Q-03: -N:06 UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA SEOLOGICA MINERA Y METALURGICA DOCUMENTARIO TRAMITE RECEPCION DECANATO AYUDA LADUNATORIO SECRETARIA PERSONAL ABASTECIMIENTO PUBLICACIONES MUSEO GEOLOGICO BIBLIOTECA PROYEZION SOCIAL INSTITUTO DE I UNIVERSIDAD NACIONAL DE INGENIERIA Grado de fuguer Temo No 308 certifica : El Catedrático Secretarlo de_ scallo ha designado a los Ingenieros: señor Que nascal and rete 20 tesis que debe revisar Jurado 12 el Integran elipticy ralles mazorcis 20 1 unte d presentada señor por e NOTA Cit 0

UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y METALÚRGICA ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

" PETROGRAFÍA, GEOQUÍMICA E IMPLICANCIAS METALOGENÉTICAS DE LOS VOLCÁNICOS CENOZOICOS DEL SURESTE DEL PERÚ: ZONA DE MAZO CRUZ (PUNO)"

TESIS

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO GEÓLOGO Presentada por: Bach. Jorge Luis Quispe Cangana

> LIMA – PERÚ Abril 2004

A mi esposa e hija, por la paciencia y apoyo constante.

AGRADECIMIENTOS

El estudio titulado: "PETROGRAFÍA, GEOQUÍMICA E IMPLICANCIAS METALOGENÉTICAS DE LOS VOLCANICOS CENOZOICOS DEL SURESTE DEL PERÚ: ZONA DE MAZO CRUZ", no habría sido posible sin el apoyo de Compañía de Minas Buenaventura S.A.A. Por ello, mi mayor agradecimiento a las autoridades de la compañía, en la persona del Ing. Alberto Benavides de la Quintana, Presidente de Directorio.

Al Dr. César Vidal Cobián, Gerente de Exploraciones, cuya asesoría y supervisión, me dieron un mejor panorama sobre la importancia de la geología económica. Muchas gracias.

Al Ing. Hernán Tanabe Okada, Jefe Administrativo del Departamento de Exploraciones, por las facilidades brindadas.

A los profesionales del Departamento de Exploraciones, Ings. Rolando Ligarda Campana, Carlos León Ojeda, Julio Reyno Nolberto, Miguel Miranda Trinidad y Andrés Condori Benavides, por sus críticas y consejos, que fueron fundamentales para guiar este estudio.

Así mismo agradezco de manera especial al Dr. Andreas Dietrich y a la Ing. María Manrique Gálvez, quienes con dinamismo, amistad y compañerismo, me transmitieron sus conocimientos y experiencias del trabajo de campo.

A mis asesores académicos, Dr. Humberto Chirif Rivera y el Ing. Atilio Mendoza Apolaya, por su interés y apoyo para llevar a buen término éste trabajo de Tesis.

No puedo dejar de agradecer a los Drs. Rolando Carrascal y Victor Carlotto, por sus orientaciones; a mi amigo Alejandro Arce Gonzáles por su apoyo en la preparación de mapas y a todas aquellas personas colaboraron conmigo durante el desarrollo de esta Tesis.

RESUMEN

La zona de estudio se encuentra entre las coordenadas geográficas 15° y 17° latitud Sur, 69°30' y 71° longitud Oeste, comprende parte de los departamentos de Puno y Moquegua. Geológicamente se ubica en el segmento Norte del arco volcánico Plio-Cuaternario. Dentro de la zona de investigación se enmarca una sub-zona denominada "Mazo Cruz 1 – 12" (propiedad de Cía. de Minas Buenaventura S.A.A.), ubicada a 140 km al Sur de la ciudad de Puno y conformada por cuatro centros volcánicos pertenecientes al Complejo Volcánico Barroso, denominados Aconcahua, Peñón, Orcorara y Antajave. Todos ellos catalogados como prospectivos por sistemas epitermales. La geología de la zona está caracterizada por rocas sedimentarias del Paleozoico y Mesozoico, capas rojas del Grupo Puno y volcánicos Cenozoicos conformados por los Grupos Tacaza (17 Ma - 30 Ma), Palca (11 Ma - 19 Ma), Sillapaca (13 Ma –17 Ma), Maure (7 Ma – 21 Ma) y Barroso (1 Ma - 7 Ma). Algunas de estas secuencias están cortadas por intrusivos Miocénicos de facies sub-volcánicas. Petrográficamente las secuencias volcánicas Cenozoicas consisten en lavas y piroclásticos de composición variable entre basaltos, andesitas, traquitas, dacitas y riolitas. Las características petrográficas tales como coexistencia de piroxenos con cuarzo, zonación de plagioclasas, fenocristales con bordes de reacción y alteración de minerales hidratados (anfíboles y biotitas) a óxidos de Fe, evidencian desequilibrios mineralógicos. El comportamiento geoquímico observado en diversos diagramas composicionales, permite deducir una evolución calco-alcalina rica en potasio, ambiente magmático de interior de placas y cristalización fraccionada.

