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Abstract 

Tropical oxygen minimum zones (OMZ) are the most important regions of low oxygen in the 

recent ocean and the nutrient cycling in these regions indeed affects the rest of the ocean. 

They are areas of high bioproductivity and fishing in these areas has indeed influence on the 

economy in the whole world and even more on the local economy. One of the most distinctive 

OMZs is located off Peru. Main objective of this work was the calibration and application of a 

set of geochemical and micropaleontological proxies for the reconstruction of redox 

conditions in the Peruvian oxygen minimum zone. The main tools in this work were benthic 

foraminifera collected off the Peruvian continental margin. The shallow infaunal benthic 

foraminiferal species Bolivina spissa was most widespread among habitats with different 

redox-conditions at the Peruvian oxygen minimum zone and thus bears great potential to be 

used as a proxy carrier.  

In chapter 2 the results of the measurement of redox sensitive elements in foraminiferal 

calcite are presented. The test calcite of dead foraminifera often is contaminated by diagenetic 

coatings which previously have been identified as Mn carbonates and Mn and Fe rich 

(oxyhydr)oxides. These coatings complicate the exact determination of several element/Ca 

ratios in foraminiferal calcite. Element distribution maps on test cross-sections of B. spissa of 

core top samples from the Peruvian OMZ generated with an electron-microprobe revealed 

that diagenetic coatings were absent in these tests. A Fe rich organic phase at the inner test 

walls could be removed successfully with an oxidative cleaning procedure. Due to the limited 

amount of B. spissa specimens at some sampling sites and to avoid remainings of 

contaminations Fe/Ca and Mn/Ca ratios were determined at the inner part of the test walls in 

test cross-sections with secondary-ion-mass-spectrometry (SIMS). Bulk analyses with ICP-

MS of samples where enough specimens were available were compared to the SIMS data and 

agree in a good way. Mn/Ca ratios are relatively low but in the same magnitude as in the pore 

waters. Indeed the permanently anoxic OMZ off Peru causes MnO2 reduction in the water 

column and only minor amounts of particulate bound Mn arrive the seafloor. Thus Mn/Ca 

ratios in benthic foraminifera from the Peruvian OMZ could be used to trace the amount of 

oxygen depletion in the OMZ. Higher Mn/Ca ratios would indicate a better oxygenation 

because more particulate bound Mn would reach the seafloor and be remobilised in the pore 

waters. The Fe/Ca ratios in B. spissa were the lowest at a location at the lower boundary of 

the OMZ which was strongly depleted in oxygen and showed a strong, sharp Fe peak in the 

top interval of the pore water. Since no living but plenty of dead specimens of B. spissa have 
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been found at this location during sampling time this might indicate that the specimens died 

recently because the pore water was turning anoxic. Thus the Fe flux out of the sediment 

started after the death of B. spissa at this site. The sharp peak also indicates that the Fe flux 

started recently and might hint that ironoxides that precipitated in a period of higher oxygen 

supply from water masses below the OMZ just recently started to get remobilised when the 

sediment turned anoxic. The trend of the higher pore water concentrations with increasing 

water depth at the deeper stations reflects the transition from sulphate reduction to iron 

reduction. This trend is reflected by the Fe/Ca ratios in B. spissa, too, while the more short 

time fluctuations of pore water Fe/Ca at the lower OMZ boundary seem not to be reflected by 

the foraminiferal Fe/Ca. The fact that the Fe/Ca ratios in B. spissa reflect not always the pore 

water conditions might complicate approaches in paleoreconstruction in contrast to the Mn/Ca 

ratios which seem to be a very promising tool. Nevertheless, future downcore studies will 

show the value of these proxies in paleoreconstruction. An iron and organic rich phase has 

also been found at the inner sides of the test walls and also in the pores of several specimens 

of Uvigerina peregrina. This phase most propably represents the inner organic lining. The 

lining is also enriched in Al, Si, P and S. Similar compositions have been found in test walls 

of allogromiids and the cements and inner organic lining in the agglutinated tests of 

textulariids. This hints to an evolutionary connection between these test components.  

The development of a new proxy, the pore density in B. spissa, is presented in chapter 3. Test 

pores, developed in rotaliid calcareous species, are important features in the test morphology. 

In earlier publications it has been suggested that pores promote the uptake of oxygen and the 

release of metabolic CO2. The pore densities (PD) of 232 B. spissa specimens from eight 

locations at the Peruvian OMZ were determined and a negative exponential correlation 

between the PD and the bottom water oxygen concentration ([O2]BW) was found. The 

relationship between the PD and the bottom water nitrate concentration ([NO3
-]BW) is much 

better constrained than that for PD-[O2]BW. We propose that the pores in tests of B. spissa are 

largely adapted to the intracellular nitrate uptake for nitrate respiration and to a smaller part 

extend the oxygen respiration. Hence the PD in B. spissa could prove as an invaluable proxy 

for present and past nitrate concentrations. Investigations of thin sections from living fixed B. 

spissa cells with the transmission-electron-microscope (TEM) showed that mitochondria, cell 

organelles involved in respiration, are clustered behind the pores. Foraminiferal denitrification 

has not been traced to a specific organelle, yet. These results hint that mitochondria at least 

are involved in the process of foraminiferal denitrification.  
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First applications of the knowledge about the PD in B. spissa are given in chapter 4. 

Comparison of recent specimens with specimens from a strong El-nino (1997-1998) from the 

same area at the Peruvian continental margin showed that there are significant differences (P 

= 0.031) in the PDs of specimens from 830 m water depth between El-nino and non-El-nino 

conditions. Nitrate profiles through the water column off Peru show that in this water depth 

nitrate was depleted during that El-nino compared with the non-El-nino conditions. Promoted 

were these results, because no significant difference was found between the pore densities at a 

562 m site during El-nino and a 579 m site during non El-nino conditions (P = 0.471). In these 

water depth nitrate concentrations during El-nino and non-El-nino conditions were similar. 

Furthermore first steps for the application for paleoreconstruction have been done. The PD 

was determined downcore at a short core (12 cm) from 579 m water depth (M77-1 487/MUC-

39) and a long pistoncore (~13 m) from 630 m water depth (M77-2 47-2). The short core 

covers a time span of about the last 300 years. Although the PDs did not differ significantly in 

the several depth intervals of that core (P = 0.88) there is a slight minimum in the PD at the 

end of the Little Ice Age in the beginning of the 19th century when there were mayor shifts in 

the biogeochemical conditions at the OMZ off Peru. The PDs in the several depth intervals of 

the long core on the other hand show significant differences (P < 0.01). There seems to be a 

strong shift to higher PDs during the last glacial maximum (LGM). The higher PDs indicate 

nitrate depletion during the LGM which either might origin from shifts in the biogeochemical 

conditions, the lower sea level during this time or an interaction of both. Although the PD 

from specimens collected during El-Nino conditions seem to reflect even short time changes 

in the nitrate availability it might be hard to trace El-Nino events in the past due to the high 

sampling resolution which is needed for such studies. The low variability in the PD of that 

short core on a centennial time scale might be either due to really low nitrate variability at this 

sampling site or due to a flattening of the signal because of the limited vertical sampling 

resolution. In this case more studies on cores from different locations are needed. The changes 

in the PD during the LGM indicate that the PD is sensitive at least on these millennial time 

scale changes. Together with information from Mn/Ca and Fe/Ca ratios changes in oxygen 

and nitrate availability might be traced during the last glacial. This might give a much more 

complete picture about changes in the biogeochemical conditions in the Peruvian OMZ during 

this time.   
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Zusammenfassung 

Tropische Sauerstoffminimumzonen (SMZ) sind die wichtigsten sauerstoffarmen Gebiete im 

heutigen Ozean. Der Nährstoffkreislauf in diesen Regionen hat Einfluss auf den gesamten 

restlichen Ozean. Durch die hohe Bioproduktivität hat der Fischfang in tropischen SMZs nicht 

nur starken Einfluss auf die regionale Wirtschaft, sondern auf die Wirtschaft der ganzen Welt. 

Eine der ausgeprägtesten Sauerstoffminimumzonen befindet sich vor Peru. Ziel dieser Arbeit 

war die Kalibration und erste Anwendungen eines Sets von geochemischen und 

micropaleonthologischen Proxies zur Rekonstruktion der Redoxbedingungen in der SMZ vor 

Peru in der Vergangenheit. Benutzt dazu wurden benthische Foraminiferen, gesammelt am 

Kontinentalhang vor Peru. Am weitesten verbreitet in Habitaten mit stark unterschiedlichen 

Sauerstoffkonzentrationen war die flach infaunale benthische Art Bolivina spissa. B. spissa 

zeigt demnach das größte Potential als Proxieträger. 

In Kapitel 2 werden die Ergebnisse von Messungen redoxsensitiver Elemente in foraminiferen 

Calcit präsentiert.  Die Gehäuse von toten Foraminiferen sind oft mit diagenetischen Coatings 

überzogen. In früheren Arbeiten wurden diese als Mangancarbonate und Mn und Fe reiche 

(oxyhydr)oxide identifiziert und erschweren die genaue Bestimmung von mehreren 

Element/Ca Verhältnissen in foraminiferen Calcit. Elementverteilungen, erstellt mit einer 

Elektronenmikrosonde an Gehäusequerschnitten von B. spissa Individuen aus 

Oberflächenproben, zeigen keine Hinweise auf die Anwesenheit von diagenetischen Coatings. 

Eine Fe reiche organische Phase an den Gehäuseinnenwänden konnte erfolgreich mit einem 

oxidativen Reinigungsschritt entfernt werden. Da von einigen Locationen  nur eine begrenzte 

Anzahl von B. spissa Individuen verfügbar war und um Rückstände von Kontaminationen zu 

vermeiden, wurden Fe/Ca und Mn/Ca inmitten der Gehäusewände an Querschnitten mittels 

Sekundärionenmassenspektrometrie (SIMS) bestimmt. Diese Daten stimmen gut überein mit 

ICP-MS Messungen an größeren Probenmengen (~40 Exemplare) von Locationen an denen 

genug Exemplare verfügber waren.  Die Mn/Ca Verhältnisse sind relativ niedrig aber dennoch 

in derselben Größenordnung des Porenwassers. Tatsächlich wird MnO2 in der permanent 

anoxischen SMZ vor Peru bereits in der Wassersäule reduziert und nur sehr geringe Mengen 

von partikelgebundenem Mn erreicht den Meeresgrund. Mn/Ca Verhältnisse in benthischen 

Foraminiferen aus der SMZ vor Peru können daher benutzt werden um 

Sauerstoffkonzentrationen relativ zu rekonstruieren. Höhere Mn/Ca Verhältnisse würden 

erhöhte Sauerstoffkonzentration indizieren, da mehr partikelgebundenes Mn den Meeresgrund 

erreichen und im Porenwasser remobilisiert würde. Die niedrigsten Fe/Ca Verhältnisse 
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wurden an einer Lokation an der unteren Grenze der anoxischen SMZ gefunden. Diese 

Lokation war sehr sauerstoffarm und zeigte einen ausgeprägten, scharfen Fe Peak im oberen 

Porenwasserintervall. Die Tatsache, dass während der Probennahme keine lebenden aber sehr 

viele tote Exemplare von B. spissa an dieser Lokation gefunden wurden, indiziert, dass das 

Porenwasser erst kürzlich anoxisch geworden ist. Der scharfe Fe Peak im Porenwasser deutet 

ebenfalls daraufhin, dass der Fe-Fluss aus dem Sediment erst kürzlich begonnen hat, was  

vermutlich daran liegt, dass Eisenoxide, die in einer Periode mit erhöhter Sauerstoffzufuhr aus 

tiefer liegenden Wassermassen unterhalb der SMZ ausgefällt wurden, erst kürzlich 

remobilisiert worden sind, als das Sediment anoxisch wurde. Die Tendenz höherer Fe 

Konzentrationen im Porenwasser mit steigender Wassertiefe an den darunterliegenden 

Lokationen reflektiert den Übergang von SO4
2- zu Fe-Reduktion. Dieser Trend wird auch von 

den Fe/Ca Verhältnissen in B. spissa reflektiert. Der Fakt, dass die Fe/Ca Verhältnisse in B. 

spissa nicht immer direkt die Porenwasserbedingungen wiederspiegeln, könnte Ansätze zur 

Paleorekonstruktion jedoch komplizieren. Die Mn/Ca Verhältnisse hingegen sehen in diesem 

Fall wesentlich vielversprechender aus. Nichtsdestotrotz werden zukünftige Studien 

kernabwärts zeigen, wie gut sich diese proxies zur Paleorekonstruktion eignen. Eine Fe reiche 

organische Phase an der Innenseite der Gehäusewände und in den Poren wurde auch bei 

mehreren Exemplaren von Uvigerina peregrina identifiziert. Diese Phase ist vermutlich das 

sogenannte „Inner Organic Lining“ (IOL). Diese Phase ist außerdem angereichert an Al, Si, P 

und S. Frühere Studien zeigen ähnliche Zusammensetzungen in Gehäusewänden von 

Allogromiiden und den Zementen und IOLs von agglutinierten Gehäusen der Textulariiden. 

Diese Ergebnisse indizieren eine evolutionäre Verbindung dieser Gehäusekomponenten. 

Die Entwicklung eines neuen Proxies, die Porendichte (PD) in B. spissa, wird in Kapitel 3 

beschrieben. Poren in den Gehäusen von Rotaliiden sind wichtige Merkmale in der 

Gehäusemorphologie dieser calcitischen Spezien. In früheren Publikationen wurde 

nahegelegt, dass die Poren hauptsächlich die Funktion der Sauerstoffaufnahme und der 

Abgabe von metabolischen CO2 haben. Die PDs von 232 B. spissa Exemplaren von acht 

Lokationen aus der SMZ vor Peru wurden bestimmt und eine negativ exponentielle 

Korrelation zwischen PD und der Sauerstoffkonzentration im Bodenwasser ([O2]BW) 

gefunden. Allerdings ist die Abhängigkeit der PD von der Nitrat Konzentration im 

Bodenwasser  ([NO3
-]BW) wesentlich ausgeprägter als die Abhängigkeit von [O2]BW. Demnach 

sind die Poren in Gehäusen von B. spissa wahrscheinlich zu einem großen Teil angepasst an 

die intrazelluläre Aufnahme von Nitrat zur Nitratatmung und nur zu einem geringeren Teil an 

die Sauerstoffatmung. Demnach könnte sich die Porendichte in B. spissa als unschätzbarer 
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Proxy für gegenwärtige und vergangene Nitratkonzentrationen erweisen. Untersuchungen an 

Dünnschnitten von lebend fixierten B. spissa Zellen mit einem 

Transmissionselektronenmikroskop (TEM) zeigen, dass Mitochondrien (für die Atmung 

mitverantwortliche Zellorganellen) hinter den Poren gruppiert sind. Denitrifikation in 

Foraminiferen wurde bisher noch keinem Zellorganell zugeordnet. Diese neuen Resultate 

indizieren, dass Mitochondrien zumindest in diesen Prozess involviert sind. 

Erste Anwendungen dieses neuen Wissens über die PD in B. spissa werden in Kapitel 4 

dargestellt. Ein Vergleich rezenter Exemplare mit Exemplaren von einem starken El-Nino 

(1997-1998) aus demselben Gebiet am Kontinentalhang vor Peru zeigen, dass in einer 

Wassertiefe von 830 m signifikante (P = 0.031) Unterschiede zwischen den PDs zwischen El-

Nino und nicht-El-Nino Bedingungen bestehen. Nitrat Profile durch die Wassersäule vor Peru 

zeigen, dass während des El-Nino die Nitratkonzentrationen geringer waren als während der 

nicht-El-Nino Bedingungen. Untersützt werden diese Resultate durch die Tatsache, dass kein 

signifikanter Unterschied zwischen den PDs einer Lokation von 562 m Wassertiefe während 

El-Nino und einer Lokation von 579 m Wassertiefe während nicht-El-Nino Bedingungen 

gefunden wurden. In diesen Wassertiefen unterscheidet sich Nitratkonzentration kaum 

zwischen diesem El-Nino und nicht-El-Nino-Bedingungen. Schließlich wurden noch erste 

Schritte der Anwendung dieses Proxies zur Paleorekonstruktion unternommen. Die PDs 

wurden in verschiedenen Tiefenintervallen entlang eines kurzen Kerns (12 cm) von 579 m 

Wassertiefe (M77-1 487/MUC-39) und eines langen Kerns (~13 m) von 630 m Wassertiefe 

(M77-2 47-2) bestimmt. Der kurze Kern umfasst eine Zeitspanne von ca. 300 Jahren. Obwohl 

sich die PD zwischen den verschiedenen Tiefenintervallen des Kerns nicht signifikant 

unterscheidet (P = 0.88) befindet sich ein schwaches Minimum der PD am Ende der kleinen 

Eiszeit zum Beginn des 19. Jahrhunderts. Zu dieser Zeit fanden starke und rapide 

Veränderungen in den biogeochemischen Bedingungen in der SMZ vor Peru statt. Auf der 

anderen Seite zeigt die PD in verschiedenen Tiefenintervallen entlang des langen Kerns 

signifikante Unterschiede (P = 0.018). Die PD scheint sich während des letzten glazialen 

Maximums (LGM) sichtlich zu erhöhen. Die höheren PDs indizieren niedrigere 

Nitratkonzentrationen während des LGM. Diese entstehen vermutlich entweder durch 

Veränderungen in den biogeochemischen Bedingungen, dem niedrigeren Wasserspiegel zu 

dieser Zeit oder einer Wechselwirkung von beidem. Obwohl die PD von B. spissa 

Exemplaren, die während eines El-Nino gesammelt wurden, Veränderungen in der 

Nitratkonzentration während eines El-Nino Ereignisses reflektiert, dürfte es schwierig sein El-

Nino Ereignisse in die Vergangenheit zurückzuverfolgen aufgrund der hohen 
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Beprobungsauflösung, die dazu von Nöten wäre.  Es ist unklar ob die niedrige Variabilität in 

der Porendichte entlang des kurzen Kerns von einer Dämpfung des Signals aufgrund der 

Beprobungsauflösung herrührt oder daher, dass an dieser Lokation tatsächlich nur niedrige 

Schwankungen in den Nitrakonzentrationen während der letzten 300 Jahre waren. Um das zu 

klären werden mehr Daten von weiteren Probenlokationen benötigt. Die Veränderung in der 

PD während des LGM zeigt, dass zumindest in dieser Zeitskala die zeitliche Auflösung des 

Proxies nicht limitiert ist. Zusammen mit Informationen aus den Mn/Ca und Fe/Ca 

Verhältnissen könnten Veränderungen sowohl in der Verfügbarkeit von Sauerstoff, als auch 

Nitrat in das letzte Glazial zurückverfolgt werden. Dies könnte ein wesentlich vollständigeres 

Bild über Veränderungen in den biogeochemischen Bedingungen während des letzten 

Glazials geben.  
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1 Introduction 

The main objective of this thesis is the calibration and application of a set of geochemical and 

micropalentological proxies for the quantitative reconstruction of past oxygen levels in the 

Peruvian upwelling cell. 

 

1.1 Relevance of upwelling cells in the global ocean 

Upwelling cells are areas of high bioproductivity because a high amount of nutrients is 

transported towards the water surface. This results in a high flux of organic material through 

the water column. Oxygen is strongly depleted through the water column due to 

remineralisation of this material. An oxygen minimum zone (OMZ) develops. Strong 

gradients are formed both in bottom-water oxygenation and the input of organic matter when 

OMZs intercept the continental margin or seamounts (Levin et al., 1991; Levin et al., 2000; 

Levin et al., 2002). The extension of the OMZs in the Eastern Tropical North Pacific (ETNP) 

and Eastern Tropical South Pacific (ETSP) are shown in fig. 1.1.  

 

Figure 1.1. Extension of OMZs in the global ocean. Raw data from Boyer et al. (2009). 

Tropical OMZs are the most important regions of low oxygen in the recent ocean and the 

nutrient cycling in these regions indeed affects the rest of the ocean. It has been predicted by 

model calculations that the ocean will progressively loose oxygen over the next 200 years 

(Bopp et al., 2002; Matear and Hirst, 2003; Joos et al., 2003). On the one hand this is related 

to oceanic warming but the main reason is the decreased ocean ventilation due to circulation 

changes related because of the anthropogenic induced climate change. Indeed a 50-year time 

series of dissolved oxygen concentrations reveals vertical expansion of the intermediate depth 

OMZs in the eastern equatorial Atlantic and the equatorial Pacific during this timeframe 
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(Stramma et al., 2008). One of the most distinctive OMZ is located at the Peruvian upwelling 

cell. Although coastal upwelling cells cover only about 0.14% of the global ocean (Baturin, 

1983; Wolf, 2002) in 2007 15.5 million tons of fish has been caught by commercial fisheries 

in eastern boundary upwelling ecosystems (Fréon et al., 2009). This corresponds to 17% of 

the global catches (91.2 million tons; source: FAO FishStat). About 8% of the global catches 

were located only in the Peruvian upwelling cell (7.2 million tons; source: FAO FishStat). 

Therefore if the oxygen depletion in this area would vertically extend towards the water 

surface habitats which are rich in pelagic fish would be endangered. This on the other hand 

would have significant influences on the global and especially local fishery. Furthermore 

OMZs are important for the global carbon cycle. Photosynthetic organisms bind atmospheric 

CO2 near the water surface which is transported into the deep via the flux of organic material 

(Berger et al. 1989). On the other hand dissolved CO2 from deeper water masses is released to 

the atmosphere via upwelling. The cold, upwelled deeper water masses warm up when they 

are transported to the water surface, which reduces the solubility of CO2. Bioproductivity in 

these regions therefore has a substantial influence on the CO2 concentrations in the 

atmosphere. That OMZs are an important source of the greenhouse gas N2O due to 

denitrification should only shortly be mentioned. All these topics point out that there is a high 

importance to understand the processes which control the extension of OMZs. The 

reconstruction of the Peruvian OMZ in the past will help to understand these processes and 

give information if the recent oxygen fluctuations are indeed of anthropogenic or if they are 

more related to natural variability. 

1.2 The mechanism of upwelling 

Upwelling is the vertical transport of cool deeper water masses which are usually rich in 

nutrients to the water surface where they replace the warmer, nutrient depleted water masses. 

This phenomenon results from an interaction of wind stress, coastal currents and the Coriolis 

force (Gunther, 1936; Hart and Curie, 1960; Wooster and Reid, 1963; Smith, 1983). In an 

ideal situation the interaction of wind stress and the Coriolis force induce surface currents 

which flow at a 45° direction of the wind (Ekman, 1905). If the water column is divided 

vertically into thin layers each layer would put a force towards its flowing direction onto the 

underlying layer (similar to the wind stress at the surface). This results in a shift of direction 

in each subsequent layer and in a decrease of velocity until it dissipates. The so called Ekman 

spiral (fig. 1.2) visualises this effect (Knauss, 1997). The whole layer in the water column 

from the surface until the spiral ends is called the Ekman layer. Integration of the transport 

over all thin layers inside the Ekman layer results in a net transport orthogonal to the induced 
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direction (Ekman, 1905). Due to the different Coriolis effect the direction of the transport 

depends on the hemisphere. While in the northern hemisphere the net transport is directed 90° 

to the right of the wind direction it is directed 90° to the left in the southern hemisphere 

(Colling, 2001). Along the coast of Peru for example the winds blow northwards. Due to its 

location in the southern hemisphere the Ekman transport would result in a current of the 

surface waters directed west, offshore. A three dimensional model of the upwelling process 

(fig. 1.3) has been given by Sverdrup et al. 

(1942; Wolf, 2002). Winds parallel to the coast 

cause an alongshore transport of the surface 

waters in wind direction as well as an offshore 

(Ekman-) transport. To balance the Ekman 

transport an onshore current along the seafloor 

on the shelf emerges, the so called bottom 

Ekman layer. This causes the replacement of 

the departed surface water by the upwelling of 

deeper water masses. Since the wind driven 

alongshore transport is stronger than the 

Ekman transport, deep water masses also move 

greater distances parallel to the coast during 

upwelling (Smith, 1983).  

Figure1.2. The Ekman spiral. 

 

Figure 1.3. Three-dimensional upwelling model (free after Wolf, 2002). 
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In the tropical Pacific intensity of upwelling and associated enhanced biological productivity 

has been viewed as a result of variations in the strength of the trade winds (Loubere 2002). 

The Peruvian upwelling cell located in the ETSP is influenced by the Peru-Chile Current 

system. This current system, also known as the Humboldt Current System (HCS), is one of 

the most productive eastern boundary systems of the world. The source of upwelling water in 

this area is related to the Equatorial Subsurface Water (ESSW; Morales et al., 1999). The 

ESSW has been associated with Peru-Chile Undercurrent (PUC). The PUC is influenced by 

the Equatorial Undercurrent, directed polewards and flows over the shelf and upper slope 

(Wooster et al., 1965). Additionally it has a low temperature, high salinities, low dissolved 

oxygen and high amount of nutrients (Wyrtki, 1965; Brink et al., 1983). Regions are termed 

suboxic when oxygen drops down below 10 µmol/kg (Tyson and Pearson, 1991). In suboxic 

regions nitrate gets involved into respiration and is used as electron acceptor instead of 

oxygen (Bange et al., 2005; Stramma et al., 2008). In 2008 water masses in the Peruvian 

OMZ at 11°S were at least suboxic from 50-580 m water depth in 2008 (Glock et al., 2011). 

