62 
.50 
.33 
.30 
.40 
.36

0.43 
.46 
.35 
.40 
.34 
.40 
.20 
.28

—0.29 
— .11 
— .73 
— .45 
— .33 
— .20 
— .60 
— .43

accurate. Values of m, f, and b, among the three 
studies, are reasonably consistent for experiments 
of this type. The average exponents (arithmetic 
means) for the three studies are m = 0.15, /=0.45, 
6 = 0.43, and z =-0.54.

Inspection of the theoretical values of table 7 
shows that none of the four groups having V, D, 
W, T, and VS comes very close for the exponent m. 
Two of the other four combinations are not par­ 
ticularly close, either, for one or more exponents: 
the group V, D, W, T, ff, and QS is 0.17 exponent 
units off for / and -0.12 units off for m, while the 
group V, D, W, T, ff, and S is 0.10 exponent units 
low for / and somewhat high for z.

The remaining two of the eight groups come 
closest to the observed values. If the measured z 
values are reliable, then the combination V, D, W, 
T, ff, S, and QS is closest (-.05, +.05, -.03, and 
+ .09 exponent units off, for m, f, b, and z, respec­ 
tively) . If less weight is given to the z values which 
were not as well defined as the other exponents, then 
the group V, D, W, T, and ff is slightly closer. For 
some at-a-station cases, where slope is constant, the 
choice is irrelevant since S and QS drop out in the 
minimization calculations, leaving just V, D, W, T, 
and ff. Tentatively, however, the available data sug­ 
gest that one group of variables, namely V, D, W, T, 
ff, s, and QS, applies to all at-a-station situations.

Table 8 shows the extent to which a minimum 
variance analysis, with V, D, W, T, ff, S, and QS as 
the appropriate group of variables, predicts the 
average measured exponents for the five cases.

To summarize the findings thus far: (1) the mini­ 
mum-variance theory closely predicts the average 
hydraulic exponents for the five types of stream 
cross sections examined; and (2) the group of vari­ 
ables that consistently gives the most accurate re­ 
sults is V, D, W, T, ff, S, and QS.
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TABLE 8.—Comparison of average measured exponents to exponents predicted by the minimum variance theory, using V,
D, W, r, ff, S, and QS as the appropriate variables

[Dashed entry following case means column does not apply]

Case Constraints
Number 

of
applicable 
•stations

Velocity 
exponent 

m

Data

Mean Mode

A _______ Width and slope
constant (bf&Q). 

B, B/R, R ..Banks firm but not 
vertical; slope constant 

6 = 0.19/ 
6 = 0.12 — 0.06/ 
6 = 0.08

B/C, C/R _ One bank firm; 
slope constant; 6 = 0.84 — 1.45/ 

D ..... ___ .None __________ ._ __.____..

22

74

16

51 
3 

(flumes)

0.47 0.46 

.42 .40

.21 .22

.30 .27 

.15 ( 2 )

0.43 

.36
00

.38

.22

.28 

.10

Depth 
exponent

Data

Mean Mode

0.52 0.55 

.50 .48

.26 .27

.31 .25 

.45 ( 2 )

Fheory -

0.57 

.53

.53

.54

.30

.27 

.50

Width 
exponent 

6

Slope 
exponent 

z

Data Data

Mean Mode Mean

0.08 0.07

.54 .45

.40 M5 
.43 ( s )

0.11
no

.08
.48

.45 

.40 —0.54

Mode

(~2~)~ — 0~45

1 Poorly defined. 
2 Insufficient data.

HYDRAULIC EXPONENTS OF INDIVIDUAL 
STATIONS

The original intent of the minimum-variance ap­ 
proach was to find only the group averages. How­ 
ever, one of the eventual goals should be an accurate 
prediction of the exponents for any given station.

The hydraulic exponents at any given stream cross 
section probably depend to some extent on certain 
local features. Such features might reflect the chan­ 
nel shape, size, slope, boundary material, and other 
characteristics. Information of this sort was col­ 
lected for all 165 stations to see if such special data 
can help provide the hydraulic exponents for any 
stream cross section.

Three approaches for predicting exponents were 
explored: (a) minimum variance, (b) empirical 
equations based on the data of this study, and (c) 
the Gauckler-Manning and Chezy relations.

COLLECTION OF SPECIAL DATA
THE WIDTH- VERSUS-AREA RELATION

An approximate 6-versus-/ relation applicable to 
each individual station can be obtained by plotting 
estimated water-surface widths and their associated 
estimated cross-sectional flow areas. Cross-sectional 
flow area A=DW. Thus, where power relations 
exist,

So, for the range over which hydraulic exponents 
are defined, a logarithmic graph of width-versus- 
flow area will show a straight line having slope 
&/(& + /).

The value of &/(& + /) permits a definition of b 
in terms of /, or vice versa. For instance, if &/(& + /) 
= 0.20, then 6 = 0.25/.

Another advantage to such a width-versus-area 
graph is that the range of width and of area (and 
hence also of mean depth) over which the hydraulic 
exponents are valid will be readily shown by the 
range over which the straight-line relation holds.

Points plotted to define hydraulic geometry re­ 
lations represent separate and individual flow mea­ 
surements. A plot of W versus A, therefore, could 
also be defined from separate flow measurements. 
However, with stable channels, the gross channel 
dimensions and general shape are reasonably con­ 
stant with time. Thus, the relation between water- 
surface widths and flow areas should be approxi­ 
mately the same for a series of separate flows as for 
various hypothetical flows within any one cross 
section profile, as long as the selected profile is repre­ 
sentative or typical of the general channel shape and 
dimensions. The validity of this assumption is tested 
below.

Because the channel shape and hence the widths 
and areas change slightly from one flow to the next, 
more than one cross-sectional measurement is needed 
to get a reliable representation of a TF-versus-A 
relation. The experience of this study is that about 
three measured cross sections (taken at the same 
location at least several weeks apart) are needed for 
stations with firm, stable banks, but four to six 
cross sections are needed for stations where the 
entire flow boundary is cohesionless. Since widths 
and their respective areas are the only required 
data, surveys of the cross section serve as well as 
discharge measurements, as long as some flow has 
occurred between surveys. Surveys might even be 
better in that they can always extend up to and 
over the banks.
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Figures 5 and 6 show typical W-versus-A rela­ 
tions for a firm-bank and loose-bank station, respec­ 
tively. The standard procedure in preparing these 
and similar graphs for every station was as fol­ 
lows: (a) plot a cross section for a very high meas­ 
ured flow; (b) draw horizontal lines (typically 6 to 
14) representing theoretical water surfaces; (c) 
measure with a planimeter the cross-sectional flow 
area associated with each water-surface width; (d) 
plot W versus A on log paper; (e) repeat for three or 
four other high-flow measurements at the same 
station, plotting all the data on the same graph; 
and (f) draw a single best-fit line by eye for the 
range over which a straight-line relation applies.

Two methods were tried for testing the reliability 
of the width-area relations. One method was to 
plot width against area for the many separate flows 
that made up the observed hydraulic-geometry rela­ 
tions and to compare the best-fit line with that ob­ 
tained by the graphical planimeter method. This 
approach turned out to be infeasible because, for 
many stations, the range of areas for the real flows 
was too small. For stations having a reasonable 
range of measured flow areas, the widths and areas 
obtained by planimeter showed fair agreement with 
the data from real flows (figs. 5 and 6).

In the second test, the value of &i/(&i + /i), repre­ 
senting the slope of the line on the cross-section 
based width-versus-area graph, was compared to 
the "true" value of &/(&+/) as computed from the 
observed hydraulic exponents.

Figure 7 shows the results of this test. The data 
are not homoscedastic, and the points are more 
evenly distributed on log scales, as in figure 7. The 
graph indicates that, as a first approximation, the 
value of &/(&+/) can indeed be estimated by plot­ 
ting widths and areas generated from cross-sec­ 
tional surveys. On the other hand, the scatter un­ 
doubtedly leaves room for improvement. The big­ 
gest single discrepancy between &i/(&i+A) and the 
"true" &/(& + /) for a station is 0.35 exponent units. 
In a number of cases, however, the agreement is 
perfect. For two-thirds of the 165 cases, the esti­ 
mated value &i/(&i + /i) is within ±25 percent of 
the true &/(& + /).

There is a slight tendency for the estimated \>J 
(&i + /i) to be low for stations having a high value 
of &/(& + /), and vice versa (fig. 7).

MAXIMUM AND MINIMUM GEOMETRICAL 
PROPERTIES OF A SECTION

The mathematical definition of hydraulic expon­ 
ents suggests that their values might be influenced

by certain characteristics of the channel cross sec­ 
tion. Take, for example, the exponent of width, 6, 
defined as

(10)^ _ log W2 - log Wi _ Alog w 
logQ2 -logQj AlogQ 

where each subscript refers to a point on the best- 
fit line relating width to discharge.

A consistent way to define the two points on the 
best-fit line, for example, W, and W1} is to take them 
as the maximum and minimum values, respectively, 
for which the straight-line relations holds. These 
points can be readily seen on most plots of width 
versus area. Figure 5 is a good example. For that 
station, the maximum values of width (Wm&*) and 
area (Amax ) for which the power relation holds are 
29.3 m (96 ft) and 29.9 m2 (322 ft2 ), respectively. 
Therefore, the associated depth (Dmax ) is Amax/VPmax 
or 1.02 m (3.35 ft). Similarly, the lower end of the 
power relation is at a width Wmill of 24.4 m (80 ft) 
and an area A min of 7.52 m2 (81 ft2 ). Thus, Dmiu 
= 0.31 m (1.01 ft). Alog W would then be log Wm&x 
-log Wmin = log 96-log 80 = 0.079. Alog A and Alog D 
were defined in the same way for all stations.