La Metalogenia de la zona está dada por vetas Pb – Ag – Cu - Zn, pórfido de Cu (Prospecto Los Calatos), Cu como impregnaciones en capas rojas del Grupo Puno y ocurrencias locales de yacimientos de oro "tipo epitermales", como son el Prospecto Mazo Cruz (INGEMMET), Proyecto La Rescatada (Anglo Gold) y Mina Aruntani (Minera del Hill).

El modelamiento de alteraciones de "**Mazo Cruz 1 – 12**" mediante lecturas de PIMA, indica que los centros volcánicos de Aconcahua, Peñón y Orcorara no presentan alteraciones hidrotermales de importancia debido a la ausencia de arcillas de alta temperatura (pirofilita, dickita, kaolinita). Sin embargo, Antajave exhibe un zonamiento a partir de un centro hidrotermal con ensamble alunita \pm pirofilita, que pasa a alunita \pm kaolinita (argílica avanzada) y luego a alteración fílica y propilítica, resultando ser el sector más favorable para trabajos futuros de exploración.

CONTENIDO

CAPÍTULO I: GENERALIDADES

INTRODUCCIÓN	.1
PLANTEAMIENTO DEL PROBLEMA	1
OBJETIVOS DE TRABAJO	.2
METODOLOGÍA	.2
ANTECEDENTES HISTÓRICOS	.3
LOCALIZACIÓN DEL ÁREA DE ESTUDIO	4
CLIMA	.4
	INTRODUCCIÓN PLANTEAMIENTO DEL PROBLEMA OBJETIVOS DE TRABAJO METODOLOGÍA ANTECEDENTES HISTÓRICOS LOCALIZACIÓN DEL ÁREA DE ESTUDIO CLIMA

CAPÍTULO II: GEOLOGÍA REGIONAL ENTRE LAS COORDENADAS GEOGRÁFICAS 15° Y 17° LATITUD SUR, 69°30' Y 71° LONGITUD OESTE

UNIDA	ADES MORFO	ESTRUCTURALES	5
2.1.1	CORDILLER	A OCCIDENTAL	.5
2.1.2	ALTIPLANO		.5
ESTR	ATIGRAFÍA		.6
2.2.1	PALEOZOICO	D	.6
	2.2.1.1	Formación Calapuja	.6
	2.2.1.2	Grupo Cabanillas	.6
	2.2.1.3	Grupo Ambo	6
	2.2.1.4	Grupo Copacabana	6
	2.2.1.5	Grupo Iscay	6
2.2.2	MESOZOICO		.6
	2.2.2.2	Grupo Lagunillas	.6
	2.2.2.3	Grupo Yura	7
	2.2.2.4	Formación Sipín	.7
	2.2.2.5	Formación Ayavacas	7
	2.2.2.6	Formación Vilquechico	7
2.2.3	CENOZOICO		7
	2.2.3.1	Grupo Puno	7
	2.2.3.2	Grupo Tacaza	.7
	UNIDA 2.1.1 2.1.2 ESTRA 2.2.1 2.2.2	UNIDADES MORFO 2.1.1 CORDILLERA 2.1.2 ALTIPLANO ESTRATIGRAFÍA 2.2.1 PALEOZOICO 2.2.1.1 2.2.1.2 2.2.1.3 2.2.1.4 2.2.1.5 2.2.2 MESOZOICO 2.2.2.2 2.2.2.3 2.2.2.4 2.2.2.5 2.2.2.6 2.2.3 2.2.2.6 2.2.3.1 2.2.3.2	UNIDADES MORFOESTRUCTURALES