1.3 El-Nino Southern Oscillation 

During an El-Nino (EN) the trade winds are weakened on a large scale while the sea surface 

layers in the eastern and central equatorial Pacific are warming (McPhaden et al., 1998). El-

nino events are accompanied with swings in the so called Southern Oscilation (SO), which 

was identified in the 1920s (Walker, 1923; 1924; 1928; Thurman, 1988). The SO is often 

described as a seesaw between the South-East-Pacific High Pressure Zone and the North 

Australian-Indonesian Low Pressure Zone (Philander, 1983, McPhaden et al., 1998). Very 

high atmospheric sea level pressures occur in the tropical Pacific and Indian regions while on 

the other hand very low sea level pressures occur in the ETSP during EN. Periods of 

unusually low sea surface temperatures in the equatorial Pacific linked to very low pressures 

west and high pressures east of the date line are also known as La-Nina (Phillander, 1990, 

McPhaden et al., 1998). The full range of the SO including both EN and La-Nina events is 

called El-Nino Southern Oscillation (ENSO; McPhaden et al., 1998).  

The south-east trade winds are affected by the so called Walker Circulation. Under normal 

conditions they approach the Australian-Indonesian Low Pressure Zone, rise and result in 

high precipitation rates in the Low Pressure Zone. Off the west coast in South America within 

the South-East-Pacific High Pressure Zone dry air descends. Thus high rates of evaporation 

occur at this coast. As a precursor to an EN event the Indo-Australian low-pressure cell starts 

to move eastwards (Thurman, 1988). This can cause drought conditions in northern Australia, 
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Indonesia and the Phillipines (McPhaden at al. 1998). Concurrent to this the Intertropical 

Convergence Zone, where southeast and northeast trade winds meet and rise, moves 

southward. Usually located between 3°N and 10°N the ITCZ may cross the equator during 

EN events (Thurman, 1988). This results in excessive rainfalls in the island states of the 

central tropical Pacific and along the west coast of South America (McPhaden et al., 1998) 

and is also associated with a weakening of trade winds, coastal upwelling and abnormally 

high sea surface temperatures in the eastern Pacific (Thurman, 1988). Additionally an 

intensification of the eastward flow of the Equatorial Undercurrent results in a rise in sea level 

along the western coast of North and South America polewards in both hemispheres. The 

severe coastal rains during El-Nino drive away the anchovy of Peru which on the one hand 

are the basis of fishing there and on the other hand serve as food supply for a large bird 

population. Thus the effects on the economy of Peru are disastrous due to the strong 

dependence on fishery and guano industry (Thurman, 1988). But also on other regions along 

the tropical Pacific and the west coast of North and South America EN events affect the 

mortality and distribution of commercial valuable fish stocks and other marine organisms in a 

way that the consequences of this event could be felt worldwide (Barber and Chavez, 1983; 

Dessier and Donguy, 1987; Pearcy and Schoener, 1987; Lehodey et al., 1997; McPhaden et 

al., 1998).   

1.4 N-cycling in the water column and sediments 

Since a major part of this work was the development of a proxy which indicates nitrate 

availability, there should be a small outline on the oceanic nitrogen cycle. In the oceans nitrate 

is often a limiting nutrient in bioproductivity (Arrigo, 2005; Lam et al., 2009). In the oceanic 

nitrogen cycle N2 becomes bioavailable via N2-fixation. The fixed nitrogen stays in the ocean 

bound in different organic and inorganic forms. The loss of nitrogen to the atmosphere in the 

form of N2 is dominated by two pathways. On the one hand there is nitrate respiration in 

facultative anaerobic microorganisms which produces N2 from NO3
- (heterotrophic 

denitrification). On the other hand there is the anaerobic oxidation of ammonium (Anammox) 

by NO2
- which yields in N2, too (van de Graaf et al., 1995). About 20-40% of the global 

nitrogen loss in the oceans is estimated to occur in OMZs, although OMZ waters occupy only 

about 0.1% of the global ocean volume (Gruber and Sarmiento, 1997; Codispoti et al., 2001; 

Gruber, 2004; Lam et al., 2009). Nitrate usually is depleted near the water surface due to 

utilisation in bioproductivity. Remineralisation of degraded organic matter produces NH4
+ 

which is stepwise oxidized to NO3
- under aerobic conditions (nitrification). Thus the NO3

- 
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concentration rises with water depth. The denitrification process proceeds stepwise, too, and a 

number of intermediates are involved (NO3
-
→NO2

-
→NO→N2O→N2). Nevertheless only the 

complete process with the final product N2 meets the strict definition of denitrification 

(Zumft, 1997; Lam et al., 2009). Heterotrophic bacteria release NH4
+ from organic matter by 

anaerobic denitrification of NO3
-. Thus heterotrophic denitrification has been supposed to be 

the major remineralisation pathway in OMZs, although the expected NH4
+ accumulation has 

not been found in OMZs (Richards, 1965; Lam et al., 2009). Another possible source for 

NH4
+ is the dissimilatory nitrate reduction to ammonium (DNRA). Recent studies showed that 

several benthic foraminiferal species are able to switch to nitrate respiration in times when 

oxygen is too depleted (Risgaard-Petersen et al., 2006). Foraminiferal denitrification has 

important influences on the benthic N-cycle (Glud et al., 2009; Pina-Ochoa et al. 2010). A 

scheme for the oceanic N-cycle is shown in fig. 1.4. 

 

Fig. 1.4. The oceanic N-cycle.  

1.5 Foraminifera 

Foraminifera are amoeboid protists with reticulating pseudopods. Pseudopodia are fine 

strands of cytoplasm that branch and merge to form a dynamic net (Hemleben et al., 1989). 

Foraminifera are typically covered by a test. These tests consist either of calcite (rotaliids and 

milioliids), agglutinated sediment particles (textulariids) or organic material (allogromiids). 

The orders mentioned above are only examples for the different test types. On the basis of 

morphology 15 extant foraminiferal orders are recognized of which 7 are calcitic (Sen Gupta, 
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2003). To date 2185 foraminiferal species are recorded (Murray, 2007). Only 45 of these 

species are planktic. Thus they drift through the water column. But the overwhelming 

majority of foraminifera are benthic, e.g. they live on the seafloor. Benthic foraminifera could 

either live epifaunal on the surface of the sediments or infaunal inside the sediments. 

Foraminifera are uniquely adapted to different (partly extreme) environmental conditions. 

They are distributed everywhere in the ocean from sandmarsh meadows (in extreme +0.5 m 

above floodwater boundary; Hayward et al., 2011) onto the deepest sea (challenger deep: 

10000 m; Gooday et al., 2008). Furthermore they are one of the biggest sources for 

precipitated calcite. Benthic and planktic foraminifera together produce 1.4 billion tons of 

calcite a year. This accounts to 25% of the total global calcite production (Langer, 2008). The 

limestone used to build the Egyptian pyramids consists almost entirely of nummulits. The 

most primitive foraminiferal test like in Iridia diaphana consists only of one chamber which 

is open to the environment. Also I. diaphana is able to leave its test. These primitive test 

forms most propably developed just to counteract buoyancy of the cytoplasm (Marszalek, 

1969). In the evolution more advanced tubes or series of chambers developed as effective 

barriers against the environment. This includes changes in the chemical as well as in the 

physical conditions. For example the test form could be optimised to provide time for 

adaption of the surface to volume ratio of the cell when the osmotic pressure in the 

surrounding waters changes due to changes in salinity (Marszalek, 1969). Further general test 

adaptions include the optimisation of the surface to volume ratio of larger foraminifera. 

Additionally the test in many foraminifera serves most propably as protection against 

predators. Among the time of their evolution the single foraminiferal species adapted their 

tests to their habitats in a way that they fit nearly perfectly into the environmental niches they 

live in. In brackish water or the deep sea for example organic and agglutinated tests are more 

common then calcitic tests because they are energetically more advantageous when calcium 

carbonate is undersaturated. On the other hand the organic portion in the test is reduced in 

shallower waters were calcite is supersaturated (Hallock, P. et al., 1993). Tests in several 

species are adapted to host algal symbionts (Leutenegger, S., 1984). Solar irradiation could 

have strong influences on the test structure, too. Porcelanous species for example build their 

tests out of randomly oriented calcite needles which makes their test appear oparque. This 

provides protection against mutagenic UV-radiation in shallower waters. Species which host 

photosynthetic symbionts on the other hand often build more transparent tests to provide 

enough solar irradiation to their symbionts (Hallock, P. et al., 1993). 
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Nevertheless, the reason why foraminifera are discussed in such detail is their high 

importance in paleooceanographic reconstruction. In this work benthic foraminifera were 

studied as a possible proxy carrier for reconstruction of OMZs. Two features allow 

foraminifera to preserve informations about the environmental conditions in their habitats. On 

the one hand the unique mechanism of biomineralisation in laminated rotaliid species 

provides information about the ambient seawater. These species precipitate their test calcite 

directly from vacuolized seawater (Erez, 2003) and thus the chemical composition of the test 

calcite reflects the chemical composition of the surrounding water in their habitats. Different 

element/Ca ratios are used as proxy for different parameters. Well established is the 

temperature reconstruction using the Mg/Ca ratio (Nürnberg et al., 1996; Rosenthal et al., 

1997; Hastings et al., 1998; Lea et al., 1999; Elderfield and Ganssen, 2000; Lear et al., 2002). 

But other proxies are utilized, too like the U/Ca ratio for redox state, seawater chemistry and 

CO3
2- tracing (Russel et al., 1994, 2004; Yu et al., 2008), Zn/Ca ratios for carbonate saturation 

(Marchitto et al., 2000) and Cd/Ca ratios as phosphate tracer (Boyle and Keigwin, 1985; 

Boyle, 1988; Bertram et al., 1995, Came et al., 2003). The V/Ca ratio has been suggested as a 

proxy for redox-conditions, too (Hastings et al., 1996a, b&c). On the other hand the high 

degree of adaptation of foraminifera facilitates information about the environmental 

conditions, too. Thus environmental conditions in a habitat could be reconstructed via the 

taxonomic composition of a assemblage or due to morphological adaptations. A review about 

proxies based on deep-sea benthic foraminiferal assemblage characteristics is given by 

Jorissen et al. (2007). An example for reconstruction based on morphological features is that 

benthic foraminifera with a high test porosity count as an indicator for oxygen depleted 

environments (Sen-Gupta and Machein-Castello, 1993). 

 

1.6 Methodology for foraminifera analyses 

Three major chemical analytical techniques have been used for this work: Electron 

microprobe x-ray microanalysis (EMP), Secondary ion mass spectrometry (SIMS) and 

quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS). Each of these 

techniques has its own advantages and disadvantages regarding spatial resolution or required 

sample sizes, sensitivity and reproducibility. Both EMP and SIMS are using solid samples 

and are nearly destruction free, preserving the sample for further analyses. For EMP x-ray 

analysis a JEOL JXA 8200 located at the IFM-Geomar in Kiel was used. The EMP technique 

uses an electron which is accelerated to an energy between 1 and 50 kev carrying a beam 

current in the range of 10 pA to 1 µA. This beam is directed onto the surface of the sample 
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and causes it to emit secondary electrons and x-ray radiation of element characteristic 

wavelengths. The advantage of this technique is the high spatial resolution and the possibility 

to use the secondary and backscattered electrons to create scanning electron microscope 

(SEM) and backscattered electron (BSE) images (Kellner et al., 1998). The volume excited by 

the JEOL JXA 8200 is nominally about 1 cubic micron in minimum. Thus it is possible to 

generate element distribution maps of a sample surface in a spatial resolution of about 1 µm. 

The disadvantage is the relatively low sensitivity which usually allows to quantify elements 

just above concentrations of 100 ppm. A Cameca ims 6f magnetic sector ion microprobe at 

the Helmholtz Centre Potsdam was used for SIMS analyses. The SIMS technique is based on 

the bombardment of the sample surface with an ion beam in the energy range from 0.2-30 eV 

and the measurement of the emitted secondary ions of the sample material (Kellner et al., 

1998). The spatial resolution of the Cameca ims 6f used in this work is with a minimal spot 

size of about 5 µm diameter worse than of the JEOL JXA 8200. But a much better detection 

limit allows to quantify elements down to concentrations of about 10 ppb. A connection of 

these two techniques allows identification of contaminiations on the sample surface via EMP 

elemental mapping followed by a quantitative analysis at areas of choice which are 

contamination free. The Q-ICP-MS analyses were performed on an Agilent 7500cx at the 

IFM-Geomar in Kiel.  In Q-ICP-MS the sample is atomized and the atoms subsequently are 

subsequently ionized in a plasma and a quadrupole mass filter is used for separation of the 

ions. The plasma gas usually is argon.  Due to the very good detection limits (0.5-5 ppt for 

several elements according to manufacturer) of the Agilent 7500cx it is possible to quantify 

elements in very low concentrations with a good precision. The problem is that the samples 

have to be dissolved prior analysis and sample volumes of about 100-200 µl are needed for a 

single analysis. For example about 40 specimens of the benthic foraminiferal species Bolivina 

spissa have to be dissolved to create enough solution for a single analysis which could not be 

repeated afterwards. This solution is already diluted to a Ca concentration of about 10 ppm. 

For solid state analytic techniques like SIMS or EMP only a single specimen is needed and 

the analyses can be repeated several times. Furthermore the concentrations in the solid 

material are much higher than in a diluted solution. 

A main part in this work was the study of the PD in B. spissa. Thus the last part of the 

introduction (chapter 1.7) is a literature review about the understanding of pore-functionality 

in benthic foraminifera.  
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Abstract 

 

This chapter will give a brief review about the present understanding of pores in tests of 

benthic foraminifera. The interpretation of the pore-function changed through time and a 

couple of theories were proposed. The research about the functionality of pores recently 

became of new interest because it seems likely that they are involved in the respiration 

pathways of some benthic foraminifera. The fact that several benthic species are able to 

survive anoxia points out the importance for a better understanding of these respiration 

pathways and which adaptions differentiate these species from species which cannot survive 

in oxygen depleted habitats. Nitrate respiration seems to be widespread among foraminifera 

from oxygen depleted habitats and thus knowledge if and in how far the pores are involved in 

the process of denitrification would help to understand the process of denitrification in 

eukaryotic foraminiferal cells. 

  

1.7.1  Introduction 

Pores are developed in rotaliid calcareous foraminifera and are important morphological 

features. Their shape, size and density are diagnostic for discerning between several species 

(Lutze, 1986). But only few publications are discussing the function or the origin of these 

pores and whether they are or are not important for the survival of benthic foraminifera. With 

advances in the field of electron microscopy in the early 50´s researchers started to describe 

the microstructure of the pores and discovered that these pores are often covered by some 

sieve like microporous organic plates (Jahn, 1953; Arnold 1954a, b). Until the late 70´s other 

workers (Le Calvez, 1947; Angell 1967; Sliter, 1974; Berthold, 1976, Leutenegger, 1977) 

observed that the pores in many benthic foraminifera are covered by one or more organic 

layers but not all of them showed microperforations. Several terms have been given to these 

structures: “sieve plates”, “pore diaphragms”, “dark discs”, “pore plugs”, and “pore plates”. 

Only very few experiments have been done to analyse the function of pores and their 

permeability to dissolved substances into the cytoplasm. It was demonstrated that Patellina 

corrugata is able to take up neutral red dye through the pores (Berthold, 1976) and that 

Amphistigina lobifera takes up CO2 in a similar way (Leutenegger and Hansen, 1979). 

Additionally some low-oxygen tolerant species show that their mitochondria, i.e. cell 

organelles involved in respiration, were more abundant near the pores than in other species 

from well oxygenated waters. This covariance implies an evolutionary linkage between pores 

and mitochondria (Leutenegger and Hansen, 1979; Bernhard et al., 2010). These observations 
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lead to the most widespread interpretation in the literature that the pores in benthic 

foraminifera promote the uptake of oxygen and the release of metabolic CO2, the uptake of 

CO2 for symbiont bearing foraminifera, the osmoregulation and the intake and excretion of 

dissolved substances in general. On the other hand it has been suggested that the pores of 

Rosalina floridana are purely an ornamental feature because of the lack of micropores in the 

pore plates and the thick inner organic lining between cytoplasm and test-walls which seals of 

the pores (Angell, 1967).  

 Another term of studies was the variability of morphological features like pore-size 

and pore-density among several benthic species. In the 60´s it has been found that Bolivina 

spissa from the Californian borderlands show a strong variation in the pore-free area of their 

test-surface among different water depths (Lutze, 1962). Homeomorphs of Bolivina spissa 

from different time periods at the Santa Barbara Basin, California, show a strong variability in 

pore-density and -shape (Harmann, 1964). A connection between pore-size and -density and 

the oxygen concentration of their habitats has been documented for Hanzawaia nitidula from 

the oxygen-minimum-zone (OMZ) in the gulf of Tehuantepec (Perez-Cruz and Machain-

Castillo, 1990) and for laboratory cultures of Ammonia beccarii (Moodley and Hess, 1992). 

Furthermore, species with high test-porosity in general may serve as indicator for oxygen 

depleted environmental conditions (Sen-Gupta and Machain-Castillo, 1993; Kaiho, 1994). 

The same variation in the pore-density of Bolivina spissa among different water-depths that 

was described by Lutze (1962) was found again for Bolivina spissa from the oxygen 

minimum zone off Peru. But it appears that this variability in pore-density is closely related to 

the nitrate-concentration in the bottom-water (Glock et al., 2011). So it is speculated whether 

the pores in Bolivina spissa are involved in the mechanism of nitrate respiration. The ability 

to store nitrate inside the cells and to switch to nitrate respiration in times when no or to less 

oxygen is available has been recently documented for several benthic foraminiferal species 

(Risgaard-Petersen et al., 2006; Høgslund et al., 2008;  Glud et al., 2009; Piña-Ochoa et al., 

2010). The fact that a rod shaped microbial ectobiont of unknown identity and physiology was 

found to inhabit the outer part of the pore-void in Bolivina pacifica while mitochondria are 

clustered at the inner pore face (Bernhard et al. 2010) gives reason to speculate if and in how 

far these bacteria are involved into foraminiferal denitrification whether they are symbionts or 

parasites. The pores in amphisteginids and nummulites are quite obvious adapted for hosting 

algal symbionts (Hansen and Burchardt, 1977, Lee and Anderson, 1991): The inner surface of 

the test around the pores is excavated into cup-like pore-rims. The symbiotic diatoms are 

concentrated along the surfaces of the cytoplasm in cytoplasmic bulges which fit into the pore 
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rims. Beside all of these evidences the function of pores still remains conjectural and it is 

unclear in how far the pore-function varies among the different benthic foraminiferal species. 

 

 

1.7.2 Materials and Methods 

Two different data sources were used for this review. First, for the mayor part relevant 

publications related to the function of pores were compiled (Table 1.1). A few studies 

concerning the pores in planktonic foraminifera are also listed although they will not be 

discussed in the progress of this manuscript. Second, sampling material for the pictures in 

Fig.1 was recovered during Meteor Cruise M77/1. A detailed description of the sampling 

locations and sampling procedure could be found elsewhere (Glock et al., 2011). All 

specimens were mounted on aluminum stubs, sputter-coated with gold, and photographed 

with a CamScan-CS-44 scanning electron microscope (SEM) at the Christian-Albrecht-

University in Kiel.  

 

 
Table 1.1. Publications used as data source for this review. 
 
 

Author and year Results of the study 
Doyle (1935) Light microscopic observations of Iridia diaphana 

show that this species is able to move mitochondria 
through its pseudopodia. 

Arnold (1954b) Sieve like plates are covering the pores of several 
benthic foraminiferal species. These so called “sieve 
plates” or “pore plugs” contain a large number of 
micropores in a diameter range of 0.1-0.3 microns. 
These micropores might restrict the flow of smaller 
cytoplasmic elements like mitochondria into pore-
pseudopodia. 

Lutze (1962) Bolivina spissa from the Californian Borderlands 
show a strong variation in the pore-free area of their 
test-surface among different water depths. For the 
explanation of this phenomenon a temperature 
dependence of different chemical processes is 
proposed. 

Harman (1964) Bolivinidae from the Santa Barbara Basin, 
California, show morphological variations in 
response to environmental factors like oxygenation. 
Additionally there are variations in recent and 
ancient homogenous sediments. Homeomorphs of 
B. spissa from different time periods show strong 
differences in pore-density and -shape.  

Angell (1967) The pores of Rosalina floridana are filled with 
organic “pore processes” which are anchored to the 
inner organic lining. These structures lack 
micropores and it is speculated that the pores in R. 
floridana are eliminated on purely morphological 
grounds. 
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Bé (1968) Shell porosities of 22 planktonic foraminiferal 
species are relatively uniform for those co-occurring 
in same latitudinal belts. Because of this co-
variation of porosity and temperature shell porosity 
in planktonic foraminifera is proposed as climatic 
index. 

Sliter (1970) Laboratory cultures of Bolivina doniezi show 
variations in pore-morphology and pore density in 
the clone culture compared to the natural 
populations. 

Hansen (1972) Freeze dried specimens of living Amphistigina show 
in addition to the apertural pseudopodia other 
pseudopodia closely connected with the pores.  

Frerichs et al. 
(1972) 

Pore density in Globigerinoides sacculifer, 
Globorotalia tumida and Neogloboquadrina 
dutertrei decreases directly with distance from the 
equator but Globigerinella siphonifera and 
Globorotalia tumidashow no such relationship. The 
test porosity however decreases in all five species 
with distance from the equator. It is speculated that 
the test porosity is related to the water density, 
which in turn is related to temperature.  

Hottinger and 
Dreher (1974) 

Pores in tests of Operculina ammonoides and 
Heterostegina depressa are not covered by pore-
plates. The inner organic lining is thickened at pore-
rims and thins out over the pore holes while the 
plasma membrane is differentiated by coarse 
granules below the pore holes. These observations 
and the position of the symbionts in the chamber 
plasma point to a physiological relationship between 
symbionts and pores.  

Sliter (1974) In contrast to many other foraminiferal taxa 
Bolivinitidae and Caucasinidae appear to construct 
their tests in a monolamellar concept. The studied 
Bolivinitidae show double pore-membranes between 
consecutive calcitic lamellae. 

Berthold (1976) Experiments on Patellina corrugata show that 
neutral red from ambient water is actively pumped 
into the cytoplasm through test pores even when the 
aperture is closed. It is speculated that the pore 
function is related to osmoregulation, gas exchange 
or the intake and excretion of dissolved substances. 

Hansen and 
Buchardt (1977) 

The inner surface of the test around the pores in 
amphisteginids and nummulites is excavated into 
cup-like pore-rims. The symbiotic diatoms are 
concentrated along the surfaces of the cytoplasm in 
cytoplasmic bulges which fit into the pore rims. 

Leutenegger and 
Hansen (1979) 

Mitochondria are clustered behind the pores of 
foraminiferal species from low-oxygen habitats. In 
several foraminiferal species from more oxygenated 
habitats mitochondria are more uniformly 
distributed throughout the cytoplasm. Additionally 
the inner organic lining is disrupted behind the 
pores of several species from oxygen-depleted 
habitats. It appears that the pores are related to gas 
exchange. This includes an uptake of O2 and an 
elimination of CO2 as well as an uptake of CO2 for 
photosynthetic symbiont bearing foraminifera like 
Amphistigina lobifera during day time. 

Bé et al. (1980) The mechanism of the formation of pores and pore-
plates in planktonic foraminifera is described. Pores 
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are formed due to resorption of already precipitated 
material. There might be differences in pore-
formation and function between spinose and non-
spinose species.  

Bijma et al. (1990) Laboratory cultures of Globigerinoides sacculifer, 
Globigerinoides ruber, Globigerinoides siphonifera 
and Orbulina universa show that changes in shell 
porosity are correlated with changes in salinity and 
temperature. The highest porosities are attained at 
higher temperatures and lower salinities. 

Perez-Cruz and 
Machain-Castillo 
(1990) 

Hanzawaia nitidula from the oxygen-minimum 
zone (OMZ) in the gulf of Tehuantepec show more 
and larger pores than specimens from oxygenated 
waters. 

Moodley and Hess 
(1992) 

Laboratory cultures of Ammonia beccarii show an 
increase in pore-size under low-oxygen-conditions. 

Sen Gupta and 
Machain-Castillo 
(1993), Kaiho 
(1994) 

Benthic foraminiferal species with high test-porosity 
are postulated as an indicator for oxygen depleted 
environmental conditions.  

Risgaard-Petersen 
(2006) 

First evidences that foraminiferal species from 
oxygen depleted habitats switch to nitrate 
respiration in times when no oxygen is available are 
discovered. 

Høgslund (2008) Denitrification rates for benthic foraminifera from 
the Chilean OMZ are measured. 

Allen et al. (2008) Laboratory cultures of the planktic foraminifer 
Orbulina universa show a relationship of pore-
density and pore-size to pH but no dependence of 
temperature. 

Glud et al. (2009) The contribution of foraminiferal denitrification to 
the nitrogen cycling at Sagami Bay, Japan, is 
quantified. The production of N2 was attributed to 
foraminiferal denitrification in a total amount of 
4%. Additionally the nitrate storage in foraminiferal 
cells was measured for several species. It 
represented 80% of the total benthic nitrate pool. 

Piña-Ochoa et 
al.(2010) 

The nitrate storage among many benthic 
foraminifera from the Peruvian OMZ was measured. 

Bernhard et al. 
(2010) 

The outer part of the pore void of Bolivina pacifica 
in this study is inhabited by a rod-shaped microbial 
ectobiont of unknown identity and physiology. 
Again a clustering of mitochondria behind the pores 
is observed. 