The denominator Alog Q in equation 10 is not 
directly available. Assume the hydraulic radius is 
approximately equal to mean depth D and that 
resistance and slope are constant. A number propor­ 
tional to Qmax (discharge at the upper end of the 
power relation) can then be computed from the

2/3

Gauckler-Manning equation as DmaxAmax. Similarly,
2/3

Qmm would be proportional to DminAmin. The denom­ 
ination Alog Q then is proportional to

log Qmax -log Qmln =0.667

Using the maximum and minimum widths, depths, 
and areas as just described, numbers were generated 
that hopefully would be proportional to the ex­ 
ponents b and /. The denominator in these numbers 
was the Alog Q of the previous paragraph, and the 
numerators were Alog W and Alog D for b and /, 
respectively.

For some of the loose-bank stations (such as fig. 
6), no break could be discerned at the lower end of 
the straight-line relation on the width-area plot. For 
these cases, the minimum values were taken as 
those corresponding to a depth of 0.03 m (0.1 ft), 
since the current-meter method probably would not 
measure shallower depths with any accuracy. In a 
few other cases, the available cross-sectional pro-
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FIGURE 7.—Width-area relations based on channel cross sections compared with true values as computed from hydraulic 
exponents. Two-thirds of the estimated values, encompassed by the dashed lines, fall within ± 25 percent of the 
true values.

files did not extend high enough up the banks to 
show the break at maximum values; in these cases, 
maximum values were taken at the maximum flow 
conditions recorded for the site.

The maximum and minimum properties as de­ 
nned here were also used to form other channel 
descriptors. For instance, many analysts use the 
channel width/depth ratio as an indicator of chan­

nel shape. In the present study, the width/depth 
ratio at the upper end of the applicable power re­ 
lation was denned as Wmax/Dmax, in which these 
values were measured as just described. Similarly, 
the lower end of the power relation is associated 
with a width/depth ratio of Wmin/Dmin .

The amount of error associated with the above 
method of estimating the maximum and minimum
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geometrical properties of a channel section is dif­ 
ficult to assess. The accuracy of these values in­ 
creases with the number of cross sections plotted.

Another use of maximum and minimum cross- 
section characteristics is to define "bank inclina­ 
tions." The general steepness or flatness of the banks 
should affect the exponent b (Lewis, 1966; Knight- 
on, 1974). The Humboldt River near Argenta, Nev. 
(station Nos. 126 and 127 of this study), shows 
how the inclination of the boundary, regardless of 
whether the latter be firm or loose, affects the hy­ 
draulic exponents. Figure SA is the channel cross 
section at the cable, and the plotted hydraulic-geo- 
mentry data are shown in figure SB. Inspection of 
the plotted data reveals two different sets of ex­ 
ponents, corresponding to discharges higher and 
lower than about 4.25 m3/s (150 ft3/s), respectively. 
Why these different sets of exponents? From the 
plot of width versus discharge, the break in the 
exponent b is seen to occur at a water-surface width 
of about 26 m (85 ft). Transferring this width to 
the plotted profile (B-B' in fig. 8A), we see that this 
width just corresponds to the base of the banks, 
that is, to a noticeable change in the general inclina­ 
tion of the flow boundary. From the base of the 
banks up, the firm, regular boundary promotes a 
well-defined set of hydraulic-geometry relations, 
and the rather steep banks cause a relatively low 
value of the exponent b (0.06 in this case). At low 
discharges, on the other hand, the flattish and co- 
hesionless bed is the flow boundary. Such a flattish 
boundary is associated with large changes in width 
for a given change in discharge, that is, a relatively 
high value of the exponent 6 (0.46) and more scatter 
on the hydraulic-geometry plots. Hence, the bound­ 
ary inclination and regularity have a direct influ­ 
ence on the hydraulic exponents (Richards, 1976).

(This example, along with figure 4 and the data 
in table 11, suggests that there may be some risk 
or questionable significance associated with com­ 
puting average hydraulic exponents for a physio­ 
graphic region, as some investigators do. See also 
Rhodes, 1977, p. 83-84.)

Maximum and minimum areas and widths, defined 
as explained above, were used to define a bank angle 
B. The cross section was assumed trapezoidal, and 
the bank sections were taken as equal right triangles 
(fig. 9). The slope of these banks (0) was considered 
to be the average bank inclination of the natural 
channel.

The distances used to compute Twere the base 
and height of the bank sections, that is, tan 0 
= height/base. The average base of a bank section 
= 1/2(^max -^min). (See fig. 9.) The height EB, 
considering the two bank sections equal, is

\-**-max -"-mill)

wmin
Then for the bank inclination,

_ 4 ( Amax — Am jn 
tan 6=

W* -W*
max miu

(ID

Since the tangent and other trigonometric functions 
are sometimes awkward to use mathematically (for 
example, the tangent goes to infinity as the banks 
become vertical), ^Twas expressed in degrees.

(Defining a bank angle 6 by plotting the cross 
section and drawing a straight line by eye for the 
general bank inclination was too subjective, partly 
because the transition from bank to bed was hard 
to recognize on some cross sections. The above sys-

Upper water surface has Wmax ,A

FIGURE 9.—Sketch showing concept of bank inclinations. In practice, the geometrical properties of maximum and mini­ 
mum areas and widths are determined by logarithmic plotting of widths and corresponding areas measured from 
several cross-sectional profiles.



28 HYDRAULIC GEOMETRY OF RIVER CROSS SECTIONS

tern has the disadvantage that channels with various 
combinations of bank angles can have the same 6, 
so 0 is at best only an approximation. The method 
is consistent and objective, however.)

BED-SEDIMENT SIZES AND ESTIMATES OF BED 
ROUGHNESS

The bed particles for each station were sampled 
for size distribution at or near the cross section of 
interest. The median diameter, d50, of the size dis­ 
tribution was used to describe the bed sediments. 
For some streams, especially with sandy beds, this 
value was available in published literature. At most 
stations, however, the particles had to be sampled. 
In streams on which all the bed particles were less 
than coarse gravel in size, representative bed 
samples were taken at several points across the 
section and combined into a single composite sample 
for laboratory analysis. Coarse gravel and larger 
particles generally were measured directly in the 
field by the pebble-count method (Wolman, 1954). 
At these sites, the finer material also was sampled 
and, if equal to more than about 15 percent of the 
total size distribution, was analyzed by sieving. The 
pebble count is a surface-sample frequency by num­ 
ber, whereas the sand-sized material was a three- 
dimensional sample analyzed by weight or volume 
frequency. On the basis of the work of Kellerhals 
and Bray (1971), the two distributions were com­ 
bined. In making this computational union, each of 
the two distributions was weighted according to 
that percentage of stream-bed area it covered, as 
indicated by the pebble count.

Sieving was the usual method of size analysis for 
sand-sized material, though with a few samples a 
visual-accumulation (VA) tube was used. As the 
VA method is based on the principle of fall velocity 
rather than a direct measurement of the sieve diam­ 
eter of the particle, the VA-tube data theoretically 
should be made comparable to sieve data by an ap­ 
propriate adjustment factor (U.S. Interagency 
Committee, 1957, p. 37, fig. 7). However, assuming 
a grain-shape factor of 0.7 (naturally worn sedi­ 
ments), the difference in the results produced by 
the two methods is negligible for medium and fine 
sands.

Two additional size-frequency characteristics were 
determined for many stations: dS4 (the grain size for 
which 84 percent of the distribution is finer) and a 
sorting measure, So, defined as log d90 — log d10, 
where the subscripts indicate the percent finer in 
the size distribution. These data were not available 
for those sand-channel streams for which a median

grain size was published. For certain other stations, 
the dlo was not available.

Several sources of error are associated with the 
median bed-particle size. One question involves 
where to sample, when particles of different size 
groups form separate patches on the streambed. 
Furthermore, the sizes on the bed surface may not 
necessarily be the same as those just beneath the 
surface.

The sampling procedure itself involves some error. 
The variability in the results for measurements 
made at or near the same cross section, at least with 
the pebble counting, can amount to about 12 percent 
of the median diameter (Wolman, 1954, p. 954).

In most cases, there was a time lag averaging 
about 1 to 2 years and ranging from about 6 months 
to 17 years between the period of the hydraulic 
measurements and the occasion of the sediment 
sampling. I assumed that the bed sediments did 
not undergo any drastic changes in size distribu­ 
tion during this interval.

Finally, one particle-size distribution may not 
apply to the full range of plotted water discharges. 
The size distribution of the bed particles could 
change with flow conditions, at least for streams 
with a wide range of particle sizes.

Several relative-roughness variables were studied 
for possible influence on the hydraulic exponents. 
These variables applied only to grain roughness and 
did not include roughness due to bed forms and 
channel irregularities. Examined were Dmla/d50, 
-Dmax/^50, and the difference between these two, that
IS, (i/max — ^min ) /^50«

Another grain-size variable investigated was d1/6,
50

since according to the Strickler relation, this is pro­ 
portional to the Gauckler-Manning resistance co­ 
efficient in streams having coarse bed material.

Finally, according to Henderson (1966, p. 98), 
the quantity (d50/-D) 1/3 is proportional to the Darcy- 
Weisbach friction factor ff. Thus (d50/Dm&xy/3 would 
be proportional to the friction factor at maximum 
flow depth, (d50/Anin) 1/3 would be proportional to 
the friction factor at minimum depth, and the loga­ 
rithmic change between these two extremes would 
be log f(Anin/AnaX ) 1/3]. These factors involve only 
the grain effects and do not include the influence of 
bed forms.

SLOPE

Channel gradients in the vicinity of the cross 
section were determined either from field data or 
topographic maps. Most field data were from longi-
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tudinal profiles of the channel or water-surface, 
otherwise from high-water marks on the banks or 
from two gages along the reach. The topographic 
map measurements were generally made on TVa-nrin 
quadrangle maps by measuring the horizontal dis­ 
tance between the contour above and the contour 
below 'the section.

The assumption that a single slope value applies 
to a given reach is valid only in a statistical sense. 
The approximate overall slope of a reach is directly 
related to the general topography of the area, and 
this average probably did not change significantly 
over the period of time for which the hydraulic data 
have been plotted. However, the actual slope, and 
especially the energy gradient of the flow, at any 
moment in time may vary with flow conditions and 
with channel scour and fill, at least for high dis­ 
charges. Such potential variability may introduce an 
unknown amount of error into any relation involv­ 
ing slope.