		2.2.3.3	Grupo Palca	8
		2.2.3.4	Grupo Sillapaca	8
		2.2.3.5	Grupo Maure	8
		2.2.3.6	Grupo Barroso	8
		2.2.3.7	Formación Azángaro	8
		2.2.3.8	Volcánicos Ubinas	8
		2.2.3.9	Depósitos recientes	9
2.3	ROCA	S INTRUSIVA	S	
	2.3.1	ROCAS INTR	RUSIVAS PALEOZOICAS	9
	2.3.2	ROCAS INTR	RUSIVAS MESOZOICAS	9
	2.3.3	ROCAS INTR	RUSIVAS CENOZOICAS	9
2.4	MARC	O TECTÓNIC	O	.11
	2.4.1	CICLO ORO	GÉNICO PALEOZOICO	11
		2.4.1.1	Fase Eoherciniana	11
2.4.2	CICLC	OROGÉNICO	D ANDINO	11
		2.4.2.1	Fase Peruana	11
		2.4.2.2	Fase Inca	.11
		2.4.2.3	Fase Quechua	11
2.5	MARC	O ESTRUCTU	JRAL	13
	2.5.1	FALLAS		13
		2.5.1.1	Sistema de fallas Lagunillas	.13
		2.5.1.2	Sistema de falla Ayaviri	13
		2.5.1.3	Sistema de fallas E-W	13
		2.5.1.4	Fallas Menores	14
	2.5.2	LINEAMIENT	OS	14
	2.5.3	ESTRUCTUR	RAS VOLCÁNICAS	14
2.6	GEOL	OGÍA ECONÓ	MICA	15
	2.6.1	METALOGEN	NIA	.15
		2.6.1.1	Yacimientos filoneanos	15
		2.6.1.2	Yacimientos epitermales	18
		2.6.1.3	Yacimientos tipo pórfidos de cobre	19

CAPITULO III: CARACTERIZACIÓN PETROGRÁFICA DE LA FRANJA VOLCÁNICA CENOZOICA

3.1	GRUPO TACAZA	22
3.2	GRUPO PALCA	24
3.3	GRUPO SILLAPACA	25
3.4	GRUPO MAURE	26
3.5	GRUPO BARROSO	27

CAPITULO IV: GEOQUÍMICA DE LOS VOLCÁNICOS CENOZOICOS

4.1	MÉTO	DOS ANALÍTICOS	28
4.2	GEOQ	UÍMICA DE ELEMENTOS MAYORES	28
	4.2.1	DIAGRAMA TAS	28
	4.2.2	DIAGRAMA KS	
	4.2.3	DIAGRAMA AFM	30
	4.2.4	ÍNDICES DE CORRELACIÓN PEARSON	31
4.3	GEOQ	UÍMICA DE ELEMENTOS TRAZA	31
	4.3.1	DIAGRAMA La/10 – Y/15 – Nb/8	32
	4.3.2	DIAGRAMA Zr – Ti/100 – Sr/2	32
4.4	ROL H	IIDROTERMAL DE LOS MAGMAS RESPECTO A SU ORIGEN Y	
	DIFER	ENCIACIÓN	32