Glock et al. (2011) The pore-density in tests of Bolivina spissa from the 
Peruvian OMZ shows strong locational variations 
and a relationship to several environmental factors 
like oxygen- or nitrate concentrations in the bottom-
waters. Because of the strong relationship to the 
nitrate-concentrations in the bottom-waters it gives 
a reason to speculate if the pores are related to 
nitrate respiration. Either for the intracellular nitrate 
uptake or to act as “valve” for the release of waste 
products like N2. 
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1.7.3. The Pore Plates 

 

The pores of many benthic foraminifera are sealed by one or more organic layers (Le Calvez, 

1947; Jahn, 1953; Arnold 1954a, b; Angell 1967; Sliter, 1974; Berthold, 1976, Leutenegger, 

1977) while some species like Operculina ammonoides and Heterostegina depressa lack 

pore-plates (Hottinger and Dreher, 1974). In some species these pore plates are additionally 

perforated by micropores with a diameter in a range of 0.05 to 0.3 µm depending on the 

species. These micropores have been described in some unknown nonionid and camerinid 

species (Jahn, 1953), in Discorinopsis aguayoi (Arnold, 1954a) and in Patellina corrugata 

(Berthold, 1976). The pores of Rosalina floridana are filled with organic “pore processes” 

anchored to an inner organic lining and are covered with an organic membrane (Angell, 

1967). All of these structures in Rosalina lack micropores. Specimens of Bolivina and 

Coryphostoma construct their tests in a monolamelar concept and show double pore-

membranes between consecutive calcitic lamellae (Sliter, 1974). The surface membrane 

seems to cover the ultimate chamber completely while a progressive perforation in the pores 

of successively older chambers could be observed. This results in that the pores of the oldest 

chambers are open to the surface. If the surface-membrane was intact micropores could be 

observed only occasionally. These micropores became larger and more common in the 

penultimate and towards the older chambers. Similar structures exist in Bolivina spissa. Most 

of the pores in the ultimate chamber are covered with several layers of pore plates. The slits in 

some of the pore-plates are propabely deteriorations caused by the drying process of the 

samples or by the electron beam of the REM (Fig 1.7.1a and b). In some specimens these pore 

plates are preserved only in the ultimate chamber while others show well preserved pore 

plates among several other chambers (Fig 1.7.1c). The pores in the earliest chambers near the 

proloculus are open to the surface (Fig 1.7.1d). 

It was speculated wheather the micropores in some pore-plates could serve as outlet for pore-

pseudopodia and selectively control the flow of cytoplasmic elements into and back from the 

pseudopodia (Arnold, 1954b). Because of the small size of the micropores only very minute 

cell organelles would be able to pass the pore plates. At least mitochondria are able to move 

through the cytoplasm and flow into pseudopodia of Iridia diaphana (Doyle, 1935). Indeed 

some thin, thread like structures emerging from pore plates were observed in freeze-dried 

specimens of living Amphistigina which have been interpreted as pore pseudopodia (Hansen, 

1972). This is not undisputed since it was discussed that the threadlike extrusions have more 

similarity to the hyphae of fungi than to granuloreticulose pseudopods (Berthold, 1976). 
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Observations with the light-microscope on Patellina first lead to the conclusion that pores 

could serve as an outlet for pseudopodia as does the aperture (Myers, 1935). In contrary later 

investigations found that it is not possible to show a correlation between pores and 

pseudopods in Patellina (Berthold, 1971). Because most of the pores in the tests of the 

Bolivinitidae and Caucasinidae where sealed completely by a complex of imperforated pore 

plates Sliter (1974) came to the conclusion that a free exchange of cytoplasm to the test 

surface is precluded through most of the pores. In summary it could not be proven to date if 

benthic species indeed could move pseudopodia through some pores or not. But at least for 

some taxa (Rosalina, Patellina, Bolivinitidae and Caucasinidae) due to the lack or the very 

minute size of micropores such pseudopodial movements are not very probable (Angell, 1967, 

Sliter, 1974, Berthold, 1976).  

 
 

A                                                                B

C                                                               D

 
Figure 1.7.1 SEM pictures with close ups of the pores of one specimen of Bolivina spissa (oversight 

shown in Fig.2c). A A Pore of the ultimate chamber with a well preserved pore plate. B Several pores 
in the ultimate chamber covered by several layers of membranes (pore plates). Slits in some pore-
plates are propabely deteriorations caused by drying process of samples. C The pore-plates in this 

specimen are preserved until the middle chamber. D Pores near the proloculus are open to the 
surface. 

 
 

1.7.4 Permeability of Pores and the Previous Understanding of Pore-Function 

 

Only few papers describe experiments to test the permeability of pores of benthic foraminifera 

to dissolved substances in the ambient waters. Patellina corrugata could actively pump 

neutral red dye from surrounding water into the cell through the pores while the aperture was 
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closed (Berthold, 1976). These results inferred that “the function of pores probably lies in the 

field of osmoregulation, gas exchange, or the intake and excretion of dissolved organic 

substances”. The pores probably had a special importance during the reproductive phase of a 

foraminifer because the protoplasm is isolated from the medium and the pseudopodia cannot 

be extruded through the aperture. Another study on several benthic species from oxygen 

depleted habitats showed that mitochondria are clustered behind the pores and the inner 

organic lining is interrupted behind the pores (Leutenegger and Hansen, 1979). Additionally, 

the same study showed that the symbiont bearing Amphistigina lobifera takes up C14 labeled 

CO2 through the pores while the aperture is closed. Hottinger and Dreher (1974) showed that 

Operculina ammonoides and Heterostegina depressa lack pore-plates and the inner organic 

lining thins out over the pore holes while the plasma membrane is differentiated by coarse 

granules below the pore holes. These observations and the position of the symbionts in the 

chamber plasma pointed to a physiological relationship between symbionts and pores. So it 

seemed obvious that the pores are related to gas exchange. But at least one publication 

mentions Rosalina floridana, where the pores might be built purely as ornamentation or just 

to provide organic continuity to the test exterior (Angell, 1967). These conclusions were 

drawn because the pores of R. floridana are filled by organic “pore-processes” anchored to the 

inner-organic-lining and these structures lack micropores. However, no experiments on the 

permeability of pores in Rosalina were performed.  

The most widespread opinion today is that the pores in benthic foraminifera are related to the 

uptake of O2 and the release of metabolic CO2. These interpretations were based on 

observations that foraminiferal species from low-oxygen habitats show a high test porosity. 

These species were, in turn, used as an indicator for oxygen depleted environmental 

conditions (Sen-Gupta and Machain-Castillo, 1993; Kaiho, 1994). Furthermore some species 

show a response in their pore-size and pore–density to variations in oxygen supply. For 

instance, Hanzawaia nitidula from the oxygen minimum zone (OMZ) in the Gulf of 

Tehuantepec show more and larger pores than specimens from oxygenated waters (Perez-

Cruz and Machain-Castillo, 1990). Laboratory cultures of Ammonia beccarii show an increase 

in pore-size under low-oxygen-conditions (Moodley and Hess, 1992). These experimental 

results were corroborated by field observations from Flensburg and Kiel Fjords. Ammonia 

beccarii showed large pores in Flensburg Fjord, where seasonal anoxia occurred (Nikulina 

and Dullo, 2008; Polovodova et. al, 2009), and small pores in Kiel Fjord which experiences 

only a moderate oxygen dropdown during summer (Nikulina et al., 2008). These observations 

denote the potential of using the pore size and pore-density as a proxy for Recent and past 
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oxygen variations. A recent study shows a variability in the pore-density of Bolivina spissa 

from the Peruvian OMZ which might be related to oxygen supply (Glock et al., 2011). But 

this variability of pore-density in B. spissa might be more related to the variations in nitrate 

availability. Three specimens of B. spissa from different oxygenated locations are shown in 

Fig. 1.7.2. At least some foraminiferal species are able to move their mitochondria into their 

pseudopodia (Doyle, 1935). Because the pseudopodia could extend at to ten times the test 

diameter of a foraminifer (Travis and Bowser, 1991) it is possible that foraminifera which 

inhabit an environment with a steep oxygen gradient could use mitochondrial activity in their 

extended pseudopodia to maintain oxygen supply even when their tests are located in anoxic 

sediments (Bernhard and Sen Gupta, 2003). In this case an uptake of oxygen through test 

pores might not be very convincing. But it might be that different species follow different 

mechanisms of oxygen uptake. 
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Figure 1.7.2. SEM Pictures of three specimens of Bolivina spissa from different locations. The diagram 

on the right shows the different bottom-water nitrate concentrations and the diagram on the left the 

bottom-water oxygen concentrations from the different locations. A quantification of these relationships 

is presented by Glock et. al. (2011). (A M77/1-445/MUC-21 (465 m) B M77/1-487/MUC-38 (579 m) C 

M77/1-445/MUC-15 (928 m water depth)). 
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1.7.5. Evidence of Pore Involvement in Nitrate-Respiration Pathways 

 

Recently it has been shown that some benthic species from oxygen depleted habitats respire 

nitrate via denitrification (Risgaard-Petersen et. al., 2006). This fact in combination with new 

results which show a strong relationship of the pore-density in Bolivina spissa from the 

Peruvian continental margin to the bottom-water nitrate concentrations (Glock et al., 2011) 

gives a reason to speculate if and how far the pores might be related to the nitrate-respiration 

pathways in some benthic foraminifera. If the pores of B. spissa are indeed related to the 

intracellular nitrate uptake an increase of pore-density would optimize their availabilities for 

nitrate uptake when nitrate is depleted. This would result in a advantage in the competition of 

nitrate uptake against other foraminiferal and prokaryotic species. These results might open a 

first window to carry modern knowledge on foraminiferal denitrification into a fossil record 

and earth history. A study on the nitrogen cycle at Sagamy Bay, Japan, which showed that 

Bolivina spissa have significant intracellular nitrate enrichment (Glud et. al., 2009) supports 

this assumption. At Sagami Bay intracellular nitrate storage in foraminifera represented about 

80 % of the total benthic nitrate-pool. The diagram on the right in Fig. 1.7.2 shows the 

bottom-water nitrate concentrations in the different habitats of the three specimens of B. 

spissa. 

The denitrification process in benthic foraminifera has not been attributed to a specific cell 

organelle yet (Høgslund et al., 2008). If it is assumed that the pores are directly related to 

intracellular nitrate-uptake the fact that mitochondria tend to cluster behind the pore plugs, 

what indeed has been observed from a Bolivina at low-oxygen conditions, might imply that 

mitochondria may also be involved in the mechanism of foraminiferal denitrification. Indeed 

earlier studies showed that mitochondria are involved in nitrate respiration of the primitive 

eukaryote Loxodes (Finlay et al., 1983). In particular the number of mitochondria became 

significantly enhanced when Loxodes switched from oxygen to nitrate-respiration. The recent 

observation of microbial ectobionts of unknown identity and physiology inhabiting the pore 

void of Bolivina pacifica (Bernhard et al. 2010) provoke speculations if such ectobionts exist 

in the pore void of Bolivina spissa as well and are indeed denitrifiers. Another possibility 

would be that these ectobionts act more as parasites. Some Bolivinidae seem to produce N2O 

as a product of denitrification instead of N2 (Piña-Ochoa et al., 2010). Hence it might be that 

these bacteria cluster in the pore-void of some foraminifera for the uptake of N2O which is 
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released as a waste product through the pores. In a reaction, catalyzed by the protein nitrous 

oxide reductase, N2O is reduced to N2 (Zumft, 1997; Riester, Zumft and Kroneck, 1989). The 

reaction 

N2O + 2e- + 2H+ → N2 + H2O                                           (1) 

is highly exergonic (∆G°´ = 340 kJ/mol) and thus a good energy source although N2O is very 

inert at room temperature and thus reaction (1) needs an efficient catalyst to occur (Haltia et 

al. 2003). Some rod shaped bacteria like Escherichia coli or Pseudomonas stutzeri are known 

to have the ability to reduce N2O to N2 (Kaldorf et al., 1993; Lalucat et al., 2006). 

A study of Lutze (1962) on Bolivina spissa from the Californian borderland shows that the 

pore-free area increases with water-depth. This was assumed to reflect decreasing water-

temperatures. But later it was shown by comparison to nitrate data from the same study area 

(Boyer et al., 2009) that the variability in the pore-free area also reflects most probably the 

nitrate distribution in the water column (Glock et al., 2011). Nitrate is depleted at shallower 

water-depth due to enhanced primary production on the ocean´s surface. So the habitats of the 

analysed specimens from shallower water-depths most probably were more nitrate depleted 

than those from the deeper waters. 

 

1.7.6. Conclusions 

 

Although the pores in tests of benthic foraminifera are an important morphological feature 

which even is used to distinguish several species, the understanding of the pore-function is 

very fragmentary. This might be due to the fact that the pore-function differs between the 

species. Symbiont bearing foraminifera like Amphistigina lobifera seem to take up CO2 

through the pores during day time for photosynthesis, while some species from oxygen-

depleted habitats probably take up oxygen through the pores (Leutenegger and Hansen, 1979). 

But also the uptake of dissolved organic substances is possible as shown for Patellina 

corrugata (Berthold, 1976). Recent findings even hint that at least one species, Bolivina 

spissa, takes up nitrate for nitrate respiration through the pores or uses these to release 

denitrification products like N2O or N2 and that they seem to adapt their pore-densities to 

survive in extreme habitats (Glock et al., 2011). But for a lot of species the pore-function still 

remains conjectural and it is even speculated that some species just build the pores on purely 

morphological grounds or just to provide organic continuity to the test exterior (Angell, 

1967). A better understanding of the pore-function would help to understand which metabolic 

adaptations help foraminifera to survive extreme (even anoxic) habitats, because species from 
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oxygen depleted environments generally show a high porosity. Furthermore it should be 

tested in how far pore-densities in some benthic species might be used as proxy to reconstruct 

environmental factors like the oxygen- or nitrate-concentrations. 

 

1.7.7.  Faunal reference list: 

• Ammonia beccarii (Linné) = Nautilus beccarii Linnaeus, 1758, p. 710, pl. 1, fig. 1. 

• Amphistegina lobifera (Larsen), 1976, p.11, pl. 3, figs. 1-5. 

• Bolivina doniezi (Cushman & Wickenden), 1929, p. 9, pl. 4, fig. 3a-b. 

• Bolivina pacifica (Cushman & McCulloch) = Bolivina acerosa Cushman var. pacifica 

Cushman & McCulloch,1942, p.185, pl. 21, figs. 2, 3. 

• Bolivina spissa (Cushman) = Bolivina subadvena Cushman var. spissa, Cushman 

1926, p. 45, pl. 6, fig. 8a-b. 

• Discorinopsis aguayoi (Bermúdez), 1935, p. 204, pl.15, figs. 10-14. 

• Globigerinella siphonifera (d’Orbigny) = Globigerina siphonifera d’Orbigny, 1839, 

pl. 4, figs. 15-18. 

• Globigerinoides ruber (d’Orbigny), 1839, p. 82, pl. 4, figs. 12-14. 

• Globigerinoides sacculifer (Brady), 1877 [type fig. not given], Brady, 1884: p. 604, 

pl. pl. 80, figs. 11-17. 

• Globorotalia tumida (Brady) = Pulvinulina menardii (d’Orbigny) var. tumida Brady, 

1877 [type fig. not given], Brady, 1884 pl. 103, figs. 4-6. 

• Hanzawaia nitidula (Bandy) = Cibicidina basiloba Cushman var. nitidula Bandy, 

1953, p. 178, pl. 22, figs. 3a-c. 

• Heterostegina depressa (d’Orbigny), 1826, p. 305, pl. 17, figs. 5-7. 

• Iridia diaphana (Heron-Allen & Earland), 1914, p.371, pl. 36. 

• Neogloboquadrina dutertrei (d’Orbigny) = Globoquadrina dutertrei d’Orbigny, 1839, 

pl. 4, figs. 19-21. 

• Operculina ammonoides (Gronovius) = Nautilus ammonoides Gronovius, 1781, p. 

282, pl. 19, figs. 5, 6. 

• Orbulina universa (d’Orbigny), 1839, p. 3, pl. 1, fig. 1. 

• Patellina corrugata (Williamson), 1858, p. 46, pl. 3, figs. 86-89, 89a. 

• Rosalina floridana (Cushman) = Discorbis floridana Cushman, 1922, p. 39, pl. 5, figs. 

11, 12. 
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Abstract 

Redox sensitive element ratios (Mn/Ca, Fe/Ca) were determined in tests of benthic 

foraminifera from the Peruvian oxygen minimum zone (OMZ) to test their potential as a 

proxy for redox conditions. Prior to the determination of the element/Ca ratios element 

distributions in tests of the shallow infaunal species Uvigerina peregrina and Bolivina spissa 

have been mapped with an electron microprobe (EMP). A Fe rich phase which is also 

enriched in Al, Si, P and S has been found at the inner part of the test walls of U. peregrina. 

This phase most probably represents the inner organic lining. The element distributions of a 

specimen treated with an oxidative cleaning procedure show the absence of this phase. EMP 

maps of B. spissa show similar success of the oxidative cleaning. Neither in B. spissa nor in 

U. peregrina any hints for diagenetic coatings have been found. Mn/Ca and Fe/Ca ratios of 

single specimens of B. spissa from different locations have been determined by secondary ion 

mass spectrometry (SIMS). Bulk analyses with ICP-MS of samples where enough specimens 

were available were compared to the SIMS data. The difference between SIMS analyses on 

single specimens and ICP-MS bulk analyses from the same sampling sites was 14.0 - 134.8 

µmol/mol for the Fe/Ca and 1.68 µmol/mol for the Mn/Ca ratios. This accounts to 3 - 29% for 

the Fe/Ca and 21.5 % for the Mn/Ca ratios of the overall variability between the samples of 

the different sampling sites. The Mn/Ca ratios were generally relatively low (2.21 – 9.93 

µmol/mol) but in the same magnitude as in the pore waters (1.37-6.67 µmol/mol). 

Comparison with pore water data showed that Mn/Ca in the foraminiferal calcite is 

proportional to the Mn/Ca ratio in the top cm of the pore water. The lowest Fe/Ca ratio in tests 

of B. spissa (87.0 µmol/mol) has been found at a sampling site which was strongly depleted in 

oxygen and showed a high, sharp iron peak in the top interval of the pore water. This hints 

that the specimens already were dead before the Fe flux started and the sampling site just 

recently turned anoxic due to fluctuations of the lower boundary of the OMZ where the 

sampling site is located (465 m water depth).  

 

2.1 Introduction 

Element ratios in foraminiferal calcite have been widely used to reconstruct chemical or 

physical properties in the ancient ocean. Due to their mechanism of biomineralisation the 

calcitic tests of laminated rotaliid foraminifera are directly precipitated from vacuolized 

seawater (Erez, 2003).  The chemical test composition thus directly reflects the chemical and 

physical conditions in the ambient seawater. Different element/Ca ratios are used as proxy for 

different parameters. Well established is the temperature reconstruction using the Mg/Ca ratio 
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(Nürnberg et al., 1996; Rosenthal et al., 1997; Hastings et al., 1998; Lea et al., 1999; 

Elderfield and Ganssen, 2000; Lear et al., 2002). But other proxies are utilized, too like the 

U/Ca ratio for redox state, seawater chemistry and CO3
2- tracing (Russel et al., 1994, 2004; 

Yu et al., 2008), Zn/Ca ratios for carbonate saturation (Marchitto et al., 2000) and Cd/Ca 

ratios as phosphate tracer (Boyle and Keigwin, 1985; Boyle, 1988; Bertram et al., 1995, Came 

et al., 2003). Recently a lot attention turned to the analyses of boron  isotopes in foraminiferal 

calcite for pH reconstruction via δ11B (Spivack et al., 1993; Sanyal et al., 1995; Palmer et al. 

1998; Pearson and Palmer, 2000; Sanyal et al., 2001; Palmer and Pearson, 2003; Ni et al., 

2007; Foster, 2008; Kasemann et al., 2009; Rollion-Bard and Erez, 2010; Rae et al., 2011). 

The V/Ca ratio has been suggested as a proxy for redox-conditions (Hastings et al., 1996a, 

b&c) while the Ba/Ca ratio has been shown to occur in direct proportion to seawater 

concentration (Lea and Boyle, 1991; Lea and Spero, 1992, 1994). Ba/Ca ratios have already 

been used to trace deglacial meltwater (Hall and Chan, 2004a) and deep and intermediate 

water mass circulation (Lea and Boyle, 1989; 1990a&b; Martin and Lea, 1998; Hall and 

Chan; 2004b). 

Diagenetic coatings often contaminate the test calcite of fossile foraminifera. These coatings 

strongly influence the measured element/Ca ratios and thus sometimes rigorous cleaning 

techniques have to be deployed. About three decades ago a procedure to remove these 

contaminants by rinsing crushed tests with distilled water/methanol to remove adhesive clays 

and removal of metal oxide coatings by reductive cleaning has been developed (Boyle, 1981). 

Later a procedure was developed to get rid of organic contaminations by using an additional 

oxidative cleaning step (Boyle and Keigwin, 1985). The influence of the different cleaning 

steps on the Mg/Ca ratios has been tested and it has been shown that the clay removal step is 

the most important one while the reductive cleaning step produces a downset of about 10-15% 

on the Mg/Ca ratios (Barker et al., 2003). Different cleaning techniques and their influence on 

eight elemental/Ca ratios have also been investigated by Yu et al. (2007). Also there have 

been experiments of cleaning by using a flow-through system with automated 

chromatographic equipment (Haley and Klinkhammer, 2002; Haley et al., 2005). In the 

system contaminant phases are chemically removed from the tests and the cleaned calcite is 

then dissolved in a stream of weak acid. The advantage of this method is that the different 

fractions could be collected separately and the measurements of contamination tracers like Fe 

could show in which fractions only clean dissolved foraminiferal calcite is collected. 

Furthermore the flow-through system could minimize the problem of readsorption of 

contaminant rare-earth-elements. As diagenetic contaminant phases Mn carbonates have been 
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identified as well as Mn and Fe rich oxyhydroxides with laser-ablation-ICP-MS (LA-ICP-

MS) and electron microprobe (EMP) mapping (Pena et al., 2005; 2008). Mn/Ca and Fe/Ca 

ratios therefore have often been used as tracer for diagenetic overprint of the samples. 

Nevertheless the researcher disagree what is considered an acceptable level of test Mn/Ca 

from 50 µmol/mol to > 150 µmol/mol (Boyle, 1983; Boyle and Keigwin, 1985; 1986; 

Delaney, 1990; Ohkouchi et al., 1994, Lea, 2003). But there exist approaches to use Mn/Ca 

ratios during the obvious absence of diagenetic coatings as a proxy for redox-conditions, too. 

The Mn/Ca ratio in Hoeglundina elegans has been used to trace suboxic conditions during 

sapropel formation (Fhlaitheartha et al., 2010). Also living stained specimens of H. Elegans 

from the oxygen minimum zone at the Arabian Sea show an increase of the Mn/Ca ratio at the 

lower boundary of the oxygen minimum zone (Reichart et al., 2003). Culture experiments on 

Ammonia tepida showed that Mn is incorporated into the test calcite in proportion to the 

concentration in the ambient water (Munsel et al., 2010) 

Several analytical techniques have been employed for analyses of element/Ca ratios or isotope 

systems in foraminiferal calcite. Techniques for multi-element analyses using only small 

sample volumes have been developed on sector field ICP-MS (Marchitto, 2006) and 

quadrupole ICP-MS (Yu et al., 2005; Harding et al., 2006). But also microanalytic methods 

have been deployed. The advantage of the EMP is that single foraminiferal tests can be 

analysed destruction free after preparation of highly polished sections. This is an important 

prerequisite for direct comparison with other low trace methods like secondary ion mass-

spectrometry (SIMS). Elemental EMP mappings and spot analyses of the test calcite could 

help to identify contaminant coatings and to analyse the distributions of trace elements inside 

the foraminiferal calcite for a better understanding for biomineralisation and improvement of 

the understanding of trace elements as paleoenvironmental proxies (Nürnberg, 1995; 

Nürnberg et al., 1996; Eggins et al., 2003; 2004; Sadekov, 2005; Toyofoko and Kitazato, 

2005; Pena et al., 2008). Also laser ablation techniques on single foraminifera have been used 

in the recent past (Wu and Hillaire-Marcel, 1995; Hathorne et al., 2003; Reichart et al., 2003; 

Pena, 2005; Munsel et al., 2010). Another valuable tool for foraminiferal microanalyses is 

secondary ion mass spectrometry (SIMS). Almost destruction free in the same way as the 

EMP, SIMS has been used to produce element mappings and determine element/Ca ratios in 

foraminiferal calcite (Allison and Austin, 2003; Sano et al., 2005; Bice et al., 2005; Kunioka 

et al. 2006) as well as analyses of δ11B  in single foraminifera (Kasemann et al., 2008; 

Rollion-Bard and Erez, 2009) and the determination of intratest variability of δ18O (Rollion-

Bard et al., 2008). Even much less distributed but powerful techniques like particle induced x-
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ray emission (Gehlen et al., 2004) or µ-synchroton XRF (Munsel et al., 2010) have been used. 

All these microanalytical techniques have in common that analyses could be deployed even 

on single foraminiferal specimens while for the wet chemical analyses typically bulk samples 

of 20-50 specimens are needed which make these methods favourable when there is no 

sufficient amount of specimens available, or an identification of heterogeneities and a better 

mechanistic understanding of element incorporation and distribution is required. 

In this study the shallow infaunal species Bolivina spissa is used for the determination of 

Fe/Ca and Mn/Ca ratios and the comparison of these ratios to the available pore water data. 

Studies on the pore density in Bolivina spissa showed a morphological adaptation of the test 

to different environmental conditions (Glock et al., 2011) which makes this species 

favourable for elemental analyses, too. Because of the relative widespread distribution among 

the Peruvian OMZ Bolivina spissa was available from habitats with a wide range of redox-

chemical conditions although at some sampling sites only a small amount of specimens was 

available. SIMS was used because of the limited availability and compared to ICP-MS data 

where enough specimens for bulk analysis where available. 

 

2.2 Material and Methods 

 

2.2.1 Sampling procedure 

Six short (12-26 cm) sediment cores from the Peruvian OMZ were considered for the present 

study (Table 2.1). The cores were recovered by using multicore technology during R.V. 

Meteor cruise M77/1 in October and November 2008. Within a couple of minutes after the 

multicorer came on deck, one tube was chosen from the array, and brought to a laboratory 

with a constant room temperature of 4°C. Supernatant water of the core was carefully 

removed. Then the core was gently pushed out of the multicorer tube and cut into 10-mm-

thick slices for benthic foraminiferal analysis. The samples were transferred to Whirl-Pak™ 

plastic bags and transported at a temperature of 4°C.  