There are no data available for assessing the error 
involved in measuring the slope with the various 
field methods.

Topographic map measurements introduce error 
both in the drawing of the map and in the measure­ 
ment of the horizontal distance along the thalweg. 
Hack's data (1957, p. 91-93) for 64 rather steep 
streams in Maryland and Virginia show that slopes 
measured from topographic maps can differ from 
field-measured slopes (channel profiles measured 
over a distance of 61 to 152 m (200 to 500 ft)) by a 
factor ranging from 0.03 to nearly 15. The factors 
for two-thirds of his observations ranged from 0.64 
to 2.00.

ACCURACY OF EXPONENTS DETERMINED BY 
MINIMUM VARIANCE

By assuming that the theoretical predictions of 
the minimum variance theory are the true mean 
values for each case, a rough idea of the accuracy 
can be obtained by looking at the spread of measured 
exponents about the predicted exponent. The 22 sta­ 
tions for case A (width and slope constant) have 
a standard deviation of 0.14 exponent units for m 
and 0.15 exponent units for /. Thus, if the distribu­ 
tion were normal, about 68 percent of those stations 
would have an exponent m that is within ±0.14 
exponent units of the predicted minimum-variance 
value. For the 74 firm-bank stations (case B), 
standard deviations are 0.14 for m, 0.14 for /, and 
0.05 for b. The 16 loose-boundary stations (case C) 
have standard deviations of 0.07, 0.08, and 0.11 for 
m, f, and b, respectively. And for the 51 stations

having noncohesive boundaries except for one firm 
bank, the standard deviations are 0.10 for m, 0.14 
for /, and 0.20 for 6. Thus, additional refinements to 
the minimum-variance analysis, probably in terms 
of more specific expressions of the constraints, are 
desirable. Another improvement would be to elimi­ 
nate the subjectivity in classifying banks as "firm" 
or "loose."

An attempt was made to use a more objectively 
determined constraint, namely b 1/(b1 + fi ), in mini­ 
mum-variance computations (V, D, W, T, ff) for 
each station. This approach obviates the need to 
classify banks as firm or loose, and a function of / 
can be substituted for b in the calculations. For con­ 
trol and comparison, similar computations were also 
made using the true b/f as given by the measured 
hydraulic exponents. The predicted exponents for 
the 165 stations have the following accuracies:

Constraint

true b/f

Exponent

m

b 
m
f 
b

Standard error 
(Exponent units)

0.132
.102
.045
.131
.117
.082

Percent sums 
of squares 
explained

17
62
96
18
50
86

(The percent of the total sums of squares of the 
dependent variable explained is defined as

where S.E. = the standard error of the estimate of 
the dependent variable and a is the standard devia­ 
tion of the dependent variable.)

The above calculations suggest that using b 1/(b l 
+ /i) with minimum variance can provide a good 
estimate of b, a fair estimate of /, and a poor esti­ 
mate of m.

Some reasons that might inhibit better agreement 
between predicted and observed exponents are:
1. A different group of variables possibly should 

be used in the minimization, rather than V, 
D, W, r, and ff.

2. Different groups of variables possibly should be 
used for different hydraulic and (or) geologic 
situations.

3. Too many simplifying assumptions, such as con­ 
stant energy gradient over the flow range, 
may have been adopted.

4. The minimum-variance theory may apply to 
certain kinds of channels and (or) flow con­ 
ditions better than to others.

5. A different constraint (other than b 1/(b1 + fi )) 
should be used.
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6. The minimum variance calculations should be 
carried out with coefficients or weighting 
factors attached to each of the exponents, 
rather than with a single constraint applied 
to the entire minimization.

The first five of the above items were explored. 
These items deserve further study. However, no 
significant improvement in predicting the exponents 
emerged from the examination. A search for em­ 
pirical coefficients (item 6) led to the surprising 
development that such coefficients, if known, esti­ 
mate the hydraulic exponents directly, so that mini­ 
mum variance apparently is not needed with this 
approach.

EMPIRICAL FORMULAE FOR HYDRAULIC 
EXPONENTS

The special data collected for this study, plus 
selected combinations of some variables, were tabu­ 
lated for each station. The following independent 
variables, except when_their values were unavail­ 
able, were included: S, T, d50 , d84, &!/(&! + A), Amax,
•Amin> H'max, KK min, //max, Anin> "max/Dinax> Wmin/Dmin,

•^•max/Aniin, W max/ " min» Anax/Anin» Dm&yi/cL50f -DminA^Oj 

(Anax-AniJ/cU ( W/D ) max/ ( W/D ) min, d1/* , (d50/ 

Anax) 1/3 , (dao/Anin) 1/3 , (^O/Anax) VV (Ao/Anta) 1/3 , the

logs of all the variables just listed, So, 1/0, Amln/Amax,
in/ TF

A
6i

( W/D ) min/ ( W/D )

AlogQ

+ log
L mln _

Alog TF/Alog Q and Alog D/Alog Q.
An equation for each hydraulic exponent was ob­ 

tained by multiple regression, at a probability level 
of 0.05. Both the natural value and the logarithm of 
each exponent were tested. Each dependent vari­ 
able was first regressed against the set of 59 inde­ 
pendent variables listed in the previous paragraph. 
In many cases, at least one additional regression 
was made to reduce the equation to a more prac­ 
tical form of no more than two or three independent 
variables.

The most accurate empirical formulae are:

= 0.8 (12)

which has S.E. = 0.082 and explains 86 percent of 
the sums of squares of b (fig. 10) (data are not 
homoscedastic, but they are not on log scales either);

/=0.60-0.58 -O.OOlScL (13)

which has S.E. = 0.096 and explains 66 percent of 
of the sums of squares of / (fig. 11); and

ra = 0.24+ 0.16 -0.21 + 0.000021 AninX 

(14)

which has S.E. = 0.110 and explains 45 percent of 
the sums of squares of m (fig. 12). In these equa­ 
tions d50 is in millimeters and Dmin is in feet.

The coefficients in equations 13 and 14 carry ap­ 
propriate units to make the equations dimensionless.

The three exponents for a cross section as given 
by equations 12-14 do not always add up to exactly 
1.0. Equations 12-14 with the present data produce 
sums of exponents ranging from about 0.93 to 1.07.

These general equations for the hydraulic ex­ 
ponents suggest that b, the exponent of width, is 
almost entirely a function of the channel geometry 
(&i/(&i + A), that is, widths and areas). The expo­ 
nents / and especially m seem to depend partly on 
channel geometry, partly on roughness-related fea­ 
tures, and possibly on additional features that were 
not studied or not measured well enough.

As with the minimum-variance test, the predic­ 
tions are good for b, only fair for / and poor for m. 
Possible reasons why more accurate equations did 
not appear are:

1. The basic data, such as d50 and &i/ (&i +A)» P°S- 
sibly were not measured accurately enough.

2. The right variables were not included in the 
regression. For instance, maybe sediment 
transport rate should be involved. Or maybe 
d50 or d8 ± are not the best measurements to 
represent grain size. Also there is a ques­ 
tion whether the true &/(& + /), rather than 
the measured &i/(&i+A)> should have been 
used in the regressions. (The measured & x/ 
(&i+A), of course, would have to be used 
in practice.) The empirical equations, espe­ 
cially the one for &, all become slightly more 
accurate if &/(& + /) is used instead of bj 
(&i + A) in the regressions.

3. The true type of function was not found or 
considered.
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0.90

0.80 -

Line of perfect agreement

0.10 0.20 0.30 0.40 0.50
Measured exponent b

0.60 0.70 0.80 0.90

FIGURE 10.—Computed versus measured values of exponent 6, where computed 6=0.8 (6i/(6]+/i)). Standard error=
0.082 exponent units, with 86 percent of sums of squares explained.

HYDRAULIC EXPONENTS FROM THE GAUCKLER- 
MANNING AND CHEZY EQUATIONS

METHOD

The Gauckler-Manning and Chezy equations

(V=—- 
n

respectively, where R is hydraulic radius and n and 
C are roughness coefficients), can provide estimates 
of hydraulic exponents. Three assumptions are 
necessary: (a) the selected equation is valid for

every station to which it is applied, (b) the rough­ 
ness coefficient (Manning n or Chezy C) is con­ 
stant over the flow range of interest, and (c) the 
slope or energy gradient is constant for the flow 
range of interest. The validity of at least the first 
two of these assumptions is doubtful for many sta­ 
tions on alluvial channels. Thus, the present at­ 
tempt is more exploratory in nature and is motivated 
by a curiosity to see how close the predicted ex­ 
ponents come to the observed exponents.
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FIGURE 11.—Computed versus measured values of exponent/, where computed f=0.60—0.58 (&i/(&i+/i)) 
Standard error=0.096 exponent units, with 66 percent of sums of squares explained.

-0.0018

At constant roughness and slope, the Gauckler- 
Manning formula specifies that V&R2/3 . Similarly, 
according to the Chezy equation, VocR1/2 . Assuming 
D^R and substituting V=Q/A, we get Q« D2/3A 
for Gauckler-Manning and Q<xDl/2A for Chezy. 
Thus, a number proportional to Q can be computed 
from an associated value of D and of A.

The estimated values of W and A generated from 
hypothetical water-surface widths drawn on plotted 
channel cross sections were used as the basic data. 
For each width and area, the associated mean depth 
D was computed as A/W. The corresponding "dis­ 
charge" then is D2/3A and D^A for the Gauckler- 
Manning and Chezy equations, respectively. Finally, 
W versus "Q" and D versus "Q" were plotted on log 
paper, lines of best fit were drawn by eye, and the 
exponents measured graphically as usual. (The 
depth plot probably is partly spurious, in that D is 
plotted against D2/3A.) This procedure was followed

for all 165 stations. Only the exponents b and /, for 
width and depth, respectively, were studied in this 
way, and m was determined as l-b-f.