CAPÍTULO V: ALTERACIONES HIDROTERMALES GENERALES EN LOS VOLCÁNICOS CENOZOICOS

5.1	ALTERACIÓN PROPILÍTICA	34
5.2	ALTERACIÓN ARGÍLICA	34
5.3	ALTERACIÓN ARGÍLICA AVANZADA	35
5.4	SILICIFICACIÓN	.35

CAPÍTULO VI: MARCO GEOLÓGICO, ALTERACIONES Y MINERALIZACIÓN DEL COMPLEJO VOLCÁNICO BARROSO DE MAZO CRUZ 1 – 12

6.1	INTRO	DUCCIÓN		36
	6.1.1	UBICACIÓN	Y ACCESO	36
	6.1.2	TRABAJOS F	REALIZADOS	37
6.2	MORF	OLOGÍA		37
6.3	ESTR	ATIGRAFÍA		38
	6.3.1	GRUPO MAU	IRE	38
		6.3.1.1	Flujos Laminares	38
		6.3.1.2	Tobas	38
	6.3.2	GRUPO BAR	ROSO	38
		6.3.2.1	Dacita Porfirítica	38
		6.3.2.2	Piroclastos	38
		6.3.2.3	Intercalación de Lavas Andesíticas y Piroclastos	39
		6.3.2.4	Andesitas Basálticas	39
		6.3.2.5	Andesita Gris Clara	39
		6.3.2.6	Piroclastos Traquíticos	39
		6.3.2.7	Ignimbritas	39
6.4	META	LOGENIA Y A	CTIVIDADES MINERAS	40
6.5	GEOL	OGÍA ESTRUC	CTURAL	40
	6.5.1	ZONA ACON	CAHUA	40
	6.5.2	ZONA PEÑO	N	41
	6.5.3	ZONA ORCO	RARA	41
	6.5.4	ZONA ANTAJ	IAVE	41
6.6	ALTE	RACIÓN Y MIN	IERALIZACIÓN	42
	6.6.1	ZONA ACON	CAHUA	42
	6.6.2	ZONA PEÑO	N	44
	6.6.3	ZONA ORCO	RARA	45
	6.6.4	ZONA ANTAJ	IAVE	46

CAPÍTULO VII: INTERPRETACIONES

7.1	EVOL	UCIÓN TECTÓNICA EN LA FRANJA VOLCÁNICA CENOZOICA	47
	7.1.1	ETAPA I – FASE TECTÓNICA EOHERCINIANA	47
	7.1.2	ETAPA II – FASE TECTÓNICA PERUANA	47
	7.1.3	ETAPA III – FASE TECTÓNICA INCA	47
	7.1.4	ETAPA IV – FASE TECTÓNICA QUECHUA	48
7.2	RELAC	CIÓN TECTÓNICA, MAGMÁTICA Y DE MINERALIZACIÓN	49
	7.2.1	ZONA CON MINERALIZACIÓN (Au - Pb – Ag) ASOCIADA A LA CA	ALDERA
		OCUVIRI	49
	7.2.2	ZONA DE PLEGAMIENTOS CON MINERALIZACIÓN DE (Cu, F	⊃b, Ag)
		ASOCIADA AL SISTEMA DE FALLAS LAGUNILLAS	50
	7.2.3	ZONA CON MINERALIZACIÓN (Au, Ag, Pb) RELACIONADA A LINEAM	IENTOS
		EW – NS Y MARGEN DE CUENCA MAURE	50
7.3	ZONE	AMIENTO METALOGENÉTICO	51
7.4	ÁREAS	S FAVORABLES PARA LA EXPLORACIÓN	52
CONC	LUSIC	ONES	53

RELACIÓN DE LÁMINAS

Lámina No. 1: Plano topográfico	
Lámina No. 2: Unidades morfoestructurales	
Lámina No. 3: Imagen Landsat TM de rasgos morfológicos	
Lámina No. 4: Geología regional	
Lámina No. 5: Distribución de rocas intrusivas	
Lámina No.6: Marco Estructural	
Lámina No. 7: Imagen Landsat TM de rasgos estructurales	

- Lámina No.8: Plano metalogenético
- Lámina No. 9: Distribución del Grupo Tacaza
- Lámina No. 10: Distribución del Grupo Palca
- Lámina No. 11: Distribución del Grupo Sillapaca
- Lámina No. 12: Distribución del Grupo Maure
- Lámina No. 13: Distribución del Grupo Barroso
- Lámina No. 14: Ubicación de muestras en la franja volcánica Cenozoica
- Lámina No. 15: Geología del complejo volcánico de Mazo Cruz
- Lámina No. 16: Geología y alteraciones Zona Aconcahua
- Lámina No. 17: Sección AA' geología y Alteraciones Zona Aconcahua
- Lámina No. 18: Geología y alteraciones Zona Peñon
- Lámina No. 19: Sección BB' geología y alteraciones Zona Peñon
- Lámina No. 20: Geología y alteraciones Zona Orcorara
- Lámina No. 21: Sección CC' geología y alteraciones Zona Orcorara
- Lámina No. 22: Geología y alteraciones Zona Antajave
- Lámina No. 23: Sección geológica DD' geología y alteraciones Zona Antajave
- Lámina No. 24: Interpretación tectónica, magmática y de mineralización
- Lámina No. 25: Imagen Landsat TM óxidos + arcillas