Table 2.1. Sampling sites. [O2]BW taken from Glock et al. (2011). 

Site Longitude (W) Latitude (S) Water depth (m) [O2]BW (µmol/L) 
M77/1-421/MUC-13 75°34.82' 15°11.38' 519 - 
M77/1-455/MUC-21 78°19.23' 11°00.00' 465 2.42 
M77/1-487/MUC-39 78°23.17' 11°00.00' 579 3.7 
M77/1-565/MUC-60 78°21.40' 11°08.00' 640 8.17 
M77/1-604/MUC-74 78°22.42' 11°17.96' 878 34.23 
M77/1-445/MUC-15 78°30.02' 11°00.00' 928 36.77 
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One core was completely frozen, and later sliced and subsampled at IFM-GEOMAR, Kiel. 

The samples from these five cores were used to collect the foraminiferal specimens for the 

analysis. 

 

2.2.2 Foraminiferal studies 

The surface sediment samples corresponding to the top centimeter were washed over a 63-µm 

mesh sieve. The residues were collected in ethanol to prevent corrosion and dried at 50°C. 

They were further subdivided into the grain-size fractions of 63−125, 125−250, 250−315, 

315−355, 355−400, and >400 µm. Specimens of the shallow infaunal species Bolivina spissa 

for ICP-MS and SIMS analysis were picked from the 125−250 µm fraction, specimens of 

Uvigerina peregrina for the EMP analyses were picked from the 355-400 µm fraction.  

 

2.2.3 Cleaning methods 

For each ICP-MS analysis a bulk sample of 40 specimens of B. spissa was used. The tests 

were gently crushed between two glass plates. The test fragments were transferred into PE 

vials and rinsed three times with 18.2 MΩ millipore H2O (from Elga™ PURELAB Ultra). 

After each rinsing step the vials were put into a supersonic bath for 20 seconds. Afterwards 

the vials were rinsed three times with methanol and put into the supersonic bath for 1 minute 

after each rinsing step. The vials were rinsed again two times with 18.2 MΩ millipore H2O to 

remove residual methanol. An oxidative reagent was freshly mixed by adding 100 µl 30% 

H2O2 to 10 ml of a 0.1M NaOH solution. Subsequently 350 µl of this reagent were added to 

each vial. The vials were put into a waterbath at 92°C for 20 minutes. After another 20 

seconds in the supersonic bath the vials were rinsed two times with 18.2 MΩ millipore H2O to 

remove residues of the oxidative reagent. The test fragments were transferred into clean vials 

with a pipette. Into each vial 250 µl 0.001M HNO3 were added. The vials were put into the 

supersonic bath for 20 seconds. The extremely low acidic solution was removed and the vials 

were rinsed three times with 18.2 MΩ millipore H2O. The samples were dissolved in 300 µl 

0.075M HNO3, centrifuged and transferred into clean vials. Due to the risk of elevated Mn 

blanks the vials were replaced by Teflon beakers for Mn analyses (except for the cleaning step 

with 0.001M HNO3, the sample dissolution and the centrifugation). The cleaning procedure 

for the microanalyses was in general the same with a few exceptions. The specimens were not 

crushed and one vial was used for one single specimen. The first three rinsing steps with 18.2 

MΩ millipore H2O were skipped because specimens often lifted to the surface and got lost 

during the rinsing steps. The specimens were not transferred into a clean vial after the 
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oxidative cleaning step and were not dissolved. After the last cleaning step the specimens 

were individual collected over a 125 µm mesh stainless steel sieve. 

 

2.2.4 Microdrilling of the OKA calcite grain 

Preparation of a matrix matching standard for direct comparison and established 

normalization of high resolution methods and ICP-MS analyses. A square of 400 µm edge 

length was drilled 200 µm deep into a calcite crystal from the OKA carbonatite complex (for 

which Mg/Ca and Sr/Ca ratios are reported in Gaetani and Cohen, 2006) with a micromill by 

New Wave Research™. The gouged out powder was collected in a Teflon beaker and 

dissolved in 2% HNO3. The OKA was used in this study as reference standard for SIMS after 

Mn/Ca and Fe/Ca ratios were determined by ICP-MS. 

 

2.2.5 Preparation of crosssections for SIMS and EMP analyses 

The crosssection of the U. peregrina specimen shown in fig. 2.1 was prepared at the Alfred-

Wegener-Institute Bremerhaven. The specimen was embedded under vacuum into 

Araldite(TM) epoxy resin inside a stainless steel chamber. Afterwards the chamber was set 

under pressure to collapse air inclusions inside the resin and the resin was hardened at 60°C. 

The resin was grinded down with alumo-silica grinding paper until the centre of the specimen 

laid open. Afterwards the surface was polished with different grain sizes of alumo-silica and 

diamond paste down to 1 µm grain size. After each polishing step the surface was cleaned in a 

supersonic bath for a few seconds. 

All other cross-sections were prepared at the IFM-Geomar in Kiel. The U. peregrina 

specimens shown in fig. 2.2 and 2.3 were not vacuum embedded. They were embedded into 

epoxy resin. Afterwards they were grinded down by hand on alumu-silica grinding paper till 

the chambers were opened. Because the chambers were not filled with resin small drops of 

resin were used to fill the inner part of the chambers. The surface was polished with diamond 

paste of 5 µm grain size followed by alumo-silica paste of 1 µm grain size by hand on a self-

rotating polishing plate. After each polishing step the surface was cleaned in a supersonic bath 

for a few seconds. All other specimens including all specimens of Bolivina spissa were 

embedded under vacuum into Araldite(TM) epoxy resin using the CitoVac(TM) vacuum 

embedding system by Struehrs(TM). The resin was grinded down with alumo-silica grinding 

paper with the Tegra-Pol-21 system by Struehrs(TM) until the centre of the specimen laid 

open. Afterwards the surface was polished with different grain sizes of alumo-silica and 
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diamond paste until 1 µm grain size. After each polishing step the surface was cleaned in a 

supersonic bath for a few seconds. 

 

2.2.6 Electron microprobe mappings 

A JEOL JXA 8200 electron microprobe was used to generate element distribution maps for 

Ca, Mn, Fe, Mg, Ba, Al, Si, S and P within cross-sections of benthic foriminiferal test walls. 

Each cross-section was carbon coated before the measurements. The microprobe was operated 

in a wavelength dispersive mode by using different Kα X-ray lines for each element. Up to 

five spectrometers could be used to measure up to five elements simultaneously. The different 

spectrometer crystals which were used for the different elements are listed in table 2.2. An 

acceleration voltage of 15 kV and a beam current of 20 nA was used. The selected areas were 

mapped by using a step size of 0.5 µm and a dwell time of 500 ms. Results are illustrated as 

maps of relative measured intensities for the different elements. The JEOL JXA 8200 was 

also used to generate the secondary electron images of the foraminiferal cross-sections. 

Table 2.2. Spectrometer crystals used at the EMP for different elements. 

Element Crystal Element Crystal Element Crystal 

Ca PETJ Ba PETJ S PETH 
Mg TAPH Mn LIFH Si TAP 
Fe LIFH P PETH Al TAPH 
 

2.2.7 SIMS analyses 

The Mn/Ca and Fe/Ca ratio analyses in test cross-sections of B. spissa were performed using a 

Cameca ims 6f magnetic sector ion microprobe at the Helmholtz Centre Potsdam. Each cross-

section was cleaned twice ultrasonically in high purity ethanol prior to coating with a 35 nm 

thick, high purity gold coat. 

Analyses used a 200 pA, nominally 12.5 kV, mass filtered 16O- ion-beam which was focused 

to a diameter of circa 4 µm on the sample surface. Prior to each analysis the analytical 

location was presputtered for 300 s with the beam rastered over 10 x 10 µm raster followed by 

a second 3 minutes preburn with a static beam. During the first presputtering the 40Ca+ 

distribution was monitored using the dynamic ion imaging system of the instrument in order 

to improve the beam targeting on the thin walls of the test being investigated.  

The mass spectrometer of the SIMS was operated at a mass resolution M/∆M ≈ 6000 which is 

needed in order to separate the 55Mn peak from the isobaric 54Fe1H molecule. A 150 µm 

contrast aperture was used in conjunction with a 750 µm field aperture (equivalent to a 60 µm 

diameter field of view); no energy offset was employed and a 50 V wide energy window was 
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used. A single analyses consisted of 30 scans of the sequence 39.95 Da (0.1 s per cycle, used 

during the spot preburn), 40Ca (2 s), 55Mn (10 s), 56Fe (4 s) and 63Cu (4 s), resulting in a total 

data acquisition time of roughly 10 min.  

The OKA calcite grain was used as a reference material to convert raw Mn/Ca and Fe/Ca 

count rates into µmol/mol concentration values for which the concentration values of the 

microdrilled powder determined by ICP-MS were used. WHCG was analysed a total of n = 14 

times during our July 2010 analytical session, yielding a 1s repeatability of 1.5% for the 

observed Mn/Ca, 14.8% for Fe/Ca and 23.2% for Cu/Ca ratios. 

The test walls of Bolivina spissa are in general relatively thin (about 10 - 20 µm thickness). 

The test is perforated; however the pores with a diameter of about 6 µm are relatively big and 

easy to see on secondary electron images of the cross-sections. Each analysis targeted a region 

of a test wall that had preferably no pores so as to avoid measuring contaminations potentially 

accumulated inside the pores. Sub sequent to our SIMS session secondary electron images of 

the cross-sections were made to assess whether that SIMS ion beam was well focused and 

cantered on the middle of the test wall. Measurements which obviously were done partly on 

epoxy or at the edge of the test wall or which showed low Ca count rates were not used for the 

data evaluation.  All Cu measurements showed unexpectedly high 63Cu, for which we do not 

have an explanation. The Cu measurements have not been used in the data evaluation. 

 

2.2.8 Quadrupole ICP-MS analyses 

The analyses were performed on an Agilent 7500cx quadrupole ICP-MS. Operation 

conditions are listed in tab. 2.3. Instrument sensitivity was optimised by using of a 1 ppb Li-

Y-Tl-Ce-Mg-Co standard solution before the measurements. For sample introduction a 

microautosampler (Cetac ASX 100) coupled to a PFA self-aspiration nebulizer fitted to a 

glass spray chamber was used. Due to the small available sample volume (typically > 500 µl) 

the low sample uptake rate of the self aspiration system was an important feature during the 

analyses. The integration times were 0.1 s for 48Ca, 1 s for 55Mn and 2 s for 56Fe with 3 

repetition runs. An octopole collision cell flooded with H2 as reaction gas was used during the 
56Fe analyses to minimize interferences with 40Ar16O.   

Predilutions were prepared from certified ICP-MS grade stock solutions (10000 ppm for Ca, 

1000 ppm for Fe and Mn) by dilution with 2% HNO3. The working standards were made by 

mixing the predilutions with 2% HNO3 to give Ca concentrations of 10 ppm and Fe/Ca and 

Mn/Ca ratios in the magnitude of foraminiferal calcite. The concentrations for the different 

standard rows are listed in tab. 2.4. A second standard row with higher Mn concentrations was 
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prepared for the analyses of the Mn/Ca ratio in the OKA as well as a standard row for 

determination of Ca concentrations. About 50 µl of the samples were diluted to 250 µl first 

for the analyses of the Ca content.  The remainder was diluted to 10 ppm Ca to overcome 

matrix effects during the element ratio determinations. 

Table 2.3. Operation conditions for Agilent 7500cx. 

  value/description 

RF power 1500W 
Nebulizer PFA (100µl/min, self aspirating) 
Spray chamber Glass (cooled to 2°C) 
Autosampler Cetac ASX 100 
Uptake rate (µl/min) 100 
Washout time (s) 90 
Uptake time (s) 30 
Argon plasma gas flow rate (l/min) 15 
Argon auxiliary gas flow rate (l/min) 0,2-0,3 
Argon nebulizer gas flow rate (l/min) 0,8-0,9 
Sample cone Nickel (Agilent) 
Skimmer cone Nickel 

CeO/Ce and Ba2+/Ba+ ratios  <2,5% 
 

 

2.2.9 Pore-water data 

All pore-water data, discussed in this work are taken from Scholz et al. (in review). 

 

Table 2.4. Element concentration for the different standard rows used for ICP-MS. 
Standard Ca (ppm) Fe (ppt) Mn (ppt) 
Row 1 std 1 10 150 5 
Row 1 std 2 10 250 10 
Row 1 std 3 10 500 15 
Row 1 std 4 10 1000 50 
Row 1 std 5 10 3000 100 
Row 1 std 6 10 5000 150 
Row 2 std 1 10 0 10000 
Row 2 std 2 10 0 20000 
Row 2 std 3 10 0 50000 
Row 2 std 4 10 0 75000 
Row 2 std 5 10 0 100000 
Row 3 std 1 10 0 0 
Row 3 std 2 50 0 0 
Row 3 std 3 100 0 0 
Row 3 std 4 200 0 0 
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2.3 Results 

 

2.3.1 EMP mappings of Uvigerina peregrina  tests 

Several trace element distribution maps in uncleaned tests of U. peregrina and the associated 

SEM pictures are shown in fig. 2.1-2.3. Strong Mg-bends which are typical for the primary 

calcite in tests of bilaminated calcitic foraminifera can be seen nicely in fig. 1. The inner parts 

of the wall are highly enriched in iron. A slight iron enrichment is also present in the pores.  

The iron rich phase at the inner surfaces of the wall furthermore is enriched in Al, Si, P and S 

(fig. 2.2&2.3) which hints towards a presence of alumo-silicates (clays) and organic matter. 

There are accumulations of organic detritus present inside the chambers. These accumulations 

differ in their chemical composition strongly from the iron rich phase at the inner parts of the 

wall (less Fe and Ca, more S and P) (fig. 2.2).  The chemical composition of two cuts directly 

through layers of this iron rich phase is shown in fig. 2.3. The element mapping shows nicely 

the transition from the calcitic test walls into this iron rich phase. A trace element distribution 

map in a test section of an U. peregrina specimen treated with an oxidative cleaning is shown 

in fig. 2.4. In contrast to the element maps of the uncleaned specimens this specimen does not 

show an iron rich phase attached to the inner surface of the test.  

 
Figure 2.1. EMP elemental mappings for an Uvigerina peregrina specimen from 519 m water depth 

(M77-1-421/MUC-13) on an exposed section of the foraminiferal test. Distribution of Ca, Mg and Fe in 

the foraminiferal test. All intensity values are expressed in counts per second (cps) as shown in the 

color bars. A) Mg bands B) Fe rich phase at inner test surface and pores (C).   
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2.3.2 EMP of Bolivina spissa  tests 

Several trace element distribution maps in tests of B. spissa are shown in fig. 2.5-2.7. Maps 

are shown for uncleaned (fig. 2.5) and cleaned specimens (fig 2.6&2.7). In contrast to U. 

peregrina B. spissa does not show Mg-bands in the test walls. The inner parts of the test wall 

of the uncleaned specimen (fig. 2.5) are enriched in Fe and also the inner part of the test wall 

shows a Fe rich spot. These Fe rich phases are absent in the specimens which have been 

treated with an oxidative cleaning procedure (fig. 2.6&2.7) except in a pore of the specimen 

from 465 m water depth (fig. 2.7). All Ca distributions show strongly heterogenous patterns. 

These patterns can be recognized on secondary-electron (SE) and backscattered-electron 

(BSE) images, too (fig. 2.8). These images have been made after the mappings. The BSE 

images show that these structures look like some kind of porous bands in the test walls where 

the Ca maps show higher count rates.  

 

 
Figure 2.2. EMP elemental mappings and secondary electron image for an Uvigerina peregrina 

specimen from 579 m water depth (M77-1-487/MUC-39) on an exposed section of the foraminiferal 

test. Distribution of Ca, Mg, Fe, Ba, Mn, Al, S, Si and P in the foraminiferal test. All intensity values are 

expressed in counts per second (cps) as shown in the color bars. A) Fe rich phase at inner test 

surface B) organic detritus inside test chambers. 
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Figure 2.3. EMP elemental mappings and secondary electron image for an Uvigerina peregrina 

specimen from 579 m water depth (M77-1-487/MUC-39) on an exposed section of the foraminiferal 

test. Distribution of Ca, Mg, Fe, Ba, Mn, Al, S, Si and P in the foraminiferal test. All intensity values are 

expressed in counts per second (cps) as shown in the color bars. A) Fe rich phase at inner test 

surface 

 

Figure 2.4. EMP elemental mapping of a section from an Uvigerina peregrina specimen from 640 m 

water depth (M77-1-565/MUC-60) on an exposed section of the foraminiferal test treated with an 

oxidative cleaning procedure. Distribution of Mg, Fe, Mn, S and Ca in the foraminiferal test. All 

intensity values are expressed in counts per second (cps) as shown in the color bars. Note that no 

contaminant phases are visible in the Fe distribution. 



2.  Redox sensitive elements in foraminifera from the Peruvian oxygen minimum zone 

37 
 

 

Figure 2.5. EMP elemental mapping of a section from an uncleaned Bolivina spissa specimen from 

640 m water depth (M77-1-565/MUC-60) on an exposed section of the foraminiferal test. Distribution 

of Mg, Fe, Mn, S and Ca in the foraminiferal test. All intensity values are expressed in counts per 

second (cps) as shown in the color bars. Note that the Fe distribution shows a contaminant phase at 

the inner part of the test walls similar like the uncleaned specimens of U. peregrina. 

 

Figure 2.6. EMP elemental mapping of a section from a Bolivina spissa from 640 m water depth (M77-

1-565/MUC-60) on an exposed section of the foraminiferal test specimen treated with an oxidative 

cleaning procedure. Distribution of Mg, Fe, Mn, S and Ca in the foraminiferal test. All intensity values 

are expressed in counts per second (cps) as shown in the color bars. Note that no contaminant 

phases are visible in the Fe distribution. 
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Figure 2.7. EMP elemental mapping of a section from a Bolivina spissa from 465 m water depth (M77-

1-455/MUC-21) on an exposed section of the foraminiferal test specimen treated with an oxidative 

cleaning procedure.. Distribution of sodium, strontium, iron, manganese, and calcium in the 

foraminiferal test. All intensity values are expressed in counts per second (cps) as shown in the color 

bars.  Note that no contaminant phases are visible in the Fe distribution except inside a test pore. 

 

Figure 2.8. Cross section of a Bolivina spissa specimen from 640 m water depth (M77-1-565/MUC-60) 

with a secondary electron overview image in the middle. Close ups of sections of Ca-EMP mappings 

(Ca) secondary electron images (SE) and backscattered electron images (BSE) are shown. Note that 

the Ca distribution is reflected by the holey structures seen on the BSE images. 
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8. Secondary electron micrograph of a test section from a Bolivina spissa

measuring with SIMS. The spot diameter of the ion beam was about 4-5 µm. Data acquisition time 

was roughly 10 minutes. Estimated depth of the spot ~ 2 µm.

2.3.3 Redox sensitive elements in tests of Bolivina spissa  

The measured Mn/Ca and Fe/Ca ratios for the Ecrm752, the OKA calcite grain and the tests 

are listed in table 2.5 (ICP-MS), table 2.6 (SIMS) and table 

solution was used as internal reference standard for the ICP

analyses (mean Mn/Ca = 139.30 µmol/mol; mean Fe/Ca = 155.28 µmol/mol). Element ratios 

sufficiently high reproducibility with standard deviations of 4.02 

Ca) and 5.18 µmol/mol (Fe/Ca) between the different measurements. The 

Mn/Ca and Fe/Ca ratios for the Ecrm752 have also been determined in an inter laboratory 

Greaves et al., 2008). The data presented in our study are in accordance

the not centrifuged Ecrm752 where the Mn/Ca ratio ranged from 

mol/mol and the Fe/Ca ratio ranged from 97-220 µmol/mol between the different 

laboratories. The mean element ratios for the Oka calcite grain which was used as 

calibration standard for the SIMS analyses was also determined with ICP-MS (mean Mn/Ca = 

mol/mol; mean Fe/Ca = 541.33 µmol/mol). 

The Mn/Ca and Fe/Ca ratios in tests of Bolivina spissa are shown in fig. 2.

analyses for single specimens are plotted as well as the ratios from ICP

MS analyses on bulk solutions of several specimens. The ratios of the bulk samples compared 

 a maximal differences of 3 - 29% compared to the overall dat
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mol/mol). Element ratios 

ty with standard deviations of 4.02 

mol/mol (Fe/Ca) between the different measurements. The 

Mn/Ca and Fe/Ca ratios for the Ecrm752 have also been determined in an inter laboratory 

in our study are in accordance to 

centrifuged Ecrm752 where the Mn/Ca ratio ranged from 

mol/mol between the different 

laboratories. The mean element ratios for the Oka calcite grain which was used as cross 

MS (mean Mn/Ca = 

2.9. The mean ratios 

analyses for single specimens are plotted as well as the ratios from ICP-

MS analyses on bulk solutions of several specimens. The ratios of the bulk samples compared 

29% compared to the overall data 
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range between the different sampling sites, although the Mn/Ca ratio from the bulk analysis is 

a bit elevated compared to the microanalysis result (3.8 µmol/mol compared to 2.12 

µmol/mol). The Mn/Ca ratios range from 2.12 - 9.93 µmol/mol and thus are in general quite 

low. This falls far below the acceptable level of test Mn/Ca to prove the absence of diagenetic 

coatings from 50 µmol/mol to > 150 µmol/mol (Boyle, 1983; Boyle and Keigwin, 1985; 

1986; Delaney, 1990; Ohkouchi et al., 1994). The corresponding Fe/Ca ratios range from 

86.99 – 551.82 µmol/mol. Both element ratios show an increasing trend towards deeper water 

depths and higher bottom water oxygenation. The standard deviations between the different 

SIMS spots on single specimens are generally higher among the specimens from the deeper 

and better oxygenated sampling locations, too. They range from 0.37 – 5.91 µmol/mol for the 

Mn/Ca and from 23.06 – 392.98 µmol/mol for the Fe/Ca ratio. The Mn/Ca and Fe/Ca ratio for 

an uncleaned specimen of B. spissa is also shown in fig. 9 indicated by a green diamond. 

Compared to a specimen from the same sampling site, treated with oxidative cleaning, it 

shows an elevated Fe/Ca ratio and a slightly reduced Mn/Ca ratio. 

 

Figure 2.9. Mn/Ca and Fe/Ca ratios in tests of Bolivina spissa plotted against water depth and [O2]BW. 

Red squares indicate data points measured on bulk samples of 40 specimens with ICP-MS while 

diamonds indicate mean values from single specimens measured with SIMS. The specimens indicated 

by the black diamonds all have been treated with an oxidative cleaning procedure while the single 

green diamond represents an uncleaned specimen. Error bars on the SIMS data show the standard 

deviation between the different spots measured on a single specimen. Diamonds without error bars 

indicate mean values of only two measurements. 
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Table 2.5. Element/Ca ratios for different samples determined by ICP-MS. 

Material 
Mn/Ca 
(µmol/mol) 1σ (µmol/mol) 

Fe/Ca 
(µmol/mol) 1σ (µmol/mol) 

Ecrm752 148.3 10.7 150.1 9.8 
Ecrm752 138.2 2.8 150.1 8.0 
Ecrm752 137.7 2.1 150.3 7.9 
Ecrm752 137.8 1.5 157.3 3.5 
Ecrm752 138.3 1.4 157.1 4.5 
Ecrm752 138.3 3.7 159.0 5.1 
Ecrm752 136.5 1.7 163.1 1.4 
OKA 4942.0 57.8 547.7 10.3 
OKA 4875.6 181.4 523.1 12.8 
OKA 4973.4 54.7 553.2 5.5 
B. spissa M77-1-455/MUC-21 3.80 0.06 87.0 3.2 
B. spissa M77-1-487/MUC-38 142.0 3.1 
B. spissa M77-1-487/MUC-38 157.5 2.1 
B. spissa M77-1-565/MUC-60 160.6 3.2 
B. spissa M77-1-565/MUC-60 138.1 2.9 

2.3.4 Comparison to pore-water data 

The correlation between Mn/Ca ratios in the top cm of the pore water and Mn/Ca in tests of B. 

spissa from the same sampling locations are shown in fig. 2.11. The Mn/Ca ratios in B. spissa 

are generally higher at locations where Mn/Ca ratios are higher in the pore-waters.  

 

Figure 2.10. Fe pore water profiles for different sampling locations at 11°S off Peru (Red: M77-1-

455/MUC-21, 465 m. Green: M77-1-487/MUC-38, 579 m. Black: M77-1-445/MUC-15, 928 m). 
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Table 2.6. Element/Ca ratios of foraminiferal calcite determined by SIMS. 