RESULTS

For all 165 stations the standard errors and per- 
cents of total sums of squares explained, for each 
exponent, are as follows:

Exponent Formula

m Gauckler-Manning ___ 
Chezy __—_—_

/ Gauckler-Manning ___ 
Chezy ____— —

6 Gauckler-Manning ___ 
Chezy _____—_

Percent of
Standard error total sums

(exponent units) of squares
explained

0.134
.164
.133
.159
.109
.105

15
0

35
7

75
77

Separating the results into firm-bank and loose- 
bank categories did not bring about any significantly 
better accuracy in predicting the hydraulic ex­ 
ponents.
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FIGURE 12.—Computed versus measured values of exponent m, where computed m=0.24+0.16d%—0.21 (&i/(&i+/j)) +0.00002
50

(•Dmin/dso). Standard error=0.110 exponent units, with 45 percent of sums of squares explained.

The Gauckler-Manning equation comes closer to 
estimating the exponents / and m than does the 
Chezy equation. (Standard errors for the Gauckler- 
Manning equation are lower, with a greater variance 
of the dependent variable explained.) The two flow 
equations are about equally accurate for the ex­ 
ponent b.

Both formulae, however, are somewhat less ac­ 
curate in predicting hydraulic exponents than the 
minimum variance and empirical methods. The fol­ 
lowing section compares the results of these various 
methods.

COMPARISON OF METHODS OF COMPUTING 
HYDRAULIC EXPONENTS

Table 9 compares the statistical accuracy of the 
minimum variance (using &i/(6i + /i)), empirical 
and Gauckler-Manning methods of predicting the 
hydraulic exponents for the 165 cross sections of 
this study. The minimum-variance and empirical 
methods are about equally reliable for b. The empiri­ 
cal equations, while still in need of improvement, 
are the best of the three methods for / and m. This 
is not surprising, since the empirical equations were 
derived solely from the present data. However, the
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TABLE 9.—Accuracy of methods of predicting hydraulic 
exponents

Method
Exponent

Minimum Variance (using 6i/(6i + /i) 
Standard error __________
Percent sums of squares explained

Empirical Equations:
Standard error __.._. — __________
Percent sums of squares explained

Gauckler-Manning:
Standard error _______________
Percent sums of squares explained

0.131 0.117 0.082
18 50 86

.110 .096 .082
45 66 86

.123 .133 .109
15 35 75

present data do cover a wide range of river condi­ 
tions.

SUMMARY AND CONCLUSIONS

The minimum-variance theory assumes that in 
response to changes in water discharge, the adjust­ 
ments in the major dependent variables tend to be 
as conservative as possible. These adjustments are 
reflected by the exponents in power relations be­ 
tween water discharge and each dependent variable.

Previous work done on this theory (Langbein, 
1964, 1965; Scheidegger and Langbein, 1966) has 
not explored the question of which variables are 
important—a question which must be resolved if 
the theory is to be applied. Also, no extensive testing 
of the theory has previously been carried out with 
field data. The 165 alluvial-channel cross sections of 
the present study provide tentative answers to these 
two problems. The data have the following ranges 
for hydraulic exponents: 0.00^&^0.82, O.IO^/ 
^0.78, and 0.03^m^0.81.

Results suggest that the major dependent vari­ 
ables in regard to flow adjustment at channel cross 
sections are mean velocity, water-surface width, 
mean depth, shear stress, friction factor, slope, and 
stream power. To the extent that slope remains con­ 
stant at a channel cross section, the last two of this 
group can be dropped from consideration. For the 
five types of channels studied, minimum-variance 
calculations with these dependent variables produce 
values of the exponents m, f, b, and z that are rea­ 
sonably close to the average exponents found for 
four natural-stream cases and for one flume case. 
The agreement suggests some promise for the 
theory.

Three methods—minimum variance, empirical re­ 
lations derived from the present data, and the 
Gauckler-Manning formula—were examined for ac­ 
curacy in predicting the hydraulic exponents at any 
given channel cross section. This phase of the study 
required the collection of such special data as bed- 
sediment sizes, channel slope, and various geomet­

rical properties of the channel cross section. The 
most accurate way to determine the at-a-station hy­ 
draulic exponents for the present data is with the 
empirical relations (equations 12-14). Using the 
equations, the predicted exponents agree with the 
measured exponents to the following extent: for m, 
the standard error S.E. is 0.110 exponent units with 
45 percent of the sums of squares of m explained; 
for /, S.E.-0.096 with 66 percent of the sums of 
squares of / explained; and for b, S.E. = 0.082 with 
86 percent of the sums of squares of b explained. 
These figures show that the equations provide only 
a rough approximation of observed hydraulic ex­ 
ponents. Many reasons could easily explain the dif­ 
ferences between predicted and observed values.

To get the important channel characteristics, the 
investigator needs the median diameter of the bed 
material and the relation between water-surface 
width and cross-sectional flow area for all flows up 
to bankfull. The latter relation can be estimated 
from the data of at least three cross-sectional pro­ 
files. (As many as six profiles are recommended for 
stations in loose, sandy materials.) All profiles 
should be measured at the same section at time inter­ 
vals of several weeks or months.
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STATISTICAL VARIANCE AND A HYDRAULIC 
EXPONENT

This section explains the close relation between 
the square of a hydraulic exponent and the term 
"variance" of conventional statistics.

Consider a series of discharge measurements and 
the associated mean velocities, all taken at the same 
cross section on a stream. Change these measured 
values into logarithms and let <r = the standard devia­ 
tion of the logarithms of each hydraulic property. 
For example, <riog v is the standard deviation of the 
log-velocity values, a measure of the spread of the 
log-velocity values about the mean of the log-velocity 
group. The following hypothetical example will show 
that the hydraulic exponent of velocity, m, can be 
defined as

m = ' flog V

\ flog Q I

where r is a correlation coefficient (Crow and others, 
1960, p. 158).

Suppose we have 10 different discharge measure­ 
ments and a mean velocity for each discharge. It is 
specified that these two variables have a power re­ 
lation, such as YocQ"1 or log V<xm (log Q). Figure 
13 is a graph of the data for this hypothetical ex­ 
ample. The exponent m (the slope of the line) can 
be measured graphically and equals 0.5 for these 
data. The ratio of the standard deviations, <T\<>S V/ 
(nog Q, should also equal 0.5. Columns 2 and 5 of table 
10 give the measured values of log V and log Q, 
respectively. The standard deviations of the log V 
values (criogF) and of the log Q values (<ri0ge) are 
calculated in table 10 according to the usual pro­ 
cedure (Crow and others, 1960, p. 12). The values 
for this example come out to be ai0gF = 0.496 and 
fio«r o = 0.992. Then the ratio

flog V 0.496 = 0.5 =
alog Q 0.992

For this example, all the points lie on a straight 
line, so the correlation coefficient is 1.0 The correla­ 
tion coefficients for velocity, depth, and width are 
rarely 1.0 in regression analyses but are usually 
higher than about 0.7. For example, the following 
correlation coefficients have been computed from 
Culbertson and Dawdy's (1964) data:

Rio Grande at Rio Grande near Rio Grande at 
San Felipe, N. Mex. BernalUlo, N. Mex. Cochiti, N. Mex.

Velocity __ 
Depth ____ 
Width __

1 Constant.

1.00 
.99

0.99 
.99 
O

0.98 
.98
.82

In some cases, it is therefore acceptable to assume 
that the correlation coefficients of the various hy­ 
draulic exponents are approximately equal or con­ 
stant. Thus, just as m oc o-log F/o-iog c , as shown by 
this example, the same principle applies to each of 
the other dependent variables, so that

, O-log D flog W/oc __, boc __, and so forth.
flog Q flog Q

All of the latter relations contain o-iog Q as a com­ 
mon factor. The proportionalities, therefore, are still 
valid if o-iog Q is deleted. This leaves /oc o-iog D, b<x o-log w, 
and so forth. In other words, each hydraulic ex­ 
ponent is proportional to the standard deviation 
of the logarithms of its respective hydraulic 
property. Now square both sides of these propor­ 
tionalities: f°ca1; n,b2 K(r* w,and so forth. Since' log D' log W

"variance" is the square of a standard deviation, the 
square of a hydraulic exponent is proportional to 
the variance of the logarithms of the associated hy­ 
draulic property. This is why "variance" is used as 
a shorthand term for "square of hydraulic ex­ 
ponent."

The above statistical definitions of the hydraulic 
exponents are not always valid. Some of the ques­ 
tionable procedures concerning the logarithms of the 
several hydraulic properties are the following:
1. They are treated as if they are distributed at 

random, that is, not predictable for any given 
case. Actually the hydraulic properties, rather 
than being randomly distributed, follow de­ 
finite laws and so should be predictable on the 
basis of these laws. The values are not pre­ 
dictable at present due to insufficient knowl­ 
edge. However, as explained on pages Cl and 
C2 of the Scheidegger and Langbein (1966) 
paper, the net result of many predictable ac­ 
tions often is the same as if the whole process 
were random. The process, therefore, lends 
itself to a statistical approach.

2. They are assumed to be mutually independent. 
The reason for this assumption is unclear and 
may depend on the definition of independence. 
Certainly the hydraulic properties (V, D, and 
W, for example) are related in that a change 
in one property usually is associated with 
changes in the other factors.