RELACION DE FIGURAS

- Figura No. 1: Localización del área de investigación
- Figura No. 2: Columna estratigráfica regional
- Figura No. 3: Diagrama de la estratigrafía regional de los volcánicos Cenozoicos
- Figura No. 4: Ubicación del complejo de Mazo Cruz

RELACION DE GRÁFICOS

- Gráfico No. 1: Diagrama TAS para clasificación de rocas volcánicas
- Gráfico No. 2: Diagrama TAS para clasificación de series magmáticas
- Gráfico No. 3: Diagrama KS
- Gráfico No. 4: Diagrama AFM

- Gráfico No. 5A 5N: Diagramas de correlación Pearson de evolución composicional y geoquímica de los volcánicos Cenozoicos del S.E del Perú
- Gráfico No. 6: Diagrama La/10 Y/15 Nb/8
- Gráfico No. 7: Diagrama Ti Zr Sr
- Gráfico No. 8: Diagrama SiO₂ A/CNK
- Gráfico No. 9: Diagrama A/CNK Pb+Zn+Cu

RELACION DE CUADROS

- Cuadro No. 1: Características petromineralógicas de los volcánicos Cenozoicos
- Cuadro No. 2: Ensambles de alteraciones hidrotermales
- Cuadro No. 3: Relación de zonas investigadas en Mazo Cruz 1 12 y muestras recolectadas para análisis por PIMA.

RELACIÓN DE ANEXOS

ANEXO I: ESTUDIOS PETROMINERAGRÁFICOS

ANEXO II: ESTUDIOS PETROMINERAGRÁFICOS DE ALTERACIONES ANEXO III: RELACIÓN DE TABLAS

- Tabla No. 1: Edades de rocas intrusivas
- Tabla No. 2: Relación de minas y prospectos
- Tabla No. 3: Edades radiométricas de rocas volcánicas Cenozoicas
- Tabla No. 4: Relación de muestras para estudios petrográficos con microscopio de polarización
- Tabla No. 5: Resultados de ensayes químicos del Grupo Tacaza
- Tabla No. 6: Resultados de ensayes químicos del Grupo Palca
- Tabla No. 7: Resultados de ensayes químicos del Grupo Sillapaca
- Tabla No. 8: Resultados de ensayes químicos del Grupo Maure
- Tabla No. 9: Resultados de ensayes químicos del Grupo Barroso
- Tabla No. 10: Correlación Pearson de elementos mayores de los volcánicos Cenozoicos.
- Tabla No. 11: Resultados PIMA Zona Aconcahua
- Tabla No. 12: Resultados PIMA Zona Peñón

Tabla No. 13: Resultados PIMA Zona Orcorara

Tabla No. 14: Resultados PIMA Zona Antajave

CAPÍTULO I GENERALIDADES

1.1 INTRODUCCIÓN

El desarrollo del presente trabajo de Tesis, relaciona las características petrográficas y geoquímicas con la mineralización de los volcánicos Cenozoicos en los departamentos de Puno y Moquegua, al Sureste del Perú. Está área es considerada como favorable para la exploración de yacimientos tipo epitermales, debido a la amplia distribución de secuencias volcánicas Cenozoicas y por evidencias de mineralización aurífera (Mazo Cruz, La Rescatada, y Mina Aruntani). Bajo esta perspectiva se ha realizado la interpretación estructural y metalogenética, así como un exhaustivo seguimiento a las anomalías de color (óxidos + arcillas) establecidas por imágenes satelitales, determinándose de esta manera una zona prospectiva al Sureste de la mina Aruntani y dentro del Complejo Volcánico Barroso, denominada "Mazo Cruz 1–12". Esta sirve como modelo de sistemas hidrotermales en dicho ambiente. Los trabajos de campo se llevaron a cabo durante los años 2002 y 2003.