Material 
Mn/Ca 
(µmol/mol) 

1σ 
(µmol/mol) 

Fe/Ca 
(µmol/mol) 

1σ 
(µmol/mol) 

B. spissa M77-1-455/MUC-21 1.68 0.53 108.2 9.7 
B. spissa M77-1-455/MUC-21 2.32 0.60 66.9 8.7 
B. spissa M77-1-455/MUC-21 2.02 0.61 117.2 10.1 
B. spissa M77-1-455/MUC-21 2.46 0.64 111.6 10.2 
B. spissa M77-1-487/MUC-38a 5.71 1.01 82.4 8.7 
B. spissa M77-1-487/MUC-38a 5.15 0.94 185.0 12.6 
B. spissa M77-1-487/MUC-38b 3.48 0.76 227.7 14.3 
B. spissa M77-1-487/MUC-38b 6.48 1.02 218.4 14.5 
B. spissa M77-1-487/MUC-38b 7.46 1.18 119.2 10.7 
B. spissa M77-1-565/MUC-60a 2.82 0.69 48.7 6.1 
B. spissa M77-1-565/MUC-60a 4.44 0.81 84.1 6.2 
B. spissa M77-1-565/MUC-60a 6.20 0.92 164.1 12.3 
B. spissa M77-1-565/MUC-60a 5.61 0.88 78.6 8.3 
B. spissa M77-1-565/MUC-60b 2.31 0.58 180.4 12.1 
B. spissa M77-1-565/MUC-60b 3.51 0.76 269.8 16.1 
B. spissa M77-1-565/MUC-60b 2.76 0.62 423.2 18.5 
B. spissa M77-1-565/MUC-60b 3.01 0.63 218.3 12.7 
B. spissa M77-1-604/MUC-74 5.29 0.89 216.8 13.2 
B. spissa M77-1-604/MUC-74 16.59 2.85 984.4 78.8 
B. spissa M77-1-445/MUC-15 9.97 1.23 420.5 21.7 
B. spissa M77-1-445/MUC-15 5.57 1.04 853.5 30.0 
B. spissa M77-1-445/MUC-15 3.14 0.72 72.1 8.3 
B. spissa M77-1-445/MUC-15 8.02 1.17 805.8 91.9 
 
Table 2.7. Mean element/Ca ratios in tests of single B. spissa specimens determined with 
SIMS. Standard deviations are from variability inside single specimens not analytical 
uncertainties. 

Material 
Mn/Ca 
(µmol/mol) 

1σ 
(µmol/mol) 

Fe/Ca 
(µmol/mol) 

1σ 
(µmol/mol) 

B. spissa M77-1-455/MUC-21 2.12 0.35 101.0 23.1 
B. spissa M77-1-487/MUC-38a 5.15 185.0 
B. spissa M77-1-487/MUC-38b 5.81 2.07 188.4 60.1 
B. spissa M77-1-565/MUC-60a 4.77 1.48 93.9 49.3 
B. spissa M77-1-565/MUC-60b 2.90 0.50 272.9 106.7 
B. spissa M77-1-604/MUC-74 9.93 5.91 551.8 393.0 
B. spissa M77-1-445/MUC-15 6.67 2.96 538.0 366.1 
 

The Fe concentrations among the pore water profiles of three sampling locations are shown in 

fig. 2.10. The core from the shallowest most oxygen depleted sampling site shows a sharp Fe 

peak with high Fe concentrations in the top 2 cm of the pore waters. In contrast to this profile 
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the Fe/Ca ratios in tests of B. spissa from this location are the lowest found among all 

samples.  The Fe concentration in the pore waters from the deeper sampling locations show a 

more typical behaviour with increasing concentrations at sediment depths where the Fe 

reduction starts.  

 

Figure 2.11. Correlation between the Mn/Ca ratio in tests of Bolivina spissa to the Mn/Ca ratio in the 

top cm of the pore water from the same sampling location. Red squares indicate data points measured 

on bulk samples of 40 specimens with ICP-MS while black diamonds indicate mean values from single 

specimens measured with SIMS. Error bars on the SIMS data show the standard deviation between 

the different spots measured on a single specimen. Diamonds without error bars indicate mean values 

of only two measurements. 

 

2.4 Discussion 

 

2.4.1 Chemical test composition of Uvigerina peregrina  

The trace element mappings of Uvigerina peregrina cross-sections show an iron rich phase 

which is strongly enriched in different elements. This phase seems to be similar like 

“coatings” which have been found in the inner chamber walls of Globigerinoides ruber 

(Gehlen et al., 2004). But due to the high organic content (enriched in P and S) it seems like 

this phase belongs to the inner organic lining of the test and not to a diagenetic coating. The 

cements in tests of several agglutinated foraminifera and the test walls of several allogromiids  
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Figure 2.12. Pore water profiles for Fe at different water depths at the Peruvian OMZ. The bracket 

indicates the boundaries of the OMZ where bottom water oxygen concentrations fall below 2 µmol/kg. 

Profiles taken from Scholz et al. (submitted). 
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show a similar chemical composition (Bertram and Cowen, 1998; Gooday et al., 2008). Also 

it is typical that the organic cements of agglutinated foraminifera contain a stabilizing, 

ferruginous component (Bender, 1989). These similarities in the organic test components of 

calcareous, agglutinated and allogromiid foraminifera suggest an evolutionary connection 

between these test components.  

The accumulations of organic detritus inside the test walls of the U. peregrina specimen 

shown in fig. 2.2 are most probable remainings of deposit feeding. Deposit feeding and the 

accumulation of organic detritus in living specimens of U. peregrina have been documented 

by Goldstein and Corliss (1994). The complete difference in the chemical composition of 

these accumulations compared to the lining inside of the test wall makes the suggestion that 

this lining consists of remaining clay and other sediment particles from food vacuoles 

agglutinated to the inner test wall very unreasonable. The elevated Fe concentrations inside 

the pores also show the presence of this lining. Thus in microanalytical techniques like EMP, 

SIMS or LA-ICP-MS it should be avoided to measure at the porous parts of the test walls, 

because the inner organic lining, also present in the test pores, shows, partly due to the 

presence of clay particles, strongly elevated  concentrations in several trace elements, even 

Mg.  

The element mappings show no hints for ferro-manganese-oxide coatings which is most 

probably related to the highly reducing conditions in the pore waters at the OMZ off Peru. At 

least for recent samples a reductive cleaning for chemical analyses seems to be not necessarily 

required. The comparison of the uncleaned specimens with a specimen treated with an 

oxidative cleaning shows that the oxidative cleaning removes the contaminant Fe rich phase at 

the inner surface of the test walls. This hints again that this phase represents more the inner 

organic lining of the test than a diagenetic coating. Also it proofs the value of the oxidative 

cleaning for the minimization of contaminations inside foraminiferal tests. 

 

2.4.2 Chemical composition of Bolivina spissa tests 

An iron rich phase present in the uncleaned specimens of U. peregrina and B. spissa seems to 

be absent in specimens of B. spissa treated with an oxidative cleaning procedure. To minimize 

contaminations during the microanalysis of foraminiferal tests it is absolutely necessary to use 

an oxidative cleaning step during sample preparation. But even after intense oxidative 

cleaning there seem to be still contaminations left inside the test pores. Thus it should be 

avoided to measure parts of the tests where pores are present. This might be especially 

complicated during the analyses of foraminifera with a high pore-density with laser ablation 
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due to the spot diameter (50 - 80 µm) required for low concentration measurements on Q-

ICP-MS.  Nevertheless the test walls seem to be contamination free after the oxidative 

cleaning where no pores are present. The element/Ca ratios measured with SIMS in the tests 

of the cleaned B. spissa specimens should therefore represent the element/Ca ratios of the test 

calcite. This might be more complicated during the presence of diagenetic oxyhdroxide or Mn 

carbonate coatings. In this case EMP mappings should be used as pre-investigation to locate 

these coatings and for identification of the measurement spots in the contamination free areas. 

Additionally the effectivity of a reductive cleaning treatment could be analysed by EMP 

mapping by comparing cleaned and uncleaned specimens. 

The strong Mg-bends present in U. peregrina are not visible in B. spissa. This might be 

explained by the fact that bolivinidae construct their tests in a monolamellar concept without a 

second phase of calcite between the different layers (Sliter, 1974). 

Still enigmatic remain the heterogeneous patterns in Ca distribution. The Ca count rates are 

higher where these holey structures are visuable in the BSE images. This appears to be 

contradictable because in this case the Ca concentration would be higher at spots of low 

density. Thus it is probable that the higher Ca count rates in the holey structures are rather 

artifacts due to topography related analytical problems with. It seems likely that the high 

energetic X-ray beam pitted the surface of the sample by burning more volatile parts of the 

test wall.  

 

2.4.3 Redox sensitive elements in pore waters and Bolivina spissa 

 

2.4.3.1 Mn/Ca ratios 

Reductive dissolution of reactive Mn (oxyhydr)oxides in the surface sediments drive the Mn 

flux across the benthic boundary (Froelich et al., 1997; Burdige et al., 1993; Pakhomova et al., 

2007; Noffke et al., submitted; Scholz et al., submitted). The Mn concentrations and thus the 

Mn/Ca ratios are relatively low in the pore waters from the OMZ off Peru since most of the 

Mn delivered to the OMZ is already reduced in the water column (Böning et al., 2004; Scholz 

et al., submitted).The Mn/Ca ratios in tests of B. spissa and the Mn concentrations in the top 

cm of the pore waters are generally relatively low and show an increasing trend with higher 

bottom water oxygenation. At a first glance these results appear to be confusing because 

usually solid MnO2 is rapidly reduced to soluble Mn2+ in oxygen depleted pore waters. Thus it 

is expectable that Mn concentrations are elevated in the top pore water interval when bottom 

water oxygen is depleted. Indeed the permanently anoxic OMZ off Peru causes MnO2 
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reduction to occur already in the water column, and hence only minor amounts of particulate 

bound Mn arrive at the seafloor (Böning et al., 2004). Even if the pore water conditions are 

highly reducing only little Mn can be mobilised due to the absence of particulate MnO2. At 

deeper water depths below the OMZ the oxygen concentration starts to rise again and soluble 

Mn2+ can be oxygenated to MnO2 which again settles down to the seafloor. Thus at the deeper 

sampling locations the Mn concentrations in the top pore water intervals can be higher due to 

the higher reservoir in particulate MnO2 although (or in this case because) the bottom water 

oxygen concentrations are higher. As already mentioned even the Mn/Ca ratios in B. spissa 

reflect these conditions. These results can be used to interpret downcore profiles of Mn/Ca 

ratios in benthic foraminifera from the Peruvian OMZ. Elevated Mn/Ca ratios would hint to 

higher oxygen concentrations during this time due to a higher MnO2 flux to the ground. 

The Mn/Ca and the Fe/Ca ratios both obviously show a higher variability in tests of B. spissa 

from habitats with elevated [O2]BW. Infaunal foraminiferal species are able to migrate 

vertically in the sediments to where food availability and oxygenation meet their individual 

requirements (Jorissen et al., 1995; Duijnstee, 2003). At higher [O2]BW and thus a deeper 

oxygen penetration depth B. spissa might be able to migrate deeper into the sediments. In this 

case individual specimens would be exposed to a wide range of Mn and Fe concentrations in 

the pore waters among their lifetime. The comparison between the cleaned and the uncleaned 

specimen from 640 m water depth (M77-1-565/MUC-60) shows that the uncleaned specimen 

has an elevated Fe/Ca and a slightly reduced Mn/Ca ratio. The elevated Fe/Ca ratio originates 

most probably from the contamination of that Fe rich phase which could be seen on EMP 

mappings of the uncleaned B. spissa and U. peregrina specimens. The slightly lower Mn/Ca 

ratio might be more a variability in the lattice bound Mn concentrations between different 

specimens. 

 

2.4.3.2 Fe/Ca ratios and comparison to the pore waters  

The Fe pore water profiles show more typical concentration levels as compared to Mn. 

However, the interpretation of the Fe/Ca ratios in B. spissa is complex in this regard because 

they appear to contradict the trend of the pore water concentrations: The lowest foraminiferal 

Fe/Ca ratios were found at 465 m water depth, a location with a strong sharp Fe peak in the 

pore water next to the sediment surface. Note, no living specimens of B. spissa were found at 

this location during sampling time although a very high amount of dead tests was present. At 

the two other sampling locations where pore water profiles are available (579 and 928 m 

water depth) living specimens of B. spissa could be found during sampling time (Mallon et 
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al., in press). In the centre of the OMZ B. spissa is completely absent (Glock et al., 2011). 

This suggests that B. spissa needs at least trace amounts of oxygen to survive or enough 

nitrate for denitrification.  

A likely scenario, which can explain all observations and facts outlined above is that the 

habitat only recently turned anoxic causing the death of high numbers of B. spissa. The 

subsurface peak of Fe is likely the result of enhanced Fe-reduction, which formed after a 

phase of oxygenation and enhanced deposition and/or precipitation of Fe-(oxyhydr)oxides at 

the sediment surface (Scholz et al., submitted). The sampling site at 465 m water depth is 

located at the lower boundary of the Peruvian OMZ where ingression of oxygenated water 

masses occurs episodically. Overall, this means that the Fe mobilisation in the pore waters 

most likely started only after their death so that the Fe could not be incorporated into the test 

calcite anymore. Also the habitat either experienced a long phase of oxygenation short time 

before or these phases have to occur periodically over, because high amounts of dead B. 

spissa have been found in the top 3 cm of the sediment. These phases of oxygenation have to 

be at least long enough for B. spissa to survive and build up relative big sociations.  

Some iron pore water profiles from different water depth at 11°S (taken from Scholz et al., 

submitted) are shown in fig. 12. The shallowest sampling site at the lower boundary of the 

OMZ (85 m) shows relatively high Fe concentrations in the pore water which might be partly 

due to an increased supply of detrital (oxyhydr)oxides from the continent (Suits and Arthur, 

2000; Scholz et al., submitted). Very likely another portion of iron supply at this station has 

been delivered through lateral transport in the water column from deeper sediments in the 

center of the OMZ and the dissolved Fe is re-oxidized and deposited at the shallower shelf in 

times of shelf oxygenation. This Fe pool is reduced again when anoxic conditions re-establish 

and leads to the relatively high pore-water concentrations compared to the stations in the 

center of the OMZ (Noffke et al., submitted; Scholz et al., submitted). The pore water profiles 

in the permanent anoxic part of the OMZ (319m, 410 m) show relatively low Fe 

concentrations while the peak at 465 m water depth again is similar to this one at 85 m 

although it is not distinctive. Although most probably the continental input is missing at this 

station it might be that dissolved Fe has been delivered here by lateral transport in the water 

column from sediments at the centre of the OMZ. In this case as already mentioned oxygen 

supply from the deeper water masses might have lead to re-oxygenation of the dissolved iron. 

The new formed (oxyhydr)oxides are reduced again when anoxic conditions re-establish at 

this sampling site which again leads to these relatively high Fe concentrations in the shallow 

pore-water. The trend of the higher pore water concentrations with increasing water depth at 
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the deeper stations (579 m, 928 m) reflects the transition from sulphate reduction to iron 

reduction. This trend is reflected by the Fe/Ca ratios in B. spissa, too. 

 

2.5 Conclusions 

An iron rich phase has been found at the inner surface of the test walls and also in the pores of 

several specimens of U. peregrina. This phase most probably represents the inner organic 

lining. The lining is also enriched in Al, Si, P and S. Similar compositions have been found in 

test walls of allogromiids and the cements and inner organic lining in the agglutinated tests of 

textulariids (Bender, 1989; Bertram and Cowen, 1998; Gooday et al., 2008). This points to an 

evolutionary connection between these test components. The contaminant Fe rich phase could 

be efficiently removed from the walls with an oxidative cleaning procedure. A similar phase 

enriched in Fe could be removed from the inner parts of the test walls of B. spissa with 

oxidative cleaning, too. Nevertheless, even after the oxidative cleaning Fe was still enriched 

in the pores. Thus an oxidative cleaning procedure is essential to minimize the influences of 

non-lattice bound signatures during the determination of element/Ca ratios even for 

microanalytical methods. Furthermore it should be avoided to measure at parts of the test wall 

where pores are present. None of the EMP maps shows any hint for diagenetic coatings. 

Therefore a reductive cleaning for the determination of element/Ca ratios was not necessary. 

For minimisation of the whole procedure blank and the loss of sample material it is a good 

choice to avoid unnecessary cleaning steps. 

A comparison of Fe/Ca and Mn/Ca ratios in tests of B. spissa determined with SIMS and ICP-

MS showed that the results of these two techniques agree in a maximal differences of 3 - 29% 

compared to the overall data range between the different sampling sites. The low Mn/Ca 

ratios are in the same magnitude as in the pore waters. The low Mn concentrations in the pore 

waters originate most propably from the strong oxygen depletion in the water column of the 

Peruvian OMZ. Most MnO2 is already reduced in the water column and does not settle down 

to the sediments. The Mn/Ca ratios in B. spissa correlate with the Mn/Ca ration in the top cm 

of the pore water. Thus Mn/Ca ratios in benthic foraminifera from the Peruvian OMZ could 

be used to trace the amount of oxygen depletion in the OMZ. In downcore proxy application 

higher Mn/Ca ratios would indicate a better oxygenation because more MnO2 settles down to 

the seafloor, being remobilised in the pore waters. Several observations at a strongly oxygen 

depleted location, like low Fe/Ca ratios in B. spissa, a strong sharp Fe peak in the top interval 

of the pore water and the presence of a high amount of dead but no living specimens of B. 

spissa, hint that this site just recently turned anoxic. Therefore the Fe flux out of the sediment 
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started after the death of B. spissa at this site. The sharp peak also might hint that ironoxides, 

that precipitated in a period of higher oxygen supply, just started to get remobilised when the 

sediment turned anoxic again.  

The fact that the Fe/Ca ratios in B. spissa reflect not always the pore water conditions might 

complicate approaches in paleoreconstruction in contrast to the Mn/Ca ratios which seem to 

be a very promising tool. Nevertheless, future downcore studies will show the value of these 

proxies in paleoreconstruction. 
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Abstract 

The pore-densities (PD) in the tests of 232 specimens of the shallow infaunal foraminiferal 

species Bolivina spissa from eight locations off the Peruvian continental margin were 

investigated and compared to different environmental factors as water-depth, temperature, 

bottom-water oxygen ([O2]BW) and nitrate concentrations ([NO3
–]BW). There is a negative 

exponential PD-[O2]BW correlation,  but at oxygen-concentrations >10 µmol/l PD approaches 

a constant value without any further correlation to [O2]BW. The PD-[NO3
–]BW relationship is 

better constrained than that for PD-[O2]BW. We hypothesize that the pores in the tests of B. 

spissa largely reflect the intracellular nitrate, and to a smaller extent the oxygen respiration. 

We also compared PD and porosity (P) of two single B.spissa and B.seminuda specimens 

from the same habitat. The comparison showed that P is significantly higher in B.seminuda 

than in B. spissa indicating that B.seminuda is much better adapted to strong oxygen-depleted 

habitats than B. spissa. 

 

3.1 Introduction 

The density and size of pores, developed only in rotaliid calcareous species, are important 

morphological features. Their shape, size and density are used as diagnostic features for the 

discernation of several species (Lutze, 1986). In earlier publications it has been suggested that 

pores promote the uptake of oxygen and the release of metabolic CO2 (Hottinger and Dreher, 

1974; Berthold, 1976; Leutenegger and Hansen, 1979). Some benthic species tolerant of low 

oxygen show their mitochondria (cell organelles involved in respiration) were more abundant 

near the pores than in other species from well-oxygenated waters implying an evolutionary 

linkage between pores and mitochondria (Leutenegger and Hansen, 1979; Sen Gupta and 

Machain-Castella, 1993). Later observations revealed that mitochondria were also 

concentrated in apertural cytoplasm (Bernhard and Alve, 1996) and can also move through 

cytoplasm and pseudopodia (Doyle, 1935). Recent studies performed on Bolivina pacifica 

(Cushman and McCulloch) showed again a clustering of mitochondria at the inner pore face 

while outer part of the pore void was inhabited by a rod-shaped microbial ectobiont of 

unknown identity and physiology (Bernhard, Goldstein and Bowser, in press). Other 

investigations suggested that low metabolic rates in oxygen-depleted habitats decrease the 

secretion of calcite and thus result in thinner, more-porous, and less-ornamented tests 

(Hendrix, 1958; Harmann, 1964; Kaiho, 1994). Generally, species of benthic foraminifera 

from oxygen poor habitats showed relatively high PD and P values as well as pore-size, which 

has been proposed as morphological low-oxygen indicator (Kaiho, 1994). The influence of 
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oxygen concentrations on PD and pore size was observed within single foraminiferal species. 

For instance, Hanzawaia nitidula (Bandy) from the oxygen minimum zone (OMZ) in the Gulf 

of Tehuantepec show more and larger pores than specimens from oxygenated waters (Perez-

Cruz and Machain-Castillo, 1990). Furthermore, laboratory cultures of Ammonia beccarii 

(Linné) show an increase in pore-size under low-oxygen conditions (Moodley and Hess, 

1992). These observations denote the potential of using the pore size and PD as a proxy for 

recent and past oxygen variations in their habitats. 

Here, we explore the relationship between [O2]BW , [NO3]BW and PD of the shallow infaunal 

species Bolivina spissa (Cushman) from the OMZ off Peru. Additionally, we will compare the 

PD relative to each other and with other environmental parameters as to water depth and 

temperature. The OMZ at the Peruvian continental margin extend from 50−550 m in depth. 

Bolivina spissa was found between 200−1200 m within and below the OMZ (Resig, 1990). 

The latter species is very tolerant to variations in oxygen concentrations. Ultrastructural 

analyses show that B. spissa possesses peroxisomes to convert H2O2 into water and oxygen 

(Bernhard 2001). Actually B. spissa can survive at least some time without oxygen and with 

increased H2O2 concentrations (Bernhard and Bowser, 2008). This makes this specie highly 

suitable for our investigations. 

 

3.2 Materials and Methods 

 

3.2.1 Sampling Procedure 

Seven short sediment cores from the Peruvian OMZ were considered for the present study 

(Fig. 3.1, Table 3.1). The cores were recovered by using multicore technology during R.V. 

Meteor cruise M77/1 in October and November 2008. One additional core was sampled 

during R.V. Meteor cruise M77/2 in November and December 2008. Within a couple of 

minutes after the multicorer came on deck, one tube was chosen from the array, and brought 

to a laboratory with a constant room temperature of 4°C. Supernatant water of the core was 

carefully removed. Then the core was gently pushed out of the multicorer tube and cut into 

10-mm-thick slices for benthic foraminiferal analysis. The samples were transferred to Whirl-

Pak™ plastic bags and transported at a temperature of 4°C. One core was completely frozen, 

and later sliced and subsampled at IFM-GEOMAR, Kiel. The samples from these eight cores 

were used to collect the specimens for the analysis of PD. Core-doubles from six locations 

were sampled for supernatant water and pore-water for the analysis of nitrate-concentrations 

in the same temperature-controlled laboratory like the other cores. Supernatant water was 
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        A  

 

 
Figure 3.1. A Study area and B oxygen distribution at 11°S off Peru (water-column  oxygen profile from 

M77/1-424/CTD-RO-9); C Nitrate distribution between 10°30' −11°15'S (data from six CTDs at different 

water depths). 
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collected with a syringe and filtrated via a syringe filter (0.2-nm cellulose-acetate filters) into 

a small PTFE-bottle. 

The core-tube was placed in a glove bag flooded with argon to preserve pore water from 

oxygen contamination. The core was pushed out of the multicorer tube and was cut into 10-

mm-thick slices and transferred into centrifuge tubules. The pore water was separated from 

sediments with a cooled centrifuge. The supernatant pore-water was also filtrated with a 

syringe-filter (0.2 nm cellulose-acetate filters) under argon atmosphere. 

For 12 stations one separate multicorer tube was chosen to study benthic foraminifera that 

were living at the time of sampling (Tab. 3.2). The cores were sliced in 2- or 5-mm intervals 

from 0−10 mm, in 5-mm intervals from 10−40 mm, and in 10 mm intervals from 40−50 mm 

sediment depth in order to resolve the microhabitat depth structure. The samples were filled in 

PVC bottles, stained and preserved with a solution of 2 grams rose Bengal per liter of ethanol. 

Afterwards the samples were stored and transported at 4°C to IFM-GEOMAR, Kiel. 

 
Table 3.1. Locations sampled for pore-density determination. (* indicates that [NO3

−]BW was 
interpolated from the closest measured data points in the profile of [NO3

−]BW.). 
 
Site 

Longitude 
(S) 

Latitude 
(W) 

Water depth 
(m) 

[O2]BW 
(µmol/L) 

[NO3
−]BW 

(µmol/L) 
 
M772-031-1 St694 79°26.88' 9°02.97' 114 1.07 18.30 
M77/1-455/MUC-21 78°19.23' 11°00.00' 465 2.42 34.02 
M77/1-516/MUC-40 78°21.00' 10°59.00' 513 2.40 36.08 
M77/1-487/MUC-39 78°23.17' 11°00.00' 579 3.70 38.84 
M77/1-565/MUC-60 78°21.40' 11°08.00' 640 8.17 40.10* 
M77/1-459/MUC-25 78°25.60' 11°00.02' 698 12.55 40.98 
M77/1-604/MUC-74 78°22.42' 11°17.96' 878 34.23 40.82* 
M77/1-445/MUC-15 78°30.02' 11°00.00' 928 36.77 40.75 

 

3.2.2 Foraminiferal Studies 

The surface sediment samples corresponding to the top centimeter were washed over a 63-µm 

mesh sieve. The residues were collected in ethanol to prevent corrosion and dried at 50°C. 

They were further subdivided into the grain-size fractions of 63−125, 125−250, 250−315, 

315−355, 355−400, and >400 µm. Up to 40 specimens of the shallow infaunal species 

Bolivina spissa and B. seminuda Cushman were picked from the 125−250 µm fraction. The 

larger fractions were considered when a sufficient number was not found in the 125−250 µm 

fraction. The 3 specimens shown in Figure 3.4 were mounted on aluminum stubs, sputter-

coated with gold, and photographed with a CamScan-CS-44 scanning electron microscope 

(SEM) at the Christian-Albrecht-University in Kiel. All other specimens were mounted on 
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aluminum stubs and photographed with a Zeiss™ Leo VP 1455 SEM at the Geological-

Palaeontological Institute of Hamburg University. Samples were not coated with a conductive 

layer to save them for further chemical analyses. To compensate charging effects on the 

specimens, the SEM was operated in a high pressure mode. Areas on the tests of the 

specimens were determined with Zeiss™ AxioVision 4.7. The pores from 232 specimens of 

B. spissa were counted on SEM photographs, and the pore diameter was assessed for a single 

specimen. Only megalospheric specimens were used for the analysis. All visible pores of a 

specimen were recorded. Because of the spatulate shape of the tests of B. spissa, we consider 

the pores recorded as half of all pores the specimen had. Additionally the PD and P of a single 

specimen of B. seminuda were determined. In this case pores were counted solely in an area 

of 10,000 µm2 because of the strong homogeneity of pore distribution and the clavate shape of 

B. seminuda. 

The rose Bengal-stained samples were washed on sieves with mesh sizes of 2,000 µm and 63 

µm. The 63−2,000-µm size fraction was oven-dried at 50°C and weighed afterwards. The 

dried residues were divided with an Otto microsplitter until at least 300 well-stained 

individuals were counted. Specimens were picked onto Plummer cell slides, sorted by species, 

glued and tallied. The lengths of Living specimens were photographed taken with a MPX2050 

CCD-camera from AOS™ coupled with a Navitar™ 6.5× zoom. The lengths of only well-

preserved specimens were determined from these images with Zeiss™ AxioVision 4.7. 