3. They are assumed to have approximately normal 
distributions. A computed standard deviation is 
most meaningful only if the distribution is ap­ 
proximately normal. There is no basis for as­ 
suming that the values are either normally or
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TABLE 10.—Standard deviations of log V and of log Q (see fig. 13)

1
2 
3
4 
5 
6 
7 
8 
9 

10

Point on T _ T7 
graph Lo« V

0 4^
-_-_ —.30

- ___ __________ ______ +.05
- __ __ _ ____ _____ .25
. __ _ _ _ _ __ __ __ .40
- ___ _ __ — __ __ __ .55
. —— _ —— _______________ __ _ __ .70
- _ __ _ ______ __ __ .85
- _ __ _ _ _ _ ___ _ __ 1.00

Sums _ ______ 2.90
Means __ _ _ __ .29

i / S( deviations) 2
\ N-l 
]/ 2.2140

Deviation 
from 
mean

0.74
.59
.44
.24
.04

+.11 
.26 
.41 
.56 
.71

(Deviation) 2

0.5476
.3481 
.1936 
.0576 
.0016 
.0121 
.0676 
.1681 
.3136 
.5041 

2.2140

LogQ

0.10 
.40 
.70 

1.10 
1.50 
1.80 
2.10 
2.40 
2.70 
3.00 

15.80 
1.58

Deviation 
from 
mean

1.48
1.18

.88

.48
-.08 
+.22 

.52 

.82 
1.12 
1.42

——

(Deviation) 2

2.1904
1.3924 

.7744 

.2304 

.0064 

.0484 

.2704 

.6724 
1.2544 
2.0164 
8.8560

i / S( deviations) 2
\ N-l
] / 8.8560

=0.496
9

=0.992

symmetrically distributed, 
could resolve this question.

Measured data

One or more of the above three conditions prob­ 
ably is not satisfied in the field. The importance of 
this in regard to the statistical derivation of the 
exponents is uncertain. The statistical derivation re­ 
lating the exponents to the variances of the respec­ 
tive hydraulic properties would, therefore, benefit 
from further study and clarification. However, such 
a derivation is not vital to the general minimum-

variance theory. The theory merely proposes that 
the most probable exponents are those whose squares 
add up to the smallest number, because this situa­ 
tion corresponds to the most uniform distribution of 
the imposed change, as shown earlier. The associa­ 
tion with the variance of conventional statistics is 
only of minor importance.

(For table 11 see p. 42.)
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TABLE 11.—

Station 
No. Station

Hydraulic exponents Minimum
variance

case 1

Log cycles
of Q 

on plot

Amount of scatter on 
hydraulic geometry plots

Velocity Depth 
(percent) (percent)

Width 
(percent)

1 Chenango River near Chenango Forks, N.Y _. 0.51 0.43 0.07 B
2 Genesee River near Mt. Morris, N.Y —————— .42 .55 .06 B
B Genesee River at Rochester, N.Y ————————— .61 .33 .05 B
4 Susquehanna River at Colliersville, N.Y ———— .42 .53 .05 B
5 White Clay Creek near Newark, Del —————— .65 .31 .04 B
6 Big Elk Creek at Elk Mills, Md ————————— .64 .32 .06 B
7 Murderkill River near Felton, Del ———————— .60 .35 .06 B
8 Rappahannock River at Remington, Va .——— .39 .47 .15 B
9 Neuse River at Kinston, N.C ..—————————. .61 .32 .08 B

10 Middle Creek near Clayton, N.C ..—-————— .33 .34 .30 B
11 Nahunta Swamp near Shine, N.C -——————— .53 .42 .04 B
12 Contentnea Creek at Hookerton, N.C —————— .27 .59 .13 B
13 Fishing Creek near Enfleld, N.C __________—— .41 .49 .07 B
14 Trent River near Trenton, N.C ________——— .59 .33 .09 B
15 Hyco River at McGehees Mill, N.C ———————— .14 .78 .OS B
16 Savannah River at Augusta, Ga. (Butler Cr.) — .35 .60 .08 B
17 Little River near Mt. Carmel, S.C __—————— .20 .76 .05 B
18 Little River near Adel, Ga ————————————— .33 .47 .20 B
19 Rocky Creek near Dudley, Ga __-_______—.___ .46 .44 .10 B
20 Suwannee River at Fargo, Ga __————_.—___ .20 .54 .26 B
21 Altamaha River at Doctortown, Ga __————— .49 .45 .07 B
22 Alapaha River at Statenville, Ga _________ .15 .76 .11 B
23 Spruce Creek near Samsula, Fl _.————_———_ .52 .38 .10 B
24 Econflna River near Perry, Fl ___________ .38 -49 .15 B
25 Bayou Pierre near Willows, Miss _________ .24 .43 .35 B
26 Nishnabotna River above Hamburg, Iowa ___ .35 .60 .05 B/C
27 Wapsipinicon River near DeWitt. Iowa ._—_. .29 .68 .03 A
28 Des Moines River near Tracy, Iowa ______ .37 .62 .01 A
29 Elkhorn River at Ewing, Nebr ___.______ .27 .35 .40 B/C
30 Elkhorn River near Waterloo, Nebr. .44 .50 .04 B 

	(upper cable).
31 Elkhorn River near Waterloo, Nebr. .52 .48 .01 A 

	(lower cable).
32 Elkhorn River at Neligh, Nebr ___________ .31 .65 .04 B
33 Elkhorn River near Norfolk, Nebr _.______ .35 .56 .09 B
34 Little Blue River near Deweese, Nebr __—__ .21 .50 .32 B/C
35 West Fork Big Blue River near .25 .60 .14 B 

	Dorchester, Nebr.
36 Niobrara River near Cody, Nebr _________ .46 .54 .02 A
37 Republican River at Stratton, Nebr ______ .19 .23 .62 B/C
38 Republican River below Harlan Co. Dam, Nebr .40 .58 .01 A
39 Republican River near Guide Rock, Nebr ___ .20 .72 .07 B
40 Plum Creek at Meadville, Nebr _________ .47 .52 .03 A
41 Smoky Hill River at Elkader, Kansas _____ .03 .22 .75 C
42 Beaver Creek at Cedar Bluffs, Kansas ____ .27 .55 .19 B/C
43 Arkansas River at Syracuse, Kansas— .23 .72 .04 B 

	300 ft above gage.
44 Arkansas River at Syracuse, Kansas— .20 .33 .49 B/C 

	400 ft above gage.
45 Sappa Creek near Oberiin, Kansas—low flows __ .16 .33 .51 C
46 Sappa Creek near Oberiin, Kansas— .18 .62 .20 B/C 

	medium flows.
47 Washita River near Durwood, Okla _______ .36 .41 .21 B/C
48 Wolf Creek near Fargo, Okla _________ .07 .13 .82 B/C
49 Canadian River near Noble, Okla ________ .34 .24 .43 C
50 Canadian River at Bridgeport, Okla _______ .24 .15 .63 B/C
51 North Canadian River near El Reno, Okla __ .21 .31 .50 C
52 Cimarron River near Buffalo, Okla _______ .18 .13 .67 C
53 Cimarron River near Guthrie, Okla ______ .24 .41 .34 B/C
54 Wichita River at Wichita Falls, Tex ______ .32 .59 .09 B
55 Wolf Creek at Lipscomb, Tex ______________ .31 .29 .42 C
56 Canadian River at Tascosa, Tex _________ .28 .22 .50 B/C
57 Canadian River near Amarillo, Tex ._______ -20 .17 .65 B/C
58 Red River near Quanah, Tex ___________ -21 .25 .53 B/C
59 Prairie Dog Town Fork Red River near -19 .24 .57 C 

	Lakeview, Tex.
60 Prairie Dog Town Fork Red River near -25 .24 .54 C 

	Childress, Tex.
61 Brazos River near South Bend, Tex __._.__ .37 .57 .08 B/C
62 Brazos River at Sevmour, Tex ___________ .34 .33 .33 B/C
63 Rio Chama near Chamita, N. Mex ________ .36 .43 .24 B/C
64 Rio Grande Floodway at San Marcial, N. Mex. .40 .56 .05 B

	—cable.
65 Rio Grande Floodway at San Marcial, N. Mex. .18 .21 .63 B/C

	—200-300 ft above gage.
66 Rio Grande at Otowi Bridge near .37 .55 .11 B 

	San Ildefonso, N. Mex.
67 Canadian River at Logan, N. Mex _________ -39 .57 .02 A
68 Revuelto Creek near Logan, N. Mex _____._ -26 .70 .07 B
69 Pecos River near Acme, N. Mex.— -38 .11 .51 B/C 

	low-intermediate flows.
70 Pecos River near Acme, N. Mex.—cable ____ -43 .56 .01 A
71 Pecos River near Artesia, N. Mex ________ .29 .65 .06 B
72 San Jlian River at Farmington, N. Mex ____ .35 .61 .07 B
73 San Juan River near Shiprock, N. Mex .-.___ .49 .49 .05 B/R
74 Gila River near Gila, N. Mex __________ .40 .52 .09 R
75 Gila River near Redrock, N. Mex.—low flows __ .26 .12 .64 C/R
76 Gila River near Redrock, N. Mex.—high flows _ .33 .59 .08 R
77 Rio Salado near San Acacia, N. Mex _____ .22 .17 .63 C
78 San Francisco River near AJma, N. Mex ___ .23 .22 .55 C
79 Cherry Creek near Melvin, Colo. (1940-60 site). .29 .20 .51 B/C
80 Cherry Creek near Melvin, Colo. (1960-68 site) _ .32 .38 .32 B/C
81 Cherry Creek near Franktown, Colo _______ .18 .15 .65 C
82 Kiowa Creek at Kiowa, Colo ____________ .42 .58 .02 A

See footnotes at end of table.