1.2 PLANTEAMIENTO DEL PROBLEMA

- Los volcánicos Cenozoicos están divididos en diversas Formaciones, muchas de ellas con nombres locales, lo que hace difícil la correlación con otras unidades equivalentes en tiempo. Es necesario plantear una correlación regional.
- La tipificación geoquímica de los volcánicos Cenozoicos está orientada principalmente a la discusión química, evolutiva y al ambiente tectónico. Pero también nos interesa saber si durante los diferentes procesos magmáticos se han producido fases fluidas, que bajo ciertas condiciones físico-químicas podrían ser fuentes de iones metálicos.

1

La zona de estudio metalogenéticamente está considerada dentro de una franja polimetálica, pero la presencia de yacimientos epitermales con contenidos de oro, como Mazo Cruz, La Rescatada y Aruntani, hacen redefinir el modelo de provincia polimetálica.

1.3 OBJETIVOS DEL TRABAJO

Los objetivos de la siguiente Tesis de Grado son los siguientes:

- Caracterizar los aspectos petrográficos y geoquímicos de los volcánicos Cenozoicos.
- Establecer correlaciones a través de edades radiométricas, características petrográficas, geoquímicas y observaciones de campo.
- Proponer un modelo de sistema hidrotermal dentro del Complejo Volcánico Barroso.
- Definir dentro del área de investigación la zonación metalogenética y su relación tectónica, magmática y de mineralización.
- Sugerir áreas favorables para la exploración de posibles yacimientos polimetálicos y de metales nobles (Au – Ag).
- Presentar el estudio y sus resultados como Tesis para obtener el Título
 Profesional de Ingeniero Geólogo.

1.4 METODOLOGÍA

La metodología del estudio ha comprendido tres etapas: Gabinete I, Campo y Gabinete II.

La Etapa de Gabinete I, consistió en la recopilación y selección de material bibliográfico de diferentes fuentes, compilación de información geológica de los boletines de las franjas No. 1 y No. 2 del INGEMMET, interpretación de imágenes de satélite (Landsat TM) y fotografías aéreas, inventario de actividades mineras y preparación de información básica para los trabajos de campo

(planificación del trabajo, mapas preliminares, determinación de puntos de muestreo, etc).

En la Etapa de Campo, se realizó el cartografiado geológico y toma de muestras. El cartografiado geológico se efectuó a escalas 1:100,000 y 1:10,000 restringida al dominio volcánico Cenozoico y al Complejo Volcánico Barroso de Mazo Cruz, respectivamente. La toma de muestras fueron orientadas principalmente al estudio petrográfico y geoquímico de rocas volcánicas.

La Etapa de Gabinete II, consistió en la selección de muestras para estudios petrográficos y ensayes químicos, sistematización de la información de campo (planos y secciones geológicas, planos estructurales, etc.), procesamiento de los resultados y redacción del presente trabajo.

Los estudios petrográficos con microscopio de polarización se realizó sobre 26 muestras en el Laboratorio de Mineralogía de la Facultad de Ingeniería Geológica, Minera y Metalúrgica de la Universidad Nacional de Ingeniería. Para la interpretación geoquímica se han empleado resultados de 36 ensayes químicos de elementos mayores y menores, algunos análisis han sido preparados directamente para el presente estudio mientras que otros se han tomado de diferentes trabajos de investigación. Los ensayes de elementos mayores y menores y menores a Análisis por Roca Total, efectuados en CIMM PERÚ S.A. y Análisis Multielemental (ICP – MS 47 elementos), en ALS Chemex.

1.5 ANTECEDENTES HISTÓRICOS

Entre los trabajos realizados en la zona se tienen:

- Trabajos de investigación regional realizados por el INGEMMET entre los años 1968 y 2000.
- Evaluación del Prospecto Mazo Cruz (441,000E y 8'134,000N) a cargo del INGEMMET, definido como un sistema de afinidad ácido – sulfato con mineralización en Au - Ag, en el año 1993.
- Trabajos de exploración realizadas por Cía. Minera Bencasi S.A., en las áreas Koverane, Gihuana, Supa, Millo y Antajave, en el año 1995.

- Exploración por sistemas epitermales en la franja volcánica Cenozoica, realizada por Cía. de Minas Buenaventura S.A.A, durante los años 2002 y 2003.
- Trabajos de exploración y desarrollo en el Proyecto La Rescatada (Anglo Gold) y la mina Aruntani (Minera del Hill), definidos como sistemas epitermales Au – Ag, llevados a cabo actualmente.