 

Table 3.2. Locations sampled for species distribution and test length determinations. 

Site 
Longitude 

(S) 
Latitude 

(W) 
Water 

depth (m) 
 
M77-1-449/MUC19 11°26.01’ 78°09.97’ 319 
M77/1-456/MUC-22 11°00.013’ 78°19.23’ 465 
M77/1-459/MUC-25 11°00.03’ 78°35.60’ 697 
M77/1-470/MUC-29 11°00.02’ 77°56.60’ 145 
M77/1-473/MUC-32 11°00.01’ 78°09.94’ 317 
M77/1-482/MUC-34 11°00.01’ 78°14.17’ 375 
M77/1-516/MUC-40 11°00.00’ 78°20.00’ 511 
M77/1-540/MUC-49 11°00.01’ 77°47.40’ 79 
M77/1-553/MUC-54 10°26.38’ 78°54.70’ 521 
M77/1-616/MUC-81 12°22.69’ 77°29.05’ 302 
M77/1-622/MUC-85 12°32.757’ 77°34.76’ 823 
M772-005-1 St.635 12°05.66’ 77°40.07’ 214 
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3.2.3 Environmental Parameters 

Oxygen concentrations and temperatures in the water column were measured with a CTD-

sensor. The oxygen sensor of the CTD was calibrated by Winkler titration of water samples 

taken during the respective CTD casts. Immediatly after retrieval, the CTD water was 

carefully subsampled into Winkler (~10 ml) flasks and the oxygen content was fixed 

immediatlely using 0.1 ml manganese (II) chloride and 0.1 ml alkaline iodide (Grasshoff et 

al., 1983). Oxygen concentrations were determined within 12 h by Winkler titration. 

Nitrate concentrations in pore and bottom waters were measured onboard using a Metrohm 

761 compact ion-chromatograph equipped with a Methrom/Metrosep A SUPP5 anion-

exchange column (150/4.0 mm) and solution of Na2CO3 (3.2 mM) with NaHCO3 (1.0 mM) as 

eluent. The IAPSO seawater standard was used for calibration. For two sampling sites 

(M77/1-565/MUC-60 and M77/1-604/MUC-74) [NO3
–]BW was interpolated from the closest 

station on the 11°S transect, where [NO3
−]BW was measured. The nitrate profile (Fig 3.1c) 

implies an error of ~2 µmol/L for the interpolated data. 

 

 
Figure 3.2. A Depth distribution of the relative abundance of Bolivina spissa in the study area (Resig, 

1990). Brackets indicate the center of the OMZ, where no specimens were found in this study; B 

Depth distribution of B. seminuda in the study area. 
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3.3 Results 

 

3.3.1 Species Distribution 

Most specimens of Bolivina seminuda were found in samples from the central part of the 

OMZ. Bolivina seminuda was rare below the lower OMZ boundary (Fig. 3.2a) and B. spissa 

was missing from the OMZ centre. Living specimens of B. spissa could only be found at two 

sample locations, although dead individuals were present in all samples from 160−1200 m 

water depth except in the OMZ center from about 200−410 m water depth (Fig. 3.2b). This 

correlates with the depth distribution of B. spissa at the Peru-Chile-trench that was 

documented by Resig (1990). Empty tests of B. spissa were common at the lower boundary of 

the OMZ and became rare with increasing water depth. The absence of living B. spissa may 

be due to a strong seasonality in the abundance of living individuals, such as that which had 

been documented for B. spissa in the San Pedro Basin of the California Borderland, where its 

maximum abundance was in July (Silva et al., 1996). At Sagami Bay, Japan, the standing 

stock of B. spissa increased during spring (Nomaki et al., 2006). Furthermore, B. spissa is 

known to selectively ingest certain types of phytodetritus precipitated from the surface waters 

(Nomaki et al., 2006), indicating that its live cycle is related to phytoplankton blooms. 

 
Figure 3.3. Comparison of A Bolivina spissa and B B.seminuda from the same location (M77/1-487-

MUC-38; 579 m water depth). 
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3.3.2 Inter-Species Variation in Pore Density and Porosity 

 

The depth ranges of dead Bolivina spissa and living B. seminuda overlap in the lower part of 

the OMZ (Fig. 3.2). In order to create a consistent data set of pore properties, we assessed the 

difference between the species in a sample where both were found (Fig. 3.3). The PD of B. 

seminuda was more than double that of B. spissa. Although the pore diameter of B. seminuda 

is slightly smaller than that of B. spissa, the P given as void-to-surface ratio is higher in B. 

seminuda (Table 3.3). 

 
Table 3.3. Characteristics of the bolivinids shown in Figure 3. 

 

3.3.3 Variability of Pore Density in Tests of Bolivina spissa 

At first glance, an inverse PD-[O2]BW correlation was recognized for B. spissa (Fig. 3.4). The 

PD decreases from 928 m water depth (Fig. 3.4c) from a PD of 0.00512 µm2 corresponding to 

an [O2]BW of 36.77 µmol/kg to a PD of 0.00801 µm-2 corresponding to an [O2]BW of 2.42 

µmol/kg. However, PD also increases within a single foraminiferal test from the early to the 

later chambers. 

The increasing PD from earlier to later chambers is also reflected by a slight correlation of the 

overall PD with specimen size and total number of chambers (Fig. 3.5). Due to the 

observation that many specimens do not show more chambers we used the PD of the first ten 

chambers only relating to an area of about 50,000 to 60,000 µm2 for the quantification of the 

PD-[O2]BW relationship and for the quantification to other environmental parameters (Figs. 

3.6 and 3.7). The area calibration was used because sometimes the exact number of chambers 

was difficult to determine. 

 

3.3.4 PD Correlation with Environmental Factors 

The PD of 4−60 individuals of Bolivina spissa in each of eight locations was determined. The 

standard error of the mean value range from 0.00012−0.00044 P/µm2 corresponding to about 

1−4% of the overall variation between all stations. Relationships of the mean PD to the 

Species 
Number of 

pores 
Surface area 

(µm2) 
Pore-density 

(PD) 
Mean pore 
void (µm2) Porosity (P) 

B. seminuda 178 10000 0.0178 4.47 0.28 

B. spissa 649 97133 0.0067 6.23 0.20 
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different environmental factors are presented in Figures 3.6 and 3.7 (also see Appendix 1 for 

graphic correlation plots of all data points) 

 

Figure 3.4. Scanning electron micrographs of three Bolivina spissa from different depths. The diagram 

on the right shows the different concentrations of bottom-water oxygen at the three locations: A 

M77/1-445/MUC-21, 465 m; B M77/1-566/MUC-59, 640 m; C M77/1-445/MUC-15, 928 m). 
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Figure 3.5. Correlation between overall pore density and specimen size of Bolivina spissa from two 

locations: A M77-1 445/MUC-15, 928 m; B M77-1 604/MUC-74, 878 m. Because PD is progressively 

greater on each additional (younger) chamber (see Fig. 4A), PD increases with overall test size 

(growth). 

 

Figure 3.6. Correlations of Bolivina spissa pore density with A, B water depth and C, D temperature. 

PD of about the first 10 chambers (relates to an area of about 50,000−60,000 µm2) is plotted. Error 

bars represent the standard error of the mean. Graphs B and D represent just the data from the seven 

deepest stations. 
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The relationship between PD and water depth is inverse between 114−640 m (Fig. 3.6a). At 

greater depths, the PD remains more constant, which results in the inverse exponential shape 

of the approximating function. The PD shows a clear relationship with temperature only 

above 7°C (Fig. 3.6b). 

The PD-[O2]BW relationship resembles that of PD-water-depth. The main difference between 

the two is the more abrupt change in slope where PD-[O2]BW reaches a plateau. Hence, the 

PD-[O2]BW dependency is restricted to low [O2]BW concentrations in the range of 1−10 µmol/l. 

The  highest significance (p = 0.98) was that of the PD-[NO3
−]BW relationship (Fig 3.7b). This 

relationship is best approximated by an inverse exponential function. 

 

Figure 3.7. Correlations of Bolivina spissa pore-density with A, B [O2]BW and C, D [NO3
−]BW. PD of 

about the first 10 chambers (relates to an area of about 50,000−60,000 µm2) is plotted. Error bars 

represent the standard error of the mean. Graphs B and D represent just the data from the seven 

deepest stations. The dashed line in graph B fits only the 4 shallower data points where a correlation 

between [O2]BW and PD exists. 

 

3.3.5 Test Size Distribution in the Sediment  

We determined the lengths of 92 stained B. spissa specimens from 698 m water depth and of 

20 stained specimens from 820 m water depth. The length variation with sediment depth was 
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investigated to determine if there is any ontogenetic variation in the vertical distribution of B. 

spissa within the sediments. Our findings show that the mean length of living B. spissa 

specimens increases with depth in the sediment (Fig. 3.8). Thus, it appears that the juveniles 

prefer living close to the sediment surface. 

 
Figure 3.8. Mean length of living specimens at different depths within the sediment. Error bars 

represent the standard error of the mean. A M77-1 459/MUC-25, 698 m; B M77-1 621/MUC-85 (820 

m). 

 

3.3.6 Comparison between Bottom- and Pore-Water Nitrate Concentrations 

The average nitrate concentration in the top centimeter of the pore water ([NO3
–]PW) was 

analyzed and compared to [NO3
–]BW values at two stations (Fig. 3.1c). The results show that 

the average [NO3
–]PW is significantly lower than [NO3

–]BW at both stations. Furthermore 

[NO3
–]PW show the same trend with water depth as the [NO3

–]BW. At the shallower station 

(465 m water depth) the [NO3
–]PW is much lower than at the deeper station (928 m water 

depth). 

 

3.4 Discussion 

 

3.4.1 Morphologic Comparison of Bolivina spissa  and B. seminuda 

Bolivina seminuda is subconical with rounded edges and its lateral surface appears rough. In 

contrast, Bolivina spissa is lanceolate and nearly flat with a relatively smooth surface. In 

general, the surface-to-volume ratio appears to be higher in B. seminuda (Table 3.3) due to its 

surface texture as well as its P, which probably facilitates mitochondrial oxygen uptake 

(Leutenegger and Hansen, 1979; Kaiho, 1994).  
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Figure 3.9. Comparison between [NO3

-]BW (from ~2 cm above the sediment-water interface) and mean 

[NO3
-]BW from the first centimeter of the sediment at two locations. The dashed line represents the 

sediment-water interface Triangles represent locality M77/1-445/MUC-15 (928 m) and squares 

indicate locality M77/1-455/MUC-21 (465 m). 

 
3.4.2 Variability of Pore Density on Single Tests 

On a single test of B. spissa, PD increases from the early to the latest chambers. The reason 

for this PD trend is uncertain and open to speculating several explanations: 

1. Presumably, once a new chamber is formed, the entire test is overgrown by a new layer of 

calcite (Erez, 2003). As the protoplasm expands into the younger chambers, the earlier 

chambers need less “ventilation”, so new calcite layers are allowed to overgrow some 

of the older pores. 

2. Seasonal changes in bottom- or pore-water chemistry influence PD. As previously 

mentioned, B. spissa exhibits strong seasonality in abundance of living specimens 

(Silva et al., 1996, Nomaki et al., 2006); hence, it is conceivable that individual 

specimens also record seasonality. This implies that the lifespan exceeds the seasonal 

duration, and that reproduction occurred before the phytodetritus had reached the 

seafloor. 

3. The surface:volume ratio progressively decreases with test growth so that more pores are 

needed on the later chambers for sufficient communication between the protoplasm 

and the external environment. 

4. Ontogenetic changes in the vertical distribution of B. spissa in the sediment influence PD. 

The average length of specimens is smaller near the surface (Fig. 3.8) than below, 
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suggesting that the juveniles live in a shallower pore-water environment that has 

higher [O2]BW while the adults tolerate a larger range of pore water [O2]BW that 

includes dysoxic levels. 

 

3.4.3 Environmental Influences on Pore Density 

The two foraminiferal species largely differed in their PD at one sampling site, but there was 

also PD variability among the other samples. As previously discussed, we compared the PD 

of B. spissa to several environmental factors (i.e., water-depth, temperature, [O2]BW, and 

[NO3
−]BW). In the following, we further examine different hypotheses to explain why B. 

spissa may adapt its pore density to external environmental forcing. 

 

Test Strength 

A lower PD but thicker test-wall in the deeper core sections (Fig. 3.6a) may reflect an 

increased ability to withstand greater hydrostatic pressure. However, the tests of foraminifera 

have openings that would enable the test to equalize its internal pressure with the external 

environment; hence, it is very unlikely that the bathymetric pressure gradient influences PD. 

Another possible reason for increasing test strength as a function of water-depth may involve 

the sedimentary texture, as documented by Harmann (1964). The shallower stations were 

characterized by dark mud partly mixed with foraminiferal sand. At stations >640 m, the 

sediments grade into phosphatic sand. At the deepest station (928 m), the sediment is a coarse 

sand composed of phosphatic pellets. A thicker test could be advantageous on sands, which 

are more abrasive than muds and generally indicate higher-energy environments; therefore, in 

this particular case, thicker-walled B. spissa would inhabit the deeper stations. To the 

contrary, however, there is a strong PD correlation with water-depth at the shallower stations 

(<640 m) where the sedimentary texture does not show strong variability. 

 

Influence of Temperature on Test Calcification Rate 

At the stations studied, temperature decreases with water depth, and pore density correlates 

with both (Fig. 3.6b). Lutze (1962) proposed temperature dependency of certain chemical 

processes as a possible explanation for PD variability in Bolivina spissa. The only plausible 

explanation for temperature dependence of PD would be that higher temperatures enable 

higher metabolic rates and thus generate higher rates of calcite precipitation (Harmann, 1964). 

This could result in thicker, stronger tests but fewer pores at higher temperatures, which 

would be contradictory to our observations. However, the influences of carbonate ion 
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concentrations or pH, which also can influence calcite precipitation rates, were not examined 

because those parameters had not been measured at the time of sampling. 

 

PD-[O2]BW    Relationship in Bolivina spissa 

Based on previous studies, one may speculate that the inverse PD-[O2]BW correlation shown in 

Figure 3.7a is due to an increase in mitochondrial oxygen uptake and decrease in oxygen 

levels. Hence, the PD rises as a function of decreasing oxygen availability. From our data, we 

may interfere that an [O2]BW  value of ~10 µmol/l represents a minimum threshold for 

decoupling PD from oxygen availability. At least three explanations for this phenomenon are 

possible: 

1. A minimal pore-density may be necessary for survival, which could explain the uniform 

pore densities at higher oxygen levels. 

2. Oxygen penetration into the sediment is greater below more-oxygenated bottom waters. 

Shallow-infaunal species may migrate vertically to where food availability and the 

oxygen level meets their individual requirements (Jorissen et al., 1995; Duijnstee, 

2003). The number of examined specimens could therefore include specimens that 

were living at different levels of pore-water oxygenation. 

3. Benthic species in well-oxygenated habitats have their mitochondria more uniformly 

distributed in the cytoplasm and not clustered near pore terminations (Berthold, 1976; 

Leutenegger and Hansen, 1979; Sen Gupta and Machain-Castella, 1993). If this 

applies to Bolivina spissa living in oxygenated sediment, the PD would not exhibit a 

relationship with bottom-water oxygenation. 

 

PD-[NO3
−]BW    Relationship in Bolivina spissa as Evidence of Nitrate Respiration 

Some species of benthic foraminifera living in disoxic environments recently have been 

shown to respire nitrate via denitrification (Risgaard-Petersen et al., 2006). Intracellular 

nitrate-stores are used for denitrification as augmented energy sources when there is 

insufficient oxygen. Our data support this observation because the PD-[NO3
−]BW relationship 

shows a significant correlation (p = 0.98; Fig. 3.7b). 

The influence of foraminiferal denitrification on the local nitrogen budget has recently been 

documented in deep-sea sediments of Sagami Bay, Japan (Glud et al., 2009). Intracellular 

nitrate storage represented ~80 % of the total benthic nitrate-pool. Bolivina spissa shows 

significant intracellular NO3
− enrichment. However, the minimum [O2]BW level at Sagami 

Bay of 55−60 µmol/kg is still significantly higher than at our sampling sites off Peru that have 
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[O2]BW values of 1−37 µmol/l. It is conceivable that the 

species to nitrate-respiration may be much higher at bottom

are lower than those in Sagami Bay.

The denitrification process in benthic foraminifera has not been attributed to a specific cell 

organelle yet (Høgslund et al., 2008). In the light of our results. it may be anticipated that the 

pores are directly related to nitrate

From the observation that foraminiferal mitochondria tend to clus

observed from a Bolivina in low

the mechanism of denitrification. This is supported by the observations of Finlay (1983) who 

showed that the number of mitochondria be

eukaryote Loxodes when it switched from oxygen to nitrate

observation of microbial ectobionts of unknown identity and physiology inhabiting the pore 

void of B. pacifica (Bernhard 

exist in the pores of B. spissa. 

Figure 3.10. Correlation between the pore

(from Lutze, 1962) and the mean nitrate concentration from similar water depths at the same study 

area [NO3
-]mean as recorded in the World Ocean Atlas 2009 (Boyer et al., 2009). All available nitrate 

data from the region between 31.5

from every datapoint at the same water depth ±20 m.

 

An early study on B. spissa (Fig. 

free area increases with water depth (Lutze, 1962), which was thought to reflect decreasing 
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mol/l. It is conceivable that the dependency of shallow infaunal 

respiration may be much higher at bottom-water oxygen concentrations that 

are lower than those in Sagami Bay. 

The denitrification process in benthic foraminifera has not been attributed to a specific cell 

, 2008). In the light of our results. it may be anticipated that the 

pores are directly related to nitrate-uptake or may act as a kind of “valve” for N

From the observation that foraminiferal mitochondria tend to cluster behind the pore plugs, as 

in low-oxygen conditions, the mitochondria may also be involved in 

the mechanism of denitrification. This is supported by the observations of Finlay (1983) who 

showed that the number of mitochondria became significantly enhanced in

when it switched from oxygen to nitrate-respiration. The recent 

observation of microbial ectobionts of unknown identity and physiology inhabiting the pore 

(Bernhard et al., 2010) provoke speculations on whether ectobionts also 

 

 

Correlation between the pore-free area of Bolivina spissa from the California Borderland 

(from Lutze, 1962) and the mean nitrate concentration from similar water depths at the same study 

as recorded in the World Ocean Atlas 2009 (Boyer et al., 2009). All available nitrate 

ween 31.5−33.5°N and 121 −119°W were used. Mean values where calculated 

from every datapoint at the same water depth ±20 m. 

(Fig. 3.10) from the Californian Borderland shows that the pore

free area increases with water depth (Lutze, 1962), which was thought to reflect decreasing 

dependency of shallow infaunal 

water oxygen concentrations that 

The denitrification process in benthic foraminifera has not been attributed to a specific cell 

, 2008). In the light of our results. it may be anticipated that the 

uptake or may act as a kind of “valve” for N2 release. 

ter behind the pore plugs, as 

oxygen conditions, the mitochondria may also be involved in 

the mechanism of denitrification. This is supported by the observations of Finlay (1983) who 

came significantly enhanced in the primitive 

respiration. The recent 

observation of microbial ectobionts of unknown identity and physiology inhabiting the pore 

) provoke speculations on whether ectobionts also 

from the California Borderland 

(from Lutze, 1962) and the mean nitrate concentration from similar water depths at the same study 

as recorded in the World Ocean Atlas 2009 (Boyer et al., 2009). All available nitrate 

119°W were used. Mean values where calculated 

10) from the Californian Borderland shows that the pore-

free area increases with water depth (Lutze, 1962), which was thought to reflect decreasing 
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water-temperatures. Alternatively, and following our arguments above, this may also reflect 

nitrate distribution in the water column. Nitrate is depleted in shallower water due to 

enhanced primary production on the ocean’s surface. So the habitats of the analyzed 

specimens from shallower water- most probably were more nitrate-depleted than those from 

deeper waters. Also, the specimens from shallower water had broader tests with more costae. 

Higher length:width increases the surface:volume ratio, which could enhance its uptake of 

nitrate. Figure 3.10 shows a strong inverse correlation between the proportion of the test that 

is pore-free (from Lutze, 1962) and the mean nitrate concentration later recorded from similar 

water depths in the same study area (Boyer et al., 2009). 

Nitrate microprofiles were not available for our sampling locations, so it was not possible to 

quantify the nitrate concentration directly from where the nitrate uptake by the foraminifera 

occurred. However, nitrate microprofiles from the OMZ off Chile indicated intense nitrate 

consumption at the sediment−water interface (Høgslund et al., 2008). A comparison of 

[NO3
−]BW and mean pore water nitrate concentrations from the first centimeter of sediment 

revealed that the nitrate concentration in a hypothetic zone of nitrate-uptake was significantly 

lower than in the bottom water (Fig. 3.9). This infers that an adjustment of the foraminiferal 

microhabitat, which may influence the PD, is important for nitrate uptake. Nevertheless, 

changes in [NO3
−]PW reflect changes in [NO3

−]BW, although there are secondary factors in the 

spatial and temporal variations of [NO3
−]PW that superimpose this relationship (see Fig. 3.9). 

However, the smaller specimens apparently prefer shallower depths in the sediment (Fig. 3.8). 

Since we used just the first ten chambers for PD determination, the PD signature may 

represent more shallow pore-water environments that are closely related to the bottom-waters. 

We hypothesize that foraminifera optimize their abilities for nitrate uptake in nitrate-depleted 

habitats by increasing their pore density to achieve a competitive advantage over other 

prokaryotes. 

It is possible that foraminifera take up nitrate for respiration inside seawater vacuoles. 

Bolivina pacifica has several seawater vacuoles near its mitochondria that are clustered at the 

pores (Bernhard, et al., 2010). Foraminifera could migrate upwards in the sediment to where 

much nitrate is available in order to fill their vacuoles so they can survive deeper in the 

substrate. This assumes that the pores are not involved in intracellular nitrate uptake but rather 

act as valves for the removal of N2 from the cytoplasm. However, it would difficult to explain 

why the pore density should increase if less nitrate is available. If there is more nitrate 

available, more nitrate is likely to be consumed; therefore, more pore “valves” would be 

needed for N2 removal. Instead, the foraminifer might optimize its denitrification abilities by 



3.  Environmental influences on the pore density of Bolivina spissa (Cushman) 

69 
 

accumulating more mitochondria to efficiently use the remaining nitrate when less nitrate is 

available, and this could result in higher PD. 

Interaction of Multiple Factors 

More than one factor might influence PD, such as both the oxygen and nitrate concentrations. 

Perhaps Bolivina spissa switches stepwise from oxygen to nitrate respiration when oxygen 

concentrations draw down substantially. Whereas the primitive eukaryote Loxodes increases 

its number of mitochondria when it switches to nitrate-respiration (Finlay, 1983), B. spissa 

may do likewise to increase the number of mitochondria, which implies that the number of 

pores would also increase stepwise. If it switched completely to nitrate respiration, the nitrate 

concentration might become the controlling factor, and if nitrate levels drop, the PD would 

increase to optimize its uptake. 

 

3.5 CONCLUSIONS 

 

In this study, we found a strong correlation between PD-[O2]BW and PD-[NO3
−]BW in Bolivina 

spissa. The higher significance of the PD-[NO3
−]BW correlation suggests that PD is more 

sensitive to [NO3
−]BW than to [O2]BW. Although interactions between multiple parameters 

(e.g., O and N) may also influence PD, we propose that foraminifera in nitrate-depleted 

habitats optimize their nitrate uptake by increasing PD. 

The clustering of mitochondria behind the pore plugs of several foraminiferal species is 

probably an adaptation to oxygen-depleted habitats (Leutenegger and Hansen, 1979; Bernhard 

et al., 2010) that may be involved in nitrate respiration. A comparison of PD, P, and shape of 

B. spissa and B. seminuda suggests that B. seminuda is better adapted to live in disoxic 

environments. Future studies will examine the potential use of pore density in B. spissa as a 

proxy for present and past nitrate concentrations. 

 

3.6 Acknowledgments 

We thank Anna Noffke, Florian Scholz, Bettina Domeyer, Meike Dibbern, and Renate 

Ebinghaus for performing bottom- and pore-water nitrate measurements, Sonja Kriwanek for 

calibrating oxygen concentrations and Ute Schuldt for support in the operation of the SEM at 

the Christian Albrecht University in Kiel. The scientific party on R/V METEOR cruise M77 

is acknowledged for their general support and advice in multicorer operation and sampling. 



3.  Environmental influences on the pore density of Bolivina spissa (Cushman) 

70 
 

The “Deutsche Forschungsgemeinschaft, (DFG)” provided funding through SFB 754 

“Climate– Biogeochemistry Interactions in the Tropical Ocean.” 

Received 28 September 2009 

 

APPENDIX 3.1 

Correlations of Bolivina spissa pore density with a water depth; b temperature; c bottom-

water oxygen concentrations, and d [NO3
−]BW concentrations. PD of about the first ten 

chambers (surface area of about 50000−60000 µm2) is plotted. Data of all examined 

specimens was used. This figure can be found on the Cushman Foundation website in the JFR 

Article Data Repository (http://www.cushmanfoundation.org/jfr/index.html) as item number 

JFR-DR20110001. 