1.0 
1.4 
1.3 
1.0 
.8 

1.3 
1.2 
1.2 
1.2 
2.1 
1.2
1.0 
.8

1.1 
1.0
.7 

1.2 
1.9 
1.5 
1.3
.6

1.0
1.1 
1.8 
1.3 
2.0 
1.0 
1.4 
1.2 
1.2

1.2

1.0 
1.9 
1.2 
1.5

3.3
1.0
1.1
.7

1.9
1.6 
.6

1.7

2.3 
1.1

1.0 
1.2 
2.9 
1.9 
2.1 
2.5 
2.3 
.9 

2.3 
1.9 
1.9 
2.6 
4.1

2.5

1.4
2.1
1.4
.9

2.6

1.1 
2.0

1.2 
1.1 
1.1
.8 

1.3
.8 

3.4 
3.1 
2.9 
2.8 
2.0 
1.9

2/2 
12/10 
25/25 
12/5 
12/8 
42/24 
36/14 
30/18 
20/16 
18/29 
47/25 
9/16 
7/9 
5/4 
19/19 
15/10 
24/9 
74/32 
50/34 
26/22 
16/8 
14/10 
29/24 
42/30 
27/20 
14/14 
10/18 
11/6 
15/14 
20/18

12/18

15/15 
25/13 
28/26 
34/40

18/16
28/17 
5/10 

14/7 
15/22 
49/75 
10/9 
13/9

20/10

50/48 
13/15

13/12 
17/20 
20/25 
33/22 
70/25 
45/26 
31/27 
21/20 
40/20 
27/31 
23/28 
52/30 
53/47

87/50

32/18
47/36
41/25
8/13

42/27 

25/19

5/7 
22/13 
38/22

11/10 
55/18 
50/21 
27/20
3/4 

40/20
4/9 

31/27 
15/36 
32/40 
30/18 
42/25 
20/12

5/4 
10/10 
24/24 
12/12 
14/10 
41/32 
23/12 
15/14 
17/16 
27/28 
42/30 
16/10
8/6
9/6 

25/12 
10/13 
10/23 
34/44 
45/34 
25/20 
17/11
8/10 

40/28 
30/16 
27/15 
15/12 
23/7
8/9 

29/28 
21/17

20/12

26/12 
18/21 
41/18 
54/26

25/13
48/32
16/6
13/16
35/15
39/17
31/8
15/14

48/15

47/36 
16/13

20/14 
31/21 
53/20 
60/34 
60/39 
28/26 
47/15 
21/15 
46/22 
40/34 
64/32 
41/30 
95/28

78/34

30/27 
45/35 
31/26 
21/4

34/24 

27/20

8/4 
21/14 
60/48

13/11 
30/36 
25/27 
24/19
7/3 

30/20 
15/20 
40/18 
60/32 
56/41 
47/27 
47/28 
20/13

2/4
18/12
8/6
7/11
3/4
6/8
7/17
7/11
7/7

22/16
12/12
7/6
7/3
6/3
7/4
3/3
6/3

21/19
16/10
29/23
3/3
7/6

13/23
44/18
16/13
5/8
4/2
2/2

51/22
4/6

3/1

8/11 
12/18 
20/14 
14/8

4/3 
60/40
4/3 

19/10
9/6 

70/51 
10/10
3/17

24/37

65/24 
10/10

9/7 
47/35 
31/28 
55/46 
46 /35 
45/37 
41/30
6/12 

76/50 
65/36 
72/43 
60/46 
80/46

110/53

9/22
75/42
31/22
3/4

30/41 

10/19

3/2
8/5

70/32

11/4
12/14
10/5
9/5
3/4

33/24
13/16
46/30
38/36

100/42
56/42
50/35
10/16
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Summary of data

Slope S 
(ft/ft)

0.0008
.0005
.0002
.0020
.0008
.0032
.0019
.0018
.0001
.0049
.0009
.0002
.0008
__
.0006

.0005

.0001

.0003

.0004

.0002

.0004

.0008

.0002

.0004

.0003

.0007

.0004

.0004

.0010

.0007

.0014

.0002

.0015

.0017

.0007

.0008

.0019

.0255

.0009

.0014

.0014

.0013

.0013

.0002

.0009

.0005

.0018

.0006

.0010

.0004

.0002

.0008

.0012

.0010

.0007

.0020

.0011

.0003

.0006

.0012

.0004

.0004

.0021

.0006

.0017

.0006

.0006

.0003

.0016

.0019

.0034

.0050

.0050

.0063

.0026

.0040

.0038

.0060

.0076

Average 
bank _
angle 9 
(degrees)

6.0
19.4
23.6
22.1
24.9
22.1
23.3
13.4
20.2
2.6

55.6
19.3
30.3
34.5
53.3
26.3
52.1
18.4
11.4
8.5

14.2
36.8
41.2
44.9
1.0

32.6
30.6
30.2
1.8

17.0

22.0

28.8
9.4
2.0

24.2

28.2
1.3

30.6
17.1
53.0
1.2

27.8
12.5

.9

7.7
28.1

10.5
.8
.6
.2
.8
.3
.5

40.3
.5
.1
.5
.4
.2

.1

15.4
1.2
.8

13.2

.4

36.1

18.6
37.9

.9

28.8
34.1
17.4
14.7
20.7
1.0

42.7
.2
.6
.5
.5

1.0
66.6

dso 
(mm)

47
21
85
50
35
2..7
7.6
1.4
.50
.83
.60
.58

1.1
1.6
1.8
.80
.80
..75
.35
.22
.60
.64
.17
.31
.38
,29
.64
.53
,30
.24

.24

.26
^25

1.1
.48

.27

.32

.56

.44
,75

1.2
.20
.58

.58

1.4
1.4

.17

.36

.19

.14

.21

.36

..35

.38

.38

.20

.22
J8
.20

.16

.31

.31
10.3

,14

.14

.53

.18

.22

.16

,16
J7
,33
.35

48
.70
.70
.14
.42
.40
.50
.95
.58

dst 
(mm)

77
12V"

93
140
14.5
30
5.5
.90

3.3
18
1.2
2.8
10
4.3
3.5
2.1
".53

.50

.90

.95

.26

.49

.55

.40
1.2
1.0
.50
.37

.50

.45

.43
~1~6~

.80

".4<T
1.0
12

  

____

  

.23

.53

.27

.25

.31

.53

.63

.60

.59

.28

.31

.25

.34

.30

.38

.45
31

___-

....

"".40

.22

.22
"".50

120"""

6.0
6.0
.38
.86

1.1
T.2~

Sorting 
So

0.875
"567

.967
1.360
1.553
1.427
1.301
.610

1.326
1.117
.686

1.233
1.865
1.137
1.599
1.152

".609
.699
.431
.447
.624
.699
.464
.322
.791
.909
.602
.693

.590

.565

.572

".667

.486

2.39§
1.029
2.000

  

___.

....

.431

.450

.364

.590

.418

.444

.637

.573

.496

.532

.568

.615

.699

.869

.312

.377
2.714
.---

____

____

".626
.427

.427

".555

l".735
1.430
1.430
1.258
.820

".985
"870

61

bi + h

0.16
.18
.09
.09
.13
.11
.12
.18
.20
.42
.06
.16
.12
.19
.06
.08
.06
.21
.20
.17
.11
.09
.16
.23
.42
.11
.05
.04
.48
.10

.04

.09

.30

.39

.22

.08

.52

.03
.09
.04
.63
.14
.05

.52

.30

.23

.17

.98

.60

.83

.58

.55

.59

.05

.58

.65

.69

.55

.60

.61

.14

.38

.43

.06

.70

.14

.04

.07

.68

.10

.08

.09

.09

.09

.84

.05

.67

.67

.55

.50

.55

.03

A max 
(ft2 )

4000
1800
2870
830
200
126
52

1730
2950

43
81
810

1470
760
525

9100
480
440
101
240

4300
1130

49
700
113

2750
1670
6200

95
2050

1970

162
3210

92
725

240
41.5
400
790
248

8.4
34.0

415

104

18.0
133

1320
23.5

3000
470
24.7

340
2200
825

3100
3700
215

14500
7000

4000

4100
360
125
500

90

2650

1040
2600
111

1070
940
1970
1220
267
87

430
277
46.5
137
400
31.0

545

Amln
(ft2 )

94
202
225
275
51
15.8
6.8

94
202

.93
24

162
63
66
29.7

680
57
52
8.5

25.8
820
123

5.6
26.0
2.5

136
457
925

.8
580

173

53.0
605

1.68
118

41.5
.84

24.3
124
17.0

.53
1.14

132

1.1

.38
20.5

31.0
3.9
5.8
8.0
.94

2.2
7.4

69
.50

3.4
8.0
.94

4.8

.66

530
26
9.6
40

.50

238

157
495

.47

192
59
460
88
38.8
2.4

87
1.50
.45
1.26
2.0
.85

75

Wmax 
(ft)

404
168
242
160
64
51
30

182
191
47
39

127
123
72
67

420
73
80
48
95

415
122
18
50

122
170
245
475
80

282

296

66
281
80
90

74
63
127
173
58
30
17

212

116

19
35

168
58

760
520
63

335
660
127
780
1530
213
1900
1690

1780

315
220
151
170

147

150

262
216
118

145
113
275
210
86
99

106
333
92

168
295
63
81

Win in 
(ft)

222
114
192
143
54
41
24

107
113

9.3
37
98
84
44
56

339
64
51
29
65

349
100
13.4
23
25
122
228
441

8.0
248

266

60
170
17
60

64
8.4

117
148
52
5.3

10.8
200

11.0

6.2
23

86
10.0
18
17
9.4

22
23

113
5.0
17.5
22.5
9.4

21.0

8.5

233
81
51

147

3.7

106

242
191

2.8

123
90

240
169
72
4.7

99
10.0
4.0

12.6
20.0
8.5

76

ZVax 
(ft)

9.9
10.7
11.8
6.1
3.1
2.4
1.6
9.5

15.4
.9

2.0
6.3

11.9
10.5
7.8

21.6
6.5
5.5
2.1
2.5

10.3
9.2
2.6

14.0
.9

16.1
6.8

13.0
1.1
7.2

6.6

2.4
11.4
1.1
8.0

3.2
.6

3.1
4.5
4.2
.2

1.9
1.9

.8

.9
3.8

7.8
.4

3.9
.9
.4

1.0
3.3
6.5
4.0
2.4
1.0
7.6
4.1

2.2

13.0
1.6
.8

2.9

.6

17.7

4.0
12.0

.9

7.4
8.3
7.2
5.8
3.1
.9

4.1
.8
.5
.8

1.4
.5

6.7

Cm in(ft)

0.4
1.8
1.2
1.9
.9
.4
.3
.9

1.8
.1
.6

1.7
.8

1.5
.5

2.0
.9

1.0
.3
.4

2.3
1.2
.4

1.1
.1

1.1
2.0
2.1
.1

2.3

.7

.9
3.6
.1

2.0

.6

.1

.2

.8

.3

.1

.1

.7

.1

.06

.9

.4

.4

.3

.5

.1

.1

.3

.6

.1

.2

.4

.1

.2

.08

2.3
.3
.2
.3

.1

2.2

.6
2.6
.2

1.6
.7

1.9
.5
.5
.5
.9
.2
.1
.1
.1
.1

6.0
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TABLE 11.—Summary

Amount of scatter on
Station «<.-«-,.