1.6 LOCALIZACIÓN DEL ÁREA DE ESTUDIO

El área de estudio está comprendida entre las coordenadas geográficas 15° y 17° latitud Sur, $69^{\circ}30'$ y 71° longitud Oeste. Políticamente, se encuentra en los departamentos de Puno y Moquegua. Dentro de esta área se enmarca la sub-zona de investigación denominada "Mazo Cruz 1 – 12", ubicada a 140 km al Sur de la ciudad de Puno (**Fig. No. 1, Lám. No. 1**).

1.7 CLIMA

La temperatura media anual máxima es 17° C y se registra entre los meses de octubre y marzo, coincide con los meses de mayor precipitación pluvial. La temperatura media anual mínima es 1° C bajo cero y se establece entre los meses de abril y septiembre, durante los cuales se tienen eventuales precipitaciones. La precipitación promedio anual del 2003, ha sido estimada en 595 mm/año (SENAMHI).

Compañ de Mina	Buena ventura	ESCALA 1/750000	UNIVERSIDAD NACIONAL DE ING FIGMM ESCUELA PROFESIONAL DE GEO	IENIERIA DLOGIA
PROYECTO	TESIS	FECHA		
DATOS	BVN			LAMINA
PLOTEO	JULIO REYNO NOLBERTO	DIC 2003		
REVISION	CARLOS LEON		PLANO I OPOGRAFICO	
APROBADO	CESAR VIDAL			1
REVISIONES		ARCHIVO		
OBSERVACIONES:		ARCHIVO.WOR		

CAPÍTULO II

GEOLOGÍA REGIONAL ENTRE LAS COORDENADAS GEOGRÁFICAS 15° Y 17° LATITUD SUR, 69°30' Y 71° LONGITUD OESTE

2.1 UNIDADES MORFOESTRUCTURALES

En el área de estudio destacan las unidades morfoestructurales Cordillera Occidental y Altiplano **(Lám. No. 2)**, identificadas en la imagen satelital Landsat TM, bandas 7R, 4G, 2B **(Lám. No. 3)** y corroboradas en el campo.

2.1.1 Cordillera Occidental

Se caracteriza por tener relieve abrupto y escarpas prominentes. Sus elevaciones van desde los 4200 m.s.n.m hasta los 5400 m.s.n.m. Presenta valles profundos y encañonados.

2.1.2 Altiplano

Esta unidad presenta llanuras, colinas con ondulamiento suave y altas mesetas. Sus altitudes se registran entre los 3800 m.s.n.m. y 4800 m.s.n.m. Sus rasgos estructurales más destacables son los plegamientos y depresiones.

2.2 ESTRATIGRAFÍA

La columna estratigráfica de la zona está caracterizada principalmente por rocas volcánicas Cenozoicas, que sobreyacen a capas rojas del Grupo Puno y afloramientos del basamento, los cuales están expuestos a manera de ventanas, conformadas por rocas sedimentarias del Paleozoico y Mesozoico (Fig. No. 2. y Lám. No. 4).

DIBUJO CAD

APROBADO

REVISION CAD

Alejandro Arce Gonzalez

Carlos León Ojeda

César Vidal Coblán

ENERO - 2004

ARCHIVO

Lám_2_4_6

2

MORFOESTRUCTURALES

300 E	350 E		400 E			
			0 km		50 km	
LEYENDA						
Yacimientos er	bitermales					
Complejo Volc	ánico Mazo Cruz 1- 12	Comp. de Mi	añia nas Buena⊽entura	ESCALA 1/750,000	UNIVERSIDAD NACIONAL DE ING FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y M ESCUELA PROFESIONAL DE GEOLOG	ENIERIA Etalúrgic
		TESIS	PETROGRAFÍA, GEOQUÍMICA E IMPLICANCIAS METALOGENÉTICAS DE LOS VOLCÁNICOS CENOZOICOS DEL SURESTE DEL PERÚ: ZONA DE MAZO CRUZ	FECHA		
		INTERPRETACION	Jorge Luis Quispe Cangana	Marzo - 2004		
				1		
			Julio Reyno Nolberto Carlos León Oieda		MOSAICO 7R,4G,2B	3

2.2.1 PALEOZOICO

2.2.1.1 Formación Calapuja (Ordovícico)

Conformada por lutitas arenosas, intercaladas con niveles de areniscas y cuarcitas. Tiene su localidad tipo en los alrededores del poblado de Calapuja en los cerros Sara, Catacora e Iquiñito, Noroeste de la ciudad de Juliaca. Alcanza una potencia ± 3,500 m.