 

APPENDIX 3.2 

Pore-densities and data for pore-density determination. This table can be found on the 

Cushman Foundation website in the JFR Article Data Repository 

(http://www.cushmanfoundation.org/jfr/index.html) as item number JFR_ 20110001. 
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SUPPLEMENTARY APPENDIX A3.3  

(Ultrastructural observations on Bolivina spissa  cells) 

This part is not published in the original manuscript. But since the results presented here are 

directly linked to the previous results of this chapter this work is presented here. It connects 

the results of the morphological observations directly to the cell biology of Bolivina spissa 

and describes ultrastructural observations on thin sections of B. spissa cells. 

 

A3.3.1 Material and methods 

A3.3.1.1 Sampling procedure 

One short sediment core (SO206-43; 568 m water depth; 8°52.27’ S; 84°14.10’ W) from the 

Pacific continental margin off Costa Rica was considered for the present study. The core was 

recovered by using multicore technology during R.V. Sonne cruise SO206 in June 2010. This 

core was taken for cell fixation experiments. Just before the cores were coming on deck a 

fresh solution of 5% Glutaraldehyde and 0.1 M cacodylate buffer were mixed out of 1 part 

25% Glutaraldehyde, 2.5 parts 0.2 M cacodylate buffer, pH 7.2, and 1.5 parts of distilled 

water. Within a couple of minutes after the multicorer came on deck, one tube was chosen 

from the array, and brought to a laboratory with a constant room temperature of 4°C.  In less 

then one hour after the cores were recovered they were cut into 10 mm thick slices and 15-16 

ml of sediment were transferred into 50 ml centrifuge tubules. These tubules were filled up 

with the fixative and mixed sufficiently without rigorous shaking and stored at 4° C. 

 

A3.3.1.2 Preparation for ultrastructural investigations 

Samples were processed for embedding in the Woodshole Oceanographic Institute. A few ml 

of concentrated Rose Bengal solution were added to the samples and they were incubated in a 

refrigerator overnight. Small amounts of the fixed sediment were wet sieved with 0.1 M 

cacodylate buffer. Stained specimens of Bolivina spissa were wet picked from 0.1 M 

cacodylate buffer and decalcified in a 50 mM EDTA/0.1 M cacodylate buffer solution in 10 

ml glas vials for five hours in a refrigerator. Maximal five specimens were transferred into 

one vial. Examples for the used specimens of B. spissa are shown in fig. A3.3.1. The samples 

were rinsed 3 times with 0.1 M cacodylate buffer. The vials were filled with 2-3 ml of a 

chilled 0.5% OsO4/0.1 M cacodylate buffer and transferred into a darkened, ice filled bucket. 

The samples were incubated for 1 hour and rinsed 4 times with chilled distilled water 

afterwards. Afterwards the specimens were taken through a series of ethanol dehydrations 

(30%, 50%, 70%, 90% twice, 100% twice). Each dehydration step lasted for 15 minutes. The  
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Figure A3.3.1: Specimens of Bolivina spissa fixed in glutaraldehyde/cacodylate buffer and stained with 

Rose Bengal. SO206-43; 568 m water depth. 

 

Figure A3.3.2: SEM micrograph of Bolivina spissa showing how a specimen was cut to yield five thin-

sections. 

dehydration was finished with acetonitrile. The specimens were transferred into another glass 

vial filled with 1:1 mix of acetonitrile and uncatalyzed Epon-Araldite resin and left overnight. 

Specimens again were transferred into a fresh glass vial filled with uncatalyzed resin, placed 

in a rotator and left for 24 hours. Finally the specimens were transferred into embedding 

molds and placed in oven temperature (70°C) for 12 hours. The single specimens were cut out 

of the main part of the resin. Due to their spatulate shape the embedded specimens settled 

down in the resin and stayed lying down on one of the flat sides. In this study most attention 

is paid on the pores in Bolivina spissa. The pores are located on the flat sides up and down the 

test. Thus to include the pores in the thin sections the cuts have to be made from the upper 

part to the lower part of the specimen (see fig. A3.3.2). Therefore after cutting out of the main 

part of the resin, the specimen was reembedded to assure that it is completely surrounded by 
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resin.  Afterwards it was sectioned to approximately 90 nm thick sections and placed on slot 

grids. Sections on grids were stained with uranyl acetate. The specimen was divided in five 

sections. The first one at the peripheral side and four more in equidistant steps to the middle 

of the specimen (see fig. A3.3.2). Three replicates have been done from each section (in 90 

nm distance). The grids were viewed at a FEI 208 S transmission electron microscope (TEM). 

 

Figure A3.3.2: Collage of TEM micrographs from a thin section of a Bolivina spissa cell which 

reconstructs the whole section. Note that seawater vacuoles are frequent in the youngest two 

chambers while absent in the older chambers. 
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A3.3.2 Results 

A3.3.2.1 Ultrastructural observations in Bolivina spissa  

A collage of TEM micrographs reconstructing one whole section from the middle part of 

Bolivina spissa (5th cut) is shown in fig. A3.3.3. A lot of seawater vacuoles are clustered in 

the last two chambers while there are no visible seawater vacuoles in the older chambers. 

Food vacuoles for deposit feeding can be found in every part of the cell although they appear 

to be more often in the younger chambers. Several TEM micrographs from pores in B. spissa 

are shown in fig. A3.3.4. Mitochondria (m) are clustered behind almost every pore (p) (also in 

the pictures which are not shown). In many pores some parts of the inner organic lining (IOL) 

which would be located at the inner part of the pores (piol) is still at least partially preserved. 

Actually in the pore shown in fig. 3.3.4 d) the whole inner organic inside the pore is preserved 

and the pore is still covered by a pore plate (pp). Also in this pore still some bacteria seem to 

be preserved. Food vacuoles (fv) with ingested detritus are present everywhere in the cell 

from the periphery (fig. 3.3.4 d)) to the inner parts of the cell (fig. 3.3.5 a)&b)) and even in 

the proloculus (fig. 3.3.5 c)). No visible mitochondria have been found in other parts of the 

cell except the ones clustered behind the pore terminations. Unfortunately sometimes the 

mitochondria are not exactly discernible. Thus a quantification of mitochondria clustered 

behind the pores is not possible. In some of the inner cell parts peroxisomes (po) are present 

(fig. 3.3.5 b)) while in the proloculus parts of an endoplasmatic reticulum have been found 

(fig. 3.3.5). 

A3.3.3 Discussion 

A3.3.3.1 Ultrastructural observations in Bolivina spissa  

Although their quantification was not possible it seems like that the mitochondria in the 

analysed specimen of B. spissa are solely clustered behind the pore-terminations because they 

have not been found in any other parts of the cell. Similar observations have been done in 

cells of several other foraminiferal species from oxygen depleted environments including 

some Bolivinidae, too (Leutenegger and Hansen, 1979; Bernhard et al., 2010). The pores in B. 

spissa are supposed to be adapted to the intra-cellular nitrate uptake for nitrate-respiration 

(Glock et al. 2011a&b). The denitrification process in benthic foraminifera has not been 

attributed to a specific cell organelle yet (Høgslund et al., 2008). Since it seems like the pores 

are directly related to intracellular nitrate-uptake the fact that mitochondria tend to cluster 

behind the pore plugs in B. spissa might imply that mitochondria may also be involved in the 

mechanism of foraminiferal denitrification. Indeed earlier studies showed that mitochondria  
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Figure A3.3.4: TEM micrographs showing the pores (p) in Bolivina spissa. Mitochondria (m) are 
present in nearly every pore (a-c). Often the inner organic lining from the inner part of the pores (piol) 

is at least partitially preserved (a, c&d). The pore in d is still covered by a pore plate (pp) and seems to 
be inhabitated by bacteria (b). On several micrographs food vacuoles for deposit feeding (fv) are 

present. 
 

are involved in nitrate respiration of the primitive eukaryote Loxodes (Finlay et al., 1983). In 

particular the number of mitochondria became significantly enhanced when Loxodes switched 

from oxygen to nitrate-respiration. Since the pore density in B. spissa is inverse proportional 

to the nitrate availability (Glock et al., 2011a) and mitochondria are clustered behind pore 

terminations it is reasonable to assume that mitochondria in cells of B. spissa are inversely 

correlated to the nitrate availability, too. As much more there is a reason to speculate if 

mitochondria are at least involved inside the foraminiferal denitrification process. The recent 

observation of microbial ectobionts of unknown identity and physiology inhabiting the pore 

void of Bolivina pacifica (Bernhard et al. 2010) provoke speculations if such ectobionts exist 

in the pore void of Bolivina spissa as well and are indeed denitrifiers. Indeed some bacteria 

have been found inside the pore void of B. spissa. 

Another point of interest is that the seawater vacuoles seem to be present only in the youngest 

chambers of Bolivina spissa. This might explain why fixed specimens of several foraminiferal 

species often show a much stronger coloration in the older chambers, especially the 
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proloculus, when they have been stained. Among other things foraminifera use seawater 

vacuoles to adapt their surface to volume ratios to osmotic changes in the surrounding 

seawaters. It might be that in the older chambers the cytoplasm is better isolated against the 

environment and does not need seawater vacuoles for the adaption against osmotic changes. 

Additionally laminated calcareous foraminifera use seawater in vacuoles as a reservoir for the 

precipitation of calcite (Erez, 2003). When a new chamber grows all old chambers are 

covered by a new layer of calcite, too. The vacuoles are transported through the cytoplasm 

surrounding the whole test to the outer part of the test. The transport of the seawater vacuoles 

from the older chambers to the outside would consume much more energy than the transport 

from the newest chambers which are located near the aperture. The presence of food vacuoles 

filled with detritus for deposit feeding in benthic foraminifera (Goldstein and Corliss, 1994) 

and the presence of peroxisomes in the cytoplasm of B. spissa (Bernhard et al., 2001) are well 

documented in previous studies. 

 

Figure A3.3.5: TEM micrographs showing the inner part of the cell and the proloculus of Bolivina 

spissa. Food vacuoles (fv) are very frequent (a-c). In some parts of the cell peroxisomes (po) can be 

found (b). Note the presence of an endoplasmatic reticulum (er) in the proloculus (c). 
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Abstract 

Previous studies showed that the pore density of the shallow infaunal benthic foraminiferal 

species Bolivina spissa is closely related to the nitrate availability in their habitats. In this 

study first applications of this new developed proxy are presented. Samples were collected in 

the Peruvian oxygen minimum zone. We considered one short core which covers the end of 

the Little Ice Age and a long core which covers segments from the Holocene into the last 

glacial. Furthermore specimens collected during a strong El-nino were compared to 

specimens from non-El-nino conditions. The pore density of the El-nino specimens is 

significantly elevated compared to specimens from non-El-nino conditions at a location were 

nitrate was depleted during that El-nino. No significant variation of the pore density has been 

found among that short sediment core although there is a slight minimum at the end of the 

Little Ice Age where there was a rapid shift in the biogeochemical conditions at the Peruvian 

oxygen minimum zone. However the pore density downcore the long core shows significant 

variations. There is a strong shift towards higher pore densities at the beginning of the last 

glacial. These results indicate lower nitrate availability during the last glacial compared to the 

Holocene. The nitrate depletion at this sampling site might either arise from changes in 

upwelling and thus the biogeochemical conditions, due to the lower sea level during that time 

or an interaction of both. In summary, the pore-density of B. spissa seems to be a valuable 

proxy for nitrate availability at least on millennial time scales. 

 

4.1 Introduction 

In the Peruvian upwelling area the hydrography is dominated by the oxygen rich, equatorward 

Peru-Chile Current (flowing in depths between 0-100 m) and the oxygen deficient, nutrient-

rich, poleward Peru-Chile undercurrent (flowing between ~100-350 m) (Brockmann et al., 

1980; Shaffer et al., 1995; 1997; Hill et al., 1998, Böning et al., 2004, Díaz-Ochoa et al., 

2009). The definition and extension of the oxygen minimum zone (OMZ) of Peru is a bit 

contradictory in literature. For the definition of the OMZ authors either quote oxygen 

concentrations < ~5 µM (Brockmann et al., 1980; Böning et al., 2004) or < 8.7 µM (Helly and 

Levin 2004; Díaz-Ochoa et al., 2009). For the extension water depths either between 50 m 

and 650 m (Emeis et al., 1991; Lückge and Reinhardt, 2000; Böning et al., 2004) or between 

~75 m and ~310 m (Helly and Levin 2004; Díaz-Ochoa et al., 2009) are quoted. The upper 

boundary can sink to ~200 m during El-nino (EN) events (Helly and Levin 2004). In the 

Peruvian OMZ the upwelling is perennial and wind-driven (Suess et al., 1986; Böning et al., 

2004). 
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Biogeochemical variability in the Eastern Tropical South Pacific, modulating bioproductivity 

and oxygen concentrations, is mainly caused by seasonal and interannual changes of the 

Intertropical Convergence Zone (ITCZ) and the trade winds (Barber and Chávez, 1983; 

Pennington et al., 2006; Gutiérrez et al., 2009). There are several studies about 

biogeochemical variability in the OMZ off Peru during the Late Quaternary. Fish scales were 

used as a proxy for fish abundance together with phosphorous from fish remains and 

combined the analyses of redox sensitive elements in the sediments as a proxy for redox 

conditions (Díaz-Ochoa et al., 2009). Other studies on laminated sediments from the OMZ off 

Peru included X-ray digital analyses, mineralogy, inorganic contents and organic 

geochemistry (Sifeddine et al., 2008) while Gutiérrez et al. (2009) used a massive multiproxy 

approach on box cores off Calao (~12° S) and Pisco (~14° S). All these studies conclude that 

there was a massive shift in the biogeochemical conditions at the OMZ off Peru during the 

beginning of the 19th century. These changes included an increase in bioproductivity and a 

strong depletion in oxygen concentrations. This rapid shift towards the end of the Little Ice 

Age was interpreted to be driven by a northward migration of the ITCZ and the South Pacific 

Subtropical High, combined with a strengthening of Walker circulation (Gutiérrez et al. 

2009). 

Studies about changes in the biogeochemical conditions in equatorial and coastal upwelling 

areas during the glacial are a bit contradictory. On the one hand it has been suggested that 

upwelling was reduced during the last glacial resulting in lower flux of organic material 

through the OMZ and thus lower denitrification (Ganeshram et al., 1995; Falkowsky, 1997; 

Ganeshram et al., 2000). This is supported by model simulations, which predict a weakening 

of upwelling winds off Peru due to a weaker subtropical-high pressure system in the South 

Pacific during the LGM (Kutzbach et al., 1993) and by several studies at 11° S off Peru, 

which hint to a lower bioproductivity during the Last Glacial (Wefer et al., 1990; Schrader 

and Sorkness, 1990). On the other hand there are several authors who came to the exactly 

opposite conclusions: Upwelling and thus bioproductivity in equatorial and coastal upwelling 

areas was strengthened during the glacials (Pedersen, 1983; Pedersen et al., 1988; Lyle, 1988; 

Lyle et al., 1988; Rea et al., 1991; Ohkouichi et al., 1997; Patrick and Thunnel, 1997; Perks 

and Keeling, 1998; Wolf, 2002), which might be related stronger trade winds due to higher 

latitudinal temperature gradients (Mix et al., 1986). 

In this study first applications of a new developed proxy, the pore density in the benthic 

foraminiferal species Bolivina spissa, are presented, using a several sediment cores from the 

Peruvian OMZ and comparing specimens from EN and non-EN conditions. The pore density 
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in B. spissa is supposed to be inversely correlated mainly to the nitrate availability although 

the influence of different factors like oxygen concentration could not be excluded (Glock et 

al., 2011a). A detailed review about the understanding of the pores in benthic foraminifera can 

be found in Glock et al. (2011b). 

  

4.2 Material and Methods 

4.2.1 Sampling Procedure 

Three short and a long sediment core from the Peruvian OMZ taken during R.V. Meteor 

cruise M77/1 and M77/2 in October and November 2008 and two short cores from a strong 

EN were considered for the present study (table 4.1). The long core (M772 47-2) was 

recovered by using pistoncore technology. When the pistoncorer came to deck the sediment 

filled plastic tube was cut into segments of one meter length which were stored and 

transported at 4°C. The core was subsampled in Kiel with 10 ml syringe corers for the 

samples which were used only for pore density determination. Whole 2 cm broad slices were 

taken for the samples which were used for 14C dating on planktic foraminifera. Surface 

samples were taken from a short core of the corresponding multicore station (M772 47-3). 

The sampling procedure and treatment of the samples from non-EN conditions, including the 

sampling of benthic foraminifera (except for the piston core), the oxygen determination and 

the nitrate profiling is described in detail in Glock et al. (2011a). 

 

Table 4.1. Sampling sites. Sites marked with a * were sampled during a strong EN (1997-
1998). 

Site Type Longitude (W) Latitude (S) Water depth (m) 
M77/1-487/MUC-39 MUC 78°23.17' 11°00.00' 579 
M77/1-622/MUC-85 MUC 77°34.76' 12°32.76' 823 
M77/2-47-2 Piston-Core 80°31.36' 7°52.01 623 
M77/2-47-3 MUC 80°31.36' 7°52.01 623 
* MUC 77°29.58’ 12°32.54’ 562 
* MUC 77°34.76’ 12°32.76’ 830 

 

The EN samples were provided by E.M. Perez. These samples were collected during the 

Panorama Expedition, Leg 3a, aboard the RV Melville by using the multicorer technology. 

The sampling sites are located at the lower boundary of the Peruvian OMZ at 562 m water 

depth (12°32.54’S, 77°29.58’W) and below the OMZ at 830 m water depth (12°32.76’S, 

77°34.76’W). From one core at each site the top cm of each core was sampled and then sliced 

in 0.5 cm-intervals from 1-3 cm and in 1 cm-intervals from 3-10 cm. Samples were preserved 
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in 10% formalin, using procedures described by Shepherd (2007). 65 ml of Rose Bengal 

solution (1 g/l 10% formalin) was added to each preserved sample in a laboratory and allowed 

to stain for at least one week before processing. 

 

4.2.2 Foraminiferal Studies 

The sediment samples were washed over a 63-µm mesh sieve. The residues were collected in 

ethanol to prevent corrosion and dried at 50°C. They were further subdivided into the grain-

size fractions of 63−125, 125−250, 250−315, 315−355, 355−400, and > 400 µm. Specimens 

of the shallow infaunal species Bolivina spissa were picked from the 125−250 µm fraction. 

The EN samples were wet-sieved and split into manageable volumes for examination using a 

modified OTTO microsplitter. Specimens of Bolivina spissa were picked from the >150 µm 

fraction. 

All specimens from core M77-1 487/MUC-39 were mounted on aluminum stubs and 

photographed with a Zeiss™ Leo VP 1455 scanning electron microscope (SEM) at the 

Geological-Palaeontological Institute of Hamburg University. Samples were not coated with a 

conductive layer to save them for further chemical analyses. To compensate charging effects 

on the specimens, the SEM was operated in a high pressure mode. All other specimens were 

mounted on aluminum stubs and sputter-coated with gold. The EN specimens and specimens 

from core M77-1 622/MUC-85 were photographed with a CamScan-CS-44 SEM of the 

institute for paleonthology and historical geology at the Christian-Albrecht-University in Kiel. 

Specimens from cores M772 47-2 and M772 47-3 were photographed with a Zeiss DSM 940 

SEM of the central microscopy at the Christian-Albrecht-University in Kiel. 

Areas on the tests of the specimens were determined with Zeiss™ AxioVision 4.7. The pores 

in the first 10 chambers (contributes to an area of about 50000-60000 µm2) of B. spissa were 

counted on SEM photographs. Only megalospheric specimens were used for the analysis. All 

visible pores of a specimen were recorded. The results of the mean pore density of each 

sample are listed in table 2. 

4.2.3 Core Chronology 

210Pb 

The analysis of 210Pb excess in the sediment was used to determine a chronological model for 

the short core (M77-1 487/MUC-39). The isotopes 210Pb, 137Cs and 226Ra were determined 

with gamma-ray counting using a low-background coaxial Ge(Li)detector. The samples were 
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analysed in the Labor für Radioisotope am Institut für Forstbotanik, University of Göttingen. 
210Pb was measured via its gamma peak at 46.5 keV, 137Cs via its gamma peak at 661 keV and 

gamma peak of 226Ra via the granddaughter 214Pb at 352 keV. 
14C 

To determine a chronological model for the pistoncore (M77-2 47-2) the radiocarbon isotopes 

were measured in tests of bulk samples from Neogloboquadrina dutertrei and 

Neogloboquadrina pachyderma by accelerated mass spectrometry at Leibniz-Laboratory for 

Radiometric Dating and Stable Isotope Research at the University of Kiel. 

Prior to the analyses organic surface coatings and detrital carbonate were removed with 30% 

H2O2 in a supersonic bath followed by a cleaning step with 15% H2O2 in a supersonic bath. 

The cleaned samples were acidified with 100% phosphoric acid in an evacuated, flame sealed 

quartz tube. The produced CO2 was reduced to graphite with H2 on an iron catalyst. The 

resulting powder consisting of graphite and iron was pressed into aluminium studs for 

accelerator mass-spectrometer (http://www.uni-kiel.de/leibniz/index.htm). 

 

4.3 Results 

 

4.3.1 Comparison of nitrate-profiles through the water column of the Peruvian 

OMZ between EN and non-EN conditions 

A comparison between the nitrate profiles through the water column of the Peruvian OMZ 

between EN and non-EN conditions is shown in fig. 4.1. The non-EN profile was taken from 

Glock et al. (2011a) while the EN profile was taken from Levin et al. (2002). The EN profile 

generally shows slightly lower nitrate concentrations. Especially near the water surface where 

primary production occurs nitrate seems to be much more depleted during EN. In water-

depths between 500-600 m the nitrate concentrations are quite similar while at lower water 

depths until 800 m there is again a distinct gap between the EN/non-EN nitrate 

concentrations. 
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. Comparison of nitrate distributions during non-EN conditions between 10°

(Taken from Glock et al., 2011) (black line) and EN conditions at 12°00´ S (Taken from Levin et al., 

2002) (red line). 

Bolivina spissa pore density with water depth. Comparison between 

 (red squares) and non-EN conditions (black diamonds). Error bars 

represent the standard error of the mean. 
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Table 2. Pore density results. 

Core Depth (cm) Mean pore density (P/µm2) SEM (P/µm2) Specimens counted 

M77-1 487/MUC-39 0-1 0.00574 0.000123 57 
M77-1 487/MUC-39 1-2 0.00557 0.000125 42 
M77-1 487/MUC-39 2-3 0.00561 0.000156 36 
M77-1 487/MUC-39 3-4 0.00571 0.000143 40 
M77-1 487/MUC-39 4-5 0.00572 0.000137 42 
M77-1 487/MUC-39 5-6 0.00547 0.000140 42 
M77-1 487/MUC-39 6-7 0.00549 0.000116 43 
M77-1 487/MUC-39 7-8 0.00540 0.000171 41 
M77-1 487/MUC-39 8-9 0.00564 0.000157 38 
M77-1 487/MUC-39 9-10 0.00554 0.000200 23 
M77-1 487/MUC-39 10-11 0.00552 0.000243 14 
M77-1 487/MUC-39 11-12 0.00558 0.000165 36 
M772 47-3 1-2 0.00498 0.000134 22 
M772 47-2 5 0.00479 0.000180 22 
M772 47-2 110 0.00507 0.000199 20 
M772 47-2 200 0.00548 0.000195 20 
M772 47-2 314 0.00543 0.000174 19 
M772 47-2 400 0.00536 0.000159 26 
M772 47-2 514 0.00531 0.000225 21 
M772 47-2 600 0.00458 0.000143 24 
M772 47-2 710 0.00538 0.000169 24 
M772 47-2 910 0.00499 0.000148 25 
M772 47-2 914 0.00519 0.000170 26 
M772 47-2 1110 0.00532 0.000159 25 
M772 47-2 1205 0.00503 0.000181 24 
M772 47-2 1287 0.00514 0.000236 24 
M77-1 622/MUC85 0.5-1 0.00512 0.000199 10 
EN (562 m) 0-1 0.00602 0.000253 6 
EN (830 m) 0-2 0.00600 0.000300 6 
 

4.3.2 Comparison of B. spissa  pore density during EN and non-EN conditions 

A comparison of the pore densities in tests of Bolivina spissa specimens from an intense EN 

(1997-1998) to specimens from non-EN conditions and their correlation to water depth are 

shown in fig. 4.2. All samples are from the Peruvian OMZ (in this case from 11°-12°S). Both 

the EN and non-EN samples from 830 m water depth were sampled at the same coordinates. 

All the 10 analysed non-EN specimens from the 830 m site were alive during sampling time 

(staining with rose-bengal). From the EN samples at the 830 m site at least the three 

specimens from 0-1 cm sediment depth were alive. Also at least three EN specimens from the 

562 m site were alive during sampling time.  
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Whereas the pore density at the 830 m site is elevated during EN, the pore density of the EN 

specimens from 562 m water-depth fits well into the correlation between pore density and 

water-depth during non EN conditions (fig. 4.2). The pore densities at the 830 m site differ 

significantly between EN and non-EN conditions (P = 0.031) while there is no significant 

difference between the pore densities at the 562 m site during EN and the 579 m site during 

non-EN conditions (P = 0.471). Significance was calculated by using unpaired two sample 

student´s t-tests (significance level 0.05). A comparison of the pore-densities of the single 

analysed specimens between EN and non-ell-nino conditions is shown in fig. 4.3. 