No.

83

84

85

86

87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103

104

105
106
107
108

109
110
111
112

113
114
115

116
117
118
119

120

121
122
123
124
125
126

127

128
129 
130 
131 
132 
133

134

135
136
137

138 
139

140

141
142
143
144
145
146 
147
148
149
150

151
152
153
154 
155

See

HJM»b!Wll ————

Huerfano River below Huerfano Valley Dam,
Colo. — low flows.

Huerfano River below Huerfano Valley Dam,
Colo. — high flows.

Arkansas River near Coolidge, Kansas —
low flows.

Arkansas River near Coolidge, Kansas —
high flows.

Blacks Fork near Little America, Wyo _ __ _
Blacks Fork near Lyman, Wyo _ __ __ _ _
Blacks Fork near Millburne, Wyo ____________
Wind River near Crowheat, Wyo _._ _ _ _____
Muddy Creek near Shoshoni, Wyo ——— _ __ ___
Powder River at Arvada, Wyo _ _ ___ _ _ _
South Fork Powder River near Kaycee, Wyo _
Sweetwater River near Alcova, Wyo _______
Cheyenne River near Spencer, Wyo _ ____ _
Lance Creek at Spencer, Wyo __ — _ _ __ _
Belle Fourche River below Moorcroft, Wyo ___
Virgin River at Virgin, Utah ._ ____ ____
Summit Creek near Summit, Utah __ _ _ _
Coal Creek near Cedar City, Utah _ _ _
Santa Clara River near Santa Clara, Utah ____
Sevier River near Circleville, Utah _ ____ _
Sevier River near Lynndyl, Utah —

300-400 ft below gage.
Sevier River near Lynndyl, Utah —

200-300 ft above gage.
Escalante River near Escalante, Utah ___ _ _
Pine Creek near Escalante, Utah .-._ __ ___
San Juan River near Bluff, Utah .. _ _
Dirty Devil River above Poison Spring Wash

near Hanksville, Utah.
Huntington Creek near Huntington, Utah ______
Saleratus Wash at Green River, Utah ____ _
Green River at Green River, Utah ____ ___
White River below Tabbyune Creek near

Soldiers Summit, Utah.
Green River near Ouray, Utah _ _
Duchesne River at Myton, Utah . __
Tonto Creek above Gun Creek near

Roosevelt, Ariz.
San Pedro River at Winkelman, Ariz _ __ _ ... 
Verde River below Tangle Creek, Ariz
Gila River at Kelvin, Ariz __ _ _ ______ __
Gila River at head of Safford Valley near 

So'omon, Ariz — all flows.
Gila River at Safford Valley near Solomon,

Ariz. — intermediate flows.
Gila River at Calva, Ariz. — intermediate flows _
Gila River at Ca?va, Ariz. — high flows __ _ _
Gila River near Clifton, Ariz __ __ _. __ ___
Colorado River near Grand Canyon, Ariz _ .
Virgin River at Littiefield, Ariz ____ _______
Humboldt River near Argenta, Nev. — 

low flows.
Humboldt River near Argenta, Nev. —

high flows.
Humboldt River at Comus, Nev. — low flows __
Humboldt River at Comus, Nev. — high flows __ 
Humboldt River at Palisade, Nev _ _______ 
Humboldt River near Elko, Nev _ _ __ _ ____ 
Cajon Creek near Keenbrook, Calif __________ 
Santa Margarita River at Ysidora, Calif. — 

0-200 ft above gage.
Santa Margarita River at Ysidore, Calif. —

300-500 ft below gage.
San Onofre Creek near San Onofre, Calif ..__
San Luis Rey River near Bonsall. Calif ______
San Luis Rey River at Monserate Narrows near 

Pala, Calif.
Warm Creek near San Bernardino, Calif _____ 
Santa Ana River near Mentone, Calif. — 

low flows.
Santa Ana River near Mentone, Calif. —

medium flows.
Wilson River near Tillamook, Oreg __________
White River below Tygh Valley, Oreg ________
White River near Government Camp, Oreg ____
Flynn Creek near Salado, Oreg ______________
Deer Creek near Salado. Oreg _ _
Mo'alla River near Canby, Oreg _ ___ _ _____ 
Nehalem River near Foss, Oreg __ ____ _ 
Nestucca River near Beaver, Oreg _ ___ __
Stehekin River at Stehekin, Wash __ .. _.
Spokane River above Liberty Bridge near

Otis Orchards, Wash.
Okanogan River at Malott, Wash __ __________
Little Scokane River at Dartford, Wash _____
Kettle River near Ferry, Wash
White River near Plain, Wash _. 
Naches River below Tieton River near

Naches, Wash.
footnotes at end of table.

Hydraulic exponents

TO

.30

.40

.15

.30

.67

.30

.45

.44

.36

.46

.38

.36

.27

.16

.17

.25

.68

.49

.47

.47

.41

.48

.30

.47

.43

.23

.60

.24

.58

.46

.36

.57

.47

.43

.57

.25

.38

.54

.42

.22

.38

.52

.38

.22

.32

.16

.28 

.28 

.26 

.37 

.12

.26

.30

.22

.18

.34

.14

.42

.47

.38

.46

.34
.45
.68 
.43 
.49

.59

.62
.44
.36
.29 
.59

f

.29

.61

.18

.67

.28

.41

.23

.54

.61

.50

.15

.58

.28

.31

.37

.13

.22

.25

.14

.41

.56

.40

.32

.37

.55

.30

.31

.29
.39
.33

.46

.42

.50

.46 

.36

.28

.38

.44

.53

.67

.56

.44

.22

.32

.64

.29

.64 

.37 

.69 

.23 

.33

.29

.59

.25

.13

.60 

.10

.38

.52

.55

.47

.45

.40

.29 

.48

.47
24'.18

.33

.45

.60

.71 

.34

b

.41

.00

.69

.03

.05

.29

.31

.03

.05

.07

.47

.07

.45

.55

.46

.61

.12

.24

.41

.12

.05

.13

.41

.19

.04

.46

.08

.50

.03

.21

.19

.03

.02

.12 

.07

.49

.24

.01

.05

.13

.09

.04

.42

.46

.06

.55

.08 

.35 

.09 

.40 

.56

.48

.11

.56

.68

.04

.74

.23

.04

.05

.06

.24
.16
.03 
.10 
.06
.04
.23

.05

.11

.04

.01 
.07

Minimum

case 1

B/C

A

B/C

A

B
B/C
B/C

A
B/R

B
B/C
B/C
B/C
B/C

C
B/C

B
B/C
B/C

B
B

B/C

C
B/C

B
B/C

B
C
A

B/C

B/C
A
A

B/C 
B/R
B/C
B/C

A

B
B

B/R
R

B/C
C

B

C
B 

B/C 
B 

B/C 
B/C

B/C

B
B/C
B/C

B 
B/C

B/C

B
B
B

B/C
B
A 
B 
B

B

B
B
B
A 
B

Log cycles of Q
on plot

2.4

.8

1.9

1.4

1.9
1.7
1.6

.7
1.1
1.4
2.0
1.2
2.4
3.8
4.1
1.1
1.2
1.9
1.6
1.3
1.5

1.3

2.0
1.7
1.4
2.9

1.0
3.4
1.0
1.6

1.4
.9

1.5

1.7 
.9
.8

2.6

.9

1.7
.6

1.4r.o
1.6
2.7
1.2"

2.8
1.6 
1.5 
1.4 
1.5 
3.0

2.3

1.8
3.3
2.0

1.9 
1.9

1.8

1.8
1.0
.9

2.1
2.1
1.2 
2.0 
1.0

.9

1.2
.7

1.0
1.0 
1.1

hydraulic geometry plots

Velocity
(percent)

14/23

7/8

31/15

17/10

15/12
15/13
26/32
10/10
23/21
20/16
22/25
14/14
82/30
88/42
80/32
28/27
20/21
35/23
22/25
13/9
11/10

35/26

26/29
32/39
40/26
26/33

9/10
30/42
6/7

20/26

21/21
15/12
18/16

48/18 
26/10
10/12
23/15

20/12

13/18
15/8
19/18
3/4

31/24
80/40

12/10

110/53
13/10 
28/31 
20/24 
29/28 
80/50

25/18

22/18
46/44
63/35

19/12 
57/38

82/28

32/12
15/17
22/7
62/47
82/43
13/20 
15/19 
5/6
8 11a / t
5/5

20/11
4/4
5/4
9/15 

10/12

Depth
(percent)

48/14

10/8

37/27

30/14

10/13
30/26
19/20
10/11
25/22
21/15
62/39
21/16
27/34
67/30

120/44
38/30
12/16
22/25
30/20
6/7

13/16

38/30

40/32
42/24
22/24
25/24

14/9
32/24
10/7
40/26

37/20
19/12
24/25

23/30 
11/20
20/17
18/25

21/12

18/11
10/12
20/24
5/4

82/26
47/28

13/15

48/49
16/20 
38/18 
25/26 
45/33 
78/36

40/30

28/13
50/20

110/42

14/22 
32/21

58/34

10/28
25/9
9/16

57/27
71/35
25/10 
22/14 
6/7
2/4
2/7

8/18
5/7
6/5

13/10 
12/9

Width
(percent)

32/24

11/8

50/44

10/32

5/6
25/28
44/22
4/4
7/6

23/23
58/43
6/6

84/57
70/42
62/34
34/26
15/8
55/23
27/17
5/7

14/4

19/10

47/30
37/34
3/6

40/47

2/7
83/32
1/4

15/24

15/13
6/7

16/6

44/20 
7/6

32/25
30/19

15/13

17/22
3/6

21/22
2/2

32/32
62/42

12/7

90/45
9/13 

18/15 
12/7 
26/23 
40/34

52/41

10/16
60/40
75/43

13/8 
60/40

28/33

7/7
5/4
4/6

42/30
24/46
5/6
5/7 
1/5
6/4
2/6

4/5
3/6
2/3
2/2 
2/4
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of data—Continued

Slope S 
(ft /ft)

.0113

.0113

.0013

.0013

.0008
.0008
.0140
.0033
.0041
.0009
.0019
.0011
.0018
.0014
.0006
.0080
.0450
.0170
.0076
.0006
.0006

.0006

.0080

.0213

.0019

.0024

.0160

.0020
.0009
.0060

.0002

.0029

.0035

.0030

.0047

.0015

.0019

.0019

.0017

.0017

.0017

.0001
.0021
.0006

.0006

.0004

.0004

.0012,

.0015

.0246

.0048

.0048

.0063

.0037

.0030

.0038

.0189

.0189

.0027

.0096

.0142

.0300

.0217

.0019

.0008

.0019

.0060

.0020

.0001

.0019
.0009
.0007
.0049

Average 
bank_ 

angle 8 
( degrees )

.6

.0

.7

23.1

17.5
1.5
2.6

25.4
41.8

9.3
.5

32.9
.7
.5

11.1
.9

34.3
4.5
1.9

22.7
24.2

17.4

2.3
23.4
25.6

1.0

14.7
5.9

30.8
4.4

2.6
46.4
17.0

11.0
31.0

1.5
3.3

16.8

30.2
39.1
36.3
50.4

.4
2.7

29.4

.7
24.8

2.5
36.4
3.5
1.7

1.1

17.9
1.2
.5

29.5
1.9

8.3

27.7
17.4
20.6
14.3
31.0
31.9
13.1
23.8
21.0

1.8

24.9
38.0
24.4
44.6

7.9

(JoO
(mm)

.35

,35

,68

,68

18
J5

46
35

.25
-.18
.55
.97
.80
,30

3J
.33

24
12

.73

.41
,22

.22

14

J6
J)83

6,2
.062
.074

2.7

.20

1.05

.66
23

w42
,48

.48

"TJii
.27

1.8

6.6

.66

.90

.53

.60
1.6

.27

.16

.58

.20

..36

.78
43

15

100is""""
2.832"

36
45
23
77
33

59
63
56
13
86

ds4 
(mm)

.68

.70

_-.-

30
.53

70
43

~2~.6~

~7~6~

53
38

2.1
1.0

10.0

9.7

21.5

.25

12.1
.75
.16

8.9

IB"""

8~7~~~

.---

-___

15~"~

20

4.8
5.4
1.2
2.2

12.7
.71

.38

4.5
.44
.77

3.3
149

98

240
62"""

11.7
88
75

110
65

244
115

150
153
157

41
147

Sorting 
So

1.100

1.111

.---

..--

.975

.470

.573

.301
..__
____
-._

.914
__-_

1~566

.820
1.248
1.041
.699

2.244

2.243

.447

1.107

1.845
1.875

.824
2.497

2. 391

1~398

——

-_-_

2~ 42 7

1.865

1.590
1.642
.925

1.491
1.793
1.086

1.146

1.942
.911
.806

1.371
1.754

2.727

1.121

2~.125
1.706
1.164
.981
.910

1.220
1.477
1.288

1.869
1.301
1.000
2.136
.608

bi

bi + h

.71

.00

.65

.05

.15

.57

.53

.09
.06
.14
.71
.06
.69
.68
.32
.47
.15
.54
.66
.21
.10

.15

.54

.32

.09

.52

.17

.37
.06
.35

.45

.10
.06

.21

.13

.57

.43

.08

.08

.13

.11
.07
.74
.49

.10

.75

.12

.41

.11

.42

.50

.65

.17

.61

.73

.09

.71

.31

.11

.12

.14

.37

.20

.09

.20

.08

.21

.56

.10

.08

.09

.07

.18

/I max 
(fta )

83

261

252

700

670
142
220

1330
51

113
26.0

200
74
31.5

387
175

10.5
26.0

3.35
180
317

190

6.4
81

1500
77

85
1400
3500

48

4100
545
460

600
440

96
2600

480

180
705
760

11000
101

36.2

660

19.0
500
147
940
160
600

104

166
270

31.0

202
5.1

75

2400
322
177

96
59

1220
4200
1120
1250
2200

3950
302

2200
1210
540

A i(ft2 )"

7.1

83

8.0

252

95
1.24
.93

301
10.7
43.7

.39
52.5

.92

.48
1.15
1.79
1.11
.62
.29

13
52

58

.46
2.2

222
1.0

7.6
1.9

1000
.91

31
172
126

98
40

.77
6.2

113

56
180

84
880

3.7
.93

62

.10
19

1.2
157

.76
3.8

.50

7.3
.21
.17

17.7
.14

5.1

213
81
44

.81
2.0

290
72
68

390
3.0

257
29.0

340
112
67

Wmax(ft)

123

123

200

210

117
106
100
188

30
84
78
76

110
84,
68

157
9.8

27
14
43
84

70

22
23

190
99

42
172
335

40

445
79

182

125
70
88

310

151

71
86
92

315
160

41

101

54
80
87

106
76

206

102

49
160

81

59
17

41

185
96
64
30
19

157
254
149
144
370

260
63

227
117
147

Wmin(ft)

21.0

123

21.0

200

86
7.0
5.3

165
27
74

3.9
70

5.2
4.8

10.4
18.0

7.0
3.5
2.9

24
70

58

4.6
7.2

162
10.0

28
15

310
9.9

49
70

170

84
51
5.7

22

135

65
71
72

262
14

6.7

80

1.0
54
12
86
7.6

16

3.1

29
2.1
1.7

48
1.4

18

140
80
53

5.2
9.8

138
115
117
113

9.0

199
52

191
98

101

Umax(ft)

.7

2.1

1.3

3.3

5.7
1.3
2.2
7.1
1.7
1.3

.3
2.6

.7

.4
5.7
1.1
1.1
1.0

.2
4.2
3.8

2.7

.4
3.5
7.9

.8

2.0
8.1

10.4
1.2

9.2
6.9
2.5

4.8
6.3
1.1
8.4

3.2

2.5
8.2
8.3

35.0
.6
.9

6.5

.4
6.3
1.7
8.9
2.1
2.9

1.0

3.4
1.7

.4

3.4.
.3

1.8

13.0
3.4
2.8
3.2
3.07.8'

16.5
7.5
8.7
5.9

15.2
4.8
9.7

10.3
3.7

Dmln
(ft)

.3

.7

.4

1.3

1.1
.2
.2

1.8
.4
.6
.1
.8
.2
.1
.1
.1
.2
.2
.1
.5
.8

1.0

.1

.3
1.4

.1

.3
.1

3.2
.09

.6
2.5

.7

1.2
.8
.1
.3

.8

.9
2.5
1.2
3.4

.3

.1

.8

.1

.4

.1
1.8

.1

.2

.2

.3

.1

.1

.4

.1

.3

1.5
1.0
.8
.2
.2

2.1
.6
.6

3.5
.3

1.3
.6

1.8
1.1

.7
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TABLE 11.—Summary

Station ot t ._ JT Station

156 
157 
158 
159 
160 
161 
162 
163 
164 
165

Yakima River at Cle Elum, Wash .. . ____ .

Hydraulic exponents

m

ft 07

.53

.49

.51

.35

.42 
.54
.67
.81

/

0.60 
.43 
.60 
.44 
.38 
.61 
.54 
.41 
.31 
.15

6

0.02 
.03 
.07 
.05 
.10 
.04 
.04 
.05 
.02 
.02

Minimum 
variance 

case 1

A 
A 
B 
B 
B 
B 
B 
B 
A 
A

Log cycles 
of 0 

on plot

0.7 
1.0 
.9 

1.2 
2.0 
l.t 
1.3 
1.5 
1.0 
1.2

Amount of scatter on 
hydraulic geometry plots

Velocity 
(percent)

3/5 
9/9 

10/7 
3/7 

10/5 
5/6 
3/8 

30/10 
3/4 
7/7

Depth 
(percent)

7/5 
9/10 
7/6 
5/4 
6/12 
8/7 
6/5 

13/15 
7/4 
5/10

Width 
(percent)

1/2 
3/7 
5/7 
2/2 
4/6 
2/3 
1/4 
5/6 
3/4 
1/2

A = approximately vertical banks;
B = banks firm but not vertical;
C = loose, noncohesive banks;
R = rock banks;
B/C, B/R, C/R = one bank of each type indicated (for example, B/C = one bank firm but not vertical, the other bank noneohesive).
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of data—Continued

Slope S
(ft /ft)

0.0030
.0059
.0064
.0036
.0240
.0002
.0005
.0120
.0004
.0011

Average
bank

angle 6
(degrees)

22.0
15.5
37.2
30.3
15.2
23.1
30.0
35.2
37.5
31.8

dso
(mm)

37
100
24
58
88

.65
100

90
104
95

ds*
(mm)

66
170

37
172
217

2.6
140
130
160

----

Sorting
So

1.393
.723
.544

1.653
1.033
1.286
1.176
1.029
.893
----

61
. ,1

0.04
.12
.12
.08
.25
.06
.07
.05
.08
.09

A. x(ft2 )

1190
370
435

2200
258

14600
1570
475

2950
3600

Am i
(W)

270
23.5
53

245
36

940
108
86

635
770

Wmax
(ft)

267
96
67

202
65

640
174
110
241
260

Wmin
(ft)

250
70
52

169
40

540
145
100
216
225

Dmax
(ft)

4.5
3.9
6.5

10.9
4.0

22.8
9.0
4.3

12.2
13.8

Dm In
(ft)

1.1
.3

1.0
1.4

.9
1.7

.7

.9
2.9
3.4