In fig. 4.4 the pore densities of the EN and non-EN specimens are plotted against a) [NO3
-]BW 

and b) [O2]BW. [NO3
-]BW during EN was intrapolated for the depths of the sampling sites from 

the nitrate profile shown by Levin et al. (2002) in fig. 2b.  [O2]BW at the sampling sites during 

EN was provided by E.M. Perez (pers. comm.). The EN pore density at the 562 m site fits 

well into the pore density/[NO3
-]BW correlation during non-EN conditions while the pore 

density at the 830 m site seems to be too low to fit. On the other hand the pore density at both 

EN sites is to high to fit into the pore density/[O2]BW correlation during non-EN conditions, 

since [O2]BW was higher during the EN at similar water depths compared to non-EN 

conditions. 

 

 

 

Figure 4.3. Comparison of Bolivina spissa pore densities of single analysed specimens from the 830 m site 

between EN and non-EN conditions. 
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Figure 4.4. Correlation of Bolivina spissa pore density with a) [NO3
-]BW and b) [O2]BW. Comparison 

between specimens from a strong EN (red squares) and non-EN conditions (black diamonds). Error 

bars represent the standard error of the mean. 

 

4.3.3 Pore density variability in Bolivina spissa  among the last 300 years 

The variability of the pore-density in Bolivina spissa among the sediment depth of the 12 cm 

long core M77-1 487/MUC-39 (579 m water depth) is shown in fig. 4.5. The dashed line on 

the left side represents the mean core top pore density of the next deeper sampling location 

(M77-1 565/MUC-60; 640 m) while the dashed line on the right represents the mean core top 

pore density of the next deeper sampling location (M77-1 516/MUC-40; 513 m). Both core 

top pore densities were taken from Glock et al. (2011). Thus the pore density variation among 

the 12 cm sediment depth is relatively low compared to the variability in between the core top 

pore densities from different sampling locations. The standard errors of the mean (SEM) 

range from 0.000116 to 0.000243 P/µm2. This represents 34.1 – 71.3% of the maximum 

variation among this core. Although the overall variability is quite small there is a minimum 

in the pore density in the segment between 5 and 8 cm sediment depth. 
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Figure 4.5. Downcore variability of the pore density in tests of Bolivina spissa along the core M77-1 

487/MUC-39 (579 m water depth). The error bars are the SEM. The dashed line on the left side 

represents the mean core top pore density of the next deeper sampling location (M77-1 565/MUC-60; 

640 m). The dashed line on the right represents the mean core top pore density of the next deeper 

sampling location (M77-1 516/MUC-40; 513 m). 

 

The pore density is plotted against the relative age of the sediment for core M77-1 487/MUC-

39 in fig. 4.6 a) including the 210Pb core chronology. Pore densities were converted into   

[NO3
-]BW by using the equation shown in fig. 7 D in Glock et al. (2011a). The calculated   

[NO3
-]BW are plotted against the relative age of the sediment in fig. 4.6 b). The minimum in 

the pore density and the maximum in the [NO3
-]BW respectively which appears in the depth 

interval between 5 and 8 cm corresponds to a time interval from about 1858-1915. A one way 

ANOVA over the pore density data of the whole core with a significance level of 0.05 shows 

that the pore density in the different depth intervals do not distinguish significant (P = 0.88). 

Even a unpaired two sample student´s t-test (significance level 0.05) between the minimal and 

maximal pore density among this core shows that there is no significant difference between 

this two data points (P = 0.12) although these points are clearly divided by their SEMs. 
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Figure 6. Relative age of the core M77-1 487/MUC-39 plotted against a) the pore density in tests of B. 

spissa and b) [NO3
-]BW calculated out of the pore density by using the equation shown in fig. 7 D in 

Glock et al. (2011a). The error bars are the SEM. 

 

4.3.4 Pore density variability in Bolivina spissa  from Holocene into the last 

Glacial 

The variability of the pore-density in Bolivina spissa among the sediment depth of the 13 m 

core M772 47-2 (626 m water depth) is shown in fig. 4.7. The standard errors of the mean 

(SEM) range from 0.000134 to 0.000235 P/µm2. This represents 14.8 – 25.9% of the 

maximum variation among this core. The pore density increases from the surface of the core 

to 2 m sediment depth. Afterwards the pore density tends to decrease slightly with sediment 

depth. Noticable is the strong pore density minimum at the depth of 6 m.  
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Figure 4.7. Downcore variability of the pore density in tests of Bolivina spissa along the core M772 47-

2 (626 m water depth). The error bars are the SEM. Dashed lines indicate the depths where 14C ages 

are available. 

Figure 8. Calendar age of the core M772 47-2 plotted against [NO3
-]BW calculated out of the pore 

density by using the equation shown in fig. 7 D in Glock et al. (2011a). The error bars are the SEM. 

The age model was constrained by using the 2 available 14C ages and fitting the curve onto the 

stacked benthic δ18O curve (grey dashed line) from Liesicki and Raymo (2005).  By courtesy of 

Joachim Schönfeld. 

 

Pore densities were converted into  [NO3
-]BW by using the equation shown in fig. 7 D in Glock 

et al. (2011a). The calculated [NO3
-]BW for core M772 47-2 are plotted against the calendar 

age of the sediment in fig. 4.8. The grey dashed line represents the stacked δ18O curve from 

Liesicki and Raymo (2005). There seems to be a strong increase in the pore density and thus a 
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decrease in nitrate availability during the transition from the Holocene into the Last Glacial. A 

one way ANOVA over the pore density data of the whole core with a significance level of 

0.05 shows that the pore density in the different depth intervals do distinguish significant (P = 

0.018). 

 

4.4 Discussion 

4.4.1 Comparison of B. spissa  pore density during EN and non-EN conditions 

As shown in the results (4.3) the EN pore density at the 562 m site fits well into the 

correlation between pore density and water depth during non-EN conditions while the pore 

density at the 830 m site is elevated during EN compared to the pore density during non-EN 

conditions at the same sampling site (fig. 4.2). This might be explained by the progress of the 

nitrate profiles through the water column during EN and non-EN conditions (fig. 4.1). At a 

water depth of about 560 m the nitrate concentrations during EN and non-EN conditions are 

quite similar whereas the nitrate concentrations at about 800 m seem to be depleted during 

EN. Since the pore density is inversely correlated to nitrate availability (Glock et al. 2011a) 

this might be an explanation why the pore density was elevated at 830 m during EN. On the 

other hand the pore density at this site is still too low to fit into the pore density/[NO3
-]BW 

correlation from the recent (non-EN) samples (fig. 4.4). This might be caused by several 

reasons:  

� The correlation is shown for [NO3
-]BW or for intrapolated values from the water 

column at similar water depths like the sampling sites. But Bolivina spissa is living 

shallow infaunal in sediments and thus indeed it depends on the nitrate availability in 

the pore water. Nitrate usually is depleted in the pore water compared to the bottom 

water due to diffusion, denitrification and several other factors. Since [O2]BW and thus 

the oxygen penetration depth into the sediment was higher during EN it might be that 

there occurred less denitrification in the pore water. So there was comparable more 

nitrate in the pore water. 

� For the EN samples [NO3
-]BW was intrapolated  from the nitrate profile shown in Levin 

et al. (2002). Since the profile ends at 800 m water depth it had to be extrapolated 

from this profile for the 830 m site. Thus it might be that the “real” [NO3
-]BW at  this 

water depth is slightly different. 

� Nobody knows how fast B. spissa adapts its pore density to environmental changes. 

ENs are only short time events and it might be that B. spissa did not have enough time 

to completely adapt to the massive environmental changes during EN. But since the 



4. Applications for the use of the pore density in Bolivina spissa as environmental proxy 

91 
 

differences in the pore density of the EN specimens to the non-EN specimens from the 

830 m site were significant it is highly propable that there was an adaption. 

� The sample size of the EN specimens was limited and thus quite small. The mean pore 

density might still change with more samples. Nevertheless, it should not change more 

than the range of the SEM and thus the results would not change distinctively. 

In both EN samples the mean pore density is too high to fit into the pore density/[O2]BW 

correlation during non-EN conditions. Indeed the pore density at the 830 m site is higher 

during EN although [O2]BW was higher, too. The pore density and [O2]BW were supposed to be 

inversely exponential correlated (Glock et al., 2011a). Thus it is not very probable that the 

pore density in B. spissa is solely correlated to the oxygen availability. 

4.4.2 Pore density variability in Bolivina spissa  among the last 300 years 

The variation of the pore density along the 12 cm core M77-1 487/MUC-39 is very low. The 

variation in between the different core top samples from the next deeper and shallower 

sampling location is much higher than any variation along that single core over the last 300 

years. There does not even seem to be a statistical difference between the different sampling 

depths. Several factors could have caused these results. It might be that the dominating 

environmental factor that influences the pore density (propably nitrate availability) did not 

change distinctively over the last 300 years at this location. Thus the differences in the nitrate 

availability were much higher between the different sampling locations than in the different 

time intervals at the same sampling site at 579 m water depth. Alternatively it might be that 

the evolutionary adaption of the pore density in Bolivina spissa is quite slow and that the big 

difference of the pore density between the different sampling locations developed over a 

much longer time than the last 300 years. Finally the sedimentation rate at this sampling site is 

relatively low and a slice of 1 cm covers ca. 30 years. Additionally B. spissa lives infaunal 

and thus is able to migrate vertically in the sediment column. It is possible that specimens 

migrate 1 or even up to 2 cm into the sediments and recent specimens in B. spissa are found in 

60 years old sediment. In this case it is possible that one slice of the core contains a mix of B. 

spissa specimens from a time period of 60-90 years. Any variation in the nitrate availability 

on a short time scale could not be detected anymore due to the low time resolution in the 

slices. 

But even with these low variations it is possible to discuss the progress of the pore density 

among this core. It is very conspicuous that the minimum of the pore density appears in the 

middle of the nineteenth century since there were intense changes in the environmental 
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conditions at the Peruvian OMZ during the end of the little ice age in the 1830´s (Guitierrez, 

2009). It has been shown that at the end of the little ice age there was a rapid expansion of the 

nutrient rich and oxygen depleted subsurface waters which resulted in a higher 

bioproductivity, including pelagic fish. Among others this shift was likely driven by a 

northward migration of the Intertropical Convergence Zone (Guitierrez et al., 2008). The 

minimum in the pore density and thus a maximum in nitrate availability seem to appear 

simultaneously with this mayor regime shift. A bit contradictory is that oxygen depletion 

often is correlated to nitrate depletion due to higher denitrification rates. But maybe the mix 

of higher nutrient availability, bioproductivity and thus remineralistion rates due to the 

stronger upwelling result in higher nitrate concentrations in the water column and this factor 

dominates over the influence of the higher denitrification rates. A more propable explanation 

could be that the northward migration of the Intertropical Convergence Zone results in more 

saline and thus nitrate enriched water masses. Over the time the higher denitrification rates 

seem to become more dominant which results again in a higher pore density (lower nitrate 

availability) in the 1940´s till now. The relative progress of the pore density follows exactly 

the same trend as the content of P in fish remainings in the sediments at 12° S and 179 m 

water depth off Peru and the number of anchovy landings off Peru (Díaz-Ochoa et al., 2009). 

Since the pore density is inversely proportional to the nitrate availability there was less nitrate 

available in times of higher occurance of pelagic fish. Thus it might be that the 

bioproductivity of pelagic fish (in this case especially anchovies) is inversely coupled to the 

nitrate availability in a water depth of about 579 m. Higher occurance of pelagic fish is most 

propably caused by higher food availability and thus a higher general bioproductivity. This 

could lead to a more massive nitrate depletion in the shallower waters which might influence 

the nitrate availability in the deeper waters, too. Additionally a higher bioproductivity results 

usually in a stronger oxygen depletion due to higher remineralisation rates which on the other 

hand leads to higher denitrification rates which could explain the lower nitrate availability at 

579 m water depth in times higher pelagic fish productivity. 

Since the variations in the pore density among the analysed core are not statistically 

significant it is hard to make solid statements about the interpretation of the results. But it is to 

conspicuous that the minimum of the pore density occurs exactly during that time, where 

there was a mayor regime shift in the sampling area (Guitierrez et al., 2008) and that the pore 

density follows exactly the same trend like the productivity of pelagic fish (Díaz-Ochoa et al., 

2009). 
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4.4.3 Pore density variability in Bolivina spissa  from Holocene into the last 

Glacial 

There are significant variations in the pore density of B. spissa from the Holocene into the last 

glacial.  The pore density shows a maximum during the last glacial which corresponds to a 

minimum in nitrate availability during that time. It has been suggested that during glacial 

times nitrate was enriched in the global ocean due to a decrease in denitrification (Ganeshram 

et al., 1995; Falkowsky, 1997; Ganeshram et al., 2000). This glacial decline in denitrification 

propably origins in reduced upwelling and flux of organic material through the OMZ 

(Ganeshram et al., 2000). Indeed general circulation model simulations predict a weakening 

of upwelling winds off Peru due to a weaker subtropical-high pressure system in the South 

Pacific during the LGM (Kutzbach et al., 1993). Additionally several studies at 11° S off Peru 

hint to a lower bioproductivity during the last llacial (Wefer et al., 1990; Schrader and 

Sorkness, 1990).  At a first glance it seems to be contradictory that the pore density in B. 

spissa indicates lower nitrate availability at 623 m water depth off Peru during the Last 

Glacial because due to the decreased denitrification during this time nitrate is supposed to be 

enriched. But on the other hand the Pacific Intermediate Waters which occupy the deeper 

water masses (below 600 m) at the OMZ off Peru at 8°S. This is beneath the intense 

denitrification zone (Ganeshram et al., 2000). These water masses distinguish clearly from the 

overlying waters in salinity as well as in nutrient characteristics (Wyrtki, 1967). Due to its 

deeper position in the water column the Pacific Intermediate Waters should only be weakly 

affected by effects on denitrification by ventilation changes. Thus depletion of nitrate in this 

depth might be caused by lower remineralisation rates due to lower bioproductivity and thus a 

lower flux of organic material through the OMZ. 

On the other hand there are several studies which hint to a strengthening in upwelling and 

thus bioproductivity in equatorial and coastal upwelling areas during the glacials (Pedersen, 

1983; Pedersen et al., 1988; Lyle, 1988; Lyle et al., 1988; Rea et al., 1991; Ohkouichi et al., 

1997; Patrick and Thunnel, 1997; Perks and Keeling, 1998; Wolf, 2002). An increase of 

upwelling might be related to stronger trade winds due to higher latitudinal temperature 

gradients (Mix et al., 1986) which contradicts the conclusions of Kutzbach et al. (1993). If 

there was indeed higher upwelling during the last glacial at the Peruvian OMZ nitrate 

depletion, predicted by the pore density in our study, might just be related to a general 

increase in denitrification. 

Another explanation for nitrate depletion at this site might be the lower sea level during the 

last glacial. Nitrate is usually depleted at shallower waters due to primary production near the 
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water surface. Due to remineralisation of organic matter nitrate concentrations rise with water 

depth. After Fairbanks (1989) the sea level during the LGM was about 120(+/- 5) m below the 

present. Other studies proclaim that the global sea level was 60-90 m below the present during 

the last 50000 years (Yokoyama et al., 2001; Lambeck et al., 2002; Siddal et al., 2003; 

Yokoyama et al., 2007). There is a difference of 0.0005 P/µm2 between the maximum pore 

density value at 200 cm sediment depth (last glacial) and the pore density of the surface 

sample (4145 a bp). This corresponds exactly to the difference in the pore density between 

two surface sample from 640 m (0.00520 P/µm2) and 579 m (0.00572 P/µm2) water depth at 

11°S off Peru (Glock et al., 2011a). These results imply that the water level at 8°S off Peru 

was about 60 m lower during the last glacial then during present. An interaction of several 

factors like a lower water level during the last glacial and changes in upwelling intensity and 

thus productivity, denitrification and flux of organic material could not be excluded. Thus it 

might be that the water level indeed was 120 m lower but the pore density was also 

superimposed by a reduced upwelling in during this time which would correlate with lower 

denitrification and a bit elevated nitrate levels. The fact that the pore density seems to follow 

the stacked δ18O record in benthic foraminifera shows that this proxy is sensitive to climatic 

changes and might serve as an invaluable archive for climate reconstruction. But since only 

two 14C ages are available at the moment, the relation to the stacked δ18O record has to be 

treated with care.  A disturbance of the stratigraphy in this core cannot be excluded by now. 

 

4.5 Conclusions 

In this study the variability of the pore density in B. spissa from the Peruvian OMZ was 

analysed on different time scales. Short time variations were considered by comparing the 

pore densities from EN specimens and specimens from non-EN conditions. Downcore 

observations on a short and a long core investigated the pore density variability on a 

centennial and a millennial time scale. Three mayor results come out of this study: 

� Comparison of recent specimens with specimens from the strong EN (1997-1998) 

from the same area at the Peruvian continental margin showed that there are 

significant differences in the pore densities of specimens from 830 m water depth 

between EN and non-EN conditions. Nitrate profiles through the water column off 

Peru showed that in this water depth nitrate was depleted during that EN compared 

with the non-EN conditions when we took our samples. No significant difference was 

found between the pore densities at a 562 m site during EN and a 579 m site during 
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non-EN conditions. These results hint also that the pore density variability during EN 

is mostly uncoupled from oxygen variations during this time. 

� The short core covers a time span of about the last 300 years. Although the pore 

densities did not differ significantly in the several depth intervals of that core there is a 

slight minimum in the pore density at the end of the Little Ice Age in the beginning of 

the 19th century when there were mayor shifts in the biogeochemical conditions at the 

OMZ off Peru (Gutiérrez et al., 2009). 

� The pore densities in the several depth intervals of the long core on the other hand 

show significant differences. There seems to be a strong shift to higher pore densities 

during the last glacial maximum (LGM). The higher pore densities indicate nitrate 

depletion during the LGM which either might origin from changes in the upwelling 

intensity of Peru during that time and the related biogeochemical shifts or the lower 

sea level or even an interaction of these factors. 

These results imply that the pore density in B. spissa might be a valuable proxy for nitrate 

availability at least on millennial time scales. Further investigations will show if this proxy 

could be used in a higher resolution on centennial time scales, too, on different sampling 

locations. 
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5.1 Summary and conclusions 

First studies have been done in this work on the value of Mn/Ca and Fe/Ca ratios in benthic 

foraminifera from the Peruvian OMZ as proxy for the reconstruction of past redox-conditions. 

The most widespread species along the Peruvian continental margin, Bolivina spissa, was 

used for this work. Furthermore a new proxy for nitrate availability, the PD in B. spissa, has 

been developed and first applications of this proxy have been tested. 

Elemental distribution maps of test cross-section from recent benthic foraminifera collected at 

the Peruvian OMZ show the absence of diagenetic coatings like Mn carbonates or Mn and Fe 

rich (oxyhydr)oxides. The Mn/Ca in B. spissa ratios are relatively low (~2.12-9.93 µmol/mol) 

but in the same magnitude as in the pore waters. Indeed the permanently anoxic OMZ off 

Peru causes MnO2 reduction in the water column and only minor amounts of particulate 

bound Mn arrive the seafloor. Nevertheless Mn/Ca ratios in B. spissa reflect the trend in the 

pore waters. The interpretation of the Fe/Ca ratios in B. spissa is a bit more complicated, 

because the lowest Fe/Ca ratios have been found at a sampling site, where the pore water 

profile shows a distinctive and sharp Fe peak at the shallower pore water intervals. The 

sampling site at 465 m depth is located at the lower boundary of the anoxic Peruvian OMZ. 

The absence of living but presence of a lot of dead B. spissa specimens indicates that the pore 

water at this site just recently turned anoxic. This caused ironoxides, which precipitated 

during a previous period of higher oxygen supply, to remobilise. The trend of the higher pore 

water concentrations with increasing water depth at the deeper stations again is reflected by 

the Fe/Ca ratios in B. spissa. 

• The Mn/Ca ratios in benthic foraminifera could be a good tool for the reconstruction 

of oxygen depletion along the Peruvian OMZ. Higher Mn/Ca ratios would indicate a 

better oxygenation because more particulate bound Mn would reach the seafloor and 

be remobilised in the pore waters. Additionally the presence of Mn an Fe rich 

coatings in fossile specimens would indicate longer periods of higher oxygen supply, 

because short time fluctuations would cause the coatings to dissolve again in anoxic 

periods. 

• The Fe/Ca ratios in B. spissa seem to be superimposed by more factors then the pore-

water concentrations. The value of use as a paleoproxy has to validified by further 

studies. 

The PDs in tests of B. spissa specimens from eight locations at the Peruvian OMZ show a 

negative exponential correlation between the PD and [O2]BW. Nevertheless the relationship 

between the PD and [NO3
-]BW is much better constrained. This indicates an adaption for the 
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intracellular nitrate uptake for nitrate-respiration through the pores. These results are 

supported by the finding that mitochondria (cell organelles involved in respiration) are 

clustered behind the pores of thin sections of a living fixed B. spissa cell.  

• The PD in B. spissa seems to be very sensitive to [NO3
-]BW and might prove as an 

invaluable proxy for nitrate availability. This proxy bears a very good resistance 

against diagenetic overprinting. 

• The fact that mitochondria are clustered behind the pores of B. spissa indicates that 

mitochondria are at least involved in the process of foraminiferal denitrification. 

Nitrate respiration in benthic foraminifera has not been attributed to a specific cell 

organelle before. 

First applications of the new knowledge about the PD in B. spissa have been done by 

analysing the PD variability on different time scales. Short time variations were considered by 

comparing the pore densities from EN specimens and specimens from non-EN conditions. 

Downcore observations on a short and a long core investigated the pore density variability on 

a centennial and a millennial time scale: 

• Specimens from a strong EN (1997-1998) have significant elevated PDs, compared to 

specimens from non-EN conditions, at a sampling site where nitrate was depleted 

during the EN. On the other hand the PD shows no significant differences between EN 

and non-EN conditions at a water depth where the nitrate concentrations were nitrate 

concentrations were similar during both sampling times. These results also hint that 

the PD variability during EN is mostly uncoupled from oxygen variations during this 

time. 

• The short core covers a time span of about the last 300 years. PDs did not differ 

significantly in the several depth intervals of that core. But there is a slight minimum 

in the pore density at the end of the Little Ice Age in the beginning of the 19th century 

when there were mayor shifts in the biogeochemical conditions at the OMZ off Peru. 

• The pore densities in several depth intervals of the long core on the other hand show 

significant differences. The PDs were elevated during the LGM. The higher pore 

densities indicate nitrate depletion during the LGM which either might origin from 

changes in the upwelling intensity of Peru during that time and the related 

biogeochemical shifts or the lower sea level or even an interaction of these factors. 

These results imply that the PD in B. spissa might be an invaluable proxy for nitrate 

availability at least on millennial time scales. Together with information from Mn/Ca and 
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Fe/Ca ratios changes in oxygen and nitrate availability might be traced during the last glacial. 

This might give a much more complete picture about changes in the biogeochemical 

conditions in the Peruvian OMZ during this time.   

 

5.2 Outlook 

In this work first studies have been done on the variability of redox-sensitive elements in 

benthic foraminifera from the Peruvian OMZ. Additionally with the PD of B. spissa a new 

proxy for nitrate concentrations has been developed. Only first applications have been done so 

far with this new proxy. Future work should definitely include the consequent analysis of 

Fe/Ca and Mn/Ca downcore on different cores from the OMZ off Peru. These studies could 

analyse short time fluctuations on a centennial timescale as well as fluctuations on a 

millennial timescale. Higher Mn/Ca ratios would indicate times of more oxygen supply and 

the presence of Mn and Fe rich coatings would hint to even longer periods of higher 

oxygenation. A combination of this geochemical proxy with the PD-proxy on cores with a 

good stratigraphy would give a much better understanding about the biogeochemical 

conditions at the OMZ off Peru during different time periods (Little Ice Age, LGM). 

Application of other proxies for oxygen-supply like the micropaleontological proxy, working 

with foraminiferal assemblages, from Mallon et al. (in press) would complete this picture. 

Since the PD proxy is newly developed a lot of work has to be done in this field. Culture 

experiments with B. spissa or other benthic foraminiferal species which adapt their PD to 

different environmental conditions could give a much better understanding about the 

processes which govern the PD in these species. Incubations under controlled conditions with 

different oxygen- and nitrate-concentrations, temperatures, salinities, etc. would help to 

identify the dominating factor which influences PD although by the moment it seems to be 

nitrate availability. Also there are possibilities to proof if oxygen uptake and denitrification is 

really governed via the pores. Previous work already proofed that Patellina corrugata actively 

pumps neutral red die through its pores (Berthold, 1976) and that Amphistigina lobifera takes 

up 14C labelled CO2 through its pores (Leutenegger and Hansen, 1979). For both studies the 

apertures of the specimens have been closed with silicon grease and a drop of paraffin oil. The 

apertures of cultured B. spissa could be closed in a similar way. Afterwards oxygen-

respiration and denitrification rates could be measured with microsensors and compared to 

cultures with an open aperture. The methods for measuring denitrification and oxygen 

respiration rates of foraminifera wirh microsensors have already been developed (Pina-Ochoa 
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et al., 2010, Geslin et al., 2011). Presence of respiration and denitrification in the cultures with 

the closed aperture could finally proof the function of pores in these species. In this field of 

work also the distribution of mitochondria in B. spissa cells could be investigated more 

closely. Monoclonal antibodies specific for oxidative phophorylisation might be used to stain 

mitochondria in fixed B. spissa specimens. Mitochondria could be quantified that way in 

respect to different environmental conditions (like nitrate availability) and their location in the 

cell. If it would be shown that mitochondria in this species are just located behind the pores 

the involvement of mitochondria in foraminiferal denitrification might be proofed finally. Our 

knowledge about the PD in benthic foraminifera is restricted to B. spissa from the Peruvian 

OMZ at the moment. Future studies should definitely include different sampling areas and 

different species. The PD of Planulina limbata seems to be very sensitive on environmental 

influences, too. The sampling should be done at sites with very well known environmental 

parameters. For example in situ oxygen- and nitrate-microprofiles would have been of great 

support for this work. 
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