2.2.1.2 Grupo Cabanillas (Silúrico a Devónico Inferior)

Litológicamente está constituido por lutitas oscuras ferruginosas intercaladas con cuarcitas y areniscas de grano medio. Su localidad tipo se encuentra en el río Cabanillas, provincia de Lampa. Aflora al Noreste del distrito de Santa Lucía y al Sureste de la ciudad de Puno. Su potencia es ± 3,000 m.

2.2.1.3 Grupo Ambo (Misissipiano)

Consiste en areniscas, lutitas carbonosas, niveles conglomerádicos, limolitas rojas, lentes delgadas de carbón y a veces tufos volcánicos. Aflora al Norte del poblado de Palca. Alcanza una potencia de ± 2,700 m.

2.2.1.4 Grupo Copacabana (Pérmico Inferior)

Constituidos por afloramientos de pizarras gris oscuras, lutitas, calizas gris azuladas y niveles dolomíticos. Aflora al Noreste del poblado de Caminaca (cuadrángulo de Huancané). Su potencia aproximada es de ± 1,800 m.

2.2.1.5 Grupo Iscay (Pérmico a Triásico Inferior)

Tiene una secuencia inferior de flujos de lava y una superior tobácea, su localidad tipo se encuentra en el cerro Iscay, al Norte de la ciudad de Juliaca. Alcanza una potencia ± 600 m.

2.2.2 MESOZOICO

2.2.2.1 Grupo Lagunillas (Jurásico Superior)

Presenta areniscas cuarzosas, calizas lutáceas, niveles de chert y gredas con intercalaciones de calizas grises. Tiene su localidad tipo alrededor de la laguna Lagunillas. Alcanza una potencia ± 1,200 m.

ERATEM	A SIS	TEMA	SERIE	UNIDAD LITOESTRATIGRAFICA			DESCRIPCION			
			HOLOCENO				Depósitos fluvioglaciares, morrénicos, coluviales y fluvio aluviales.			
	CUAT	ERNARIO		VOLCANICOS UBINAS			Lavas andesíticas, lapillis y cenizas.			
			PLEISTOCENO	FORMACION AZANGARO			Limos, concreciones calcáreas, areniscas y areniscas calcáreas.			
8				GRUPO BARROSO			Derrames andesíticos, piroclásticos v brechas volcánicas.			
CENOZOIC		NEOGENO				Grupo Maure: Tobas, brechas volcánicas, lavas				
	NO NO		MEDIO	GRUPO			Gpo. Sillapaca: Lavas dacíticas a traquiandesíticas intercaladas con arcosas.			
	RCIA			GRU		A GR	ALCA	Gpo. Palca: Ignimbritas intercaladas co arenosos, conglomerados.	n sedimentos	
	LE	PALEOGENO	OLIGOCENO					Gpo. Tacaza: Andesitas, tobas y riolitas.		
			EOCENO	GRUPO PUNO		Areniscas rojas, arcosicas y tobáceas, conglome- rados y lutitas vesíferas.				
			PALEOCENO							
				FOR	MACION VILQUEC	HICO		Lutitas silíceas y cuarcitas	tas	
				GRU	PO COTACUCHO		EPALA	Areniscas masivas, alternadas con Iutitas yesíferas.	asticos os y rioli	
MESOZOICO		cico	SUPERIOR	FOR	MACION AYAVACA	S	GRUPO TOQUI	Calizas grises y calizas lutáceas.	Derrames piroclá andesíticos, dacítico	
		RETA		FOR	MACION ANGOSTI	JRA		Conglomerados con clastos de cuarcita y volcánicos; areniscas, calizas.	s	
		0	INFERIOR	FOR	RMACION HUANCANE			Areniscas cuarzosas y conglomerádicas, niveles de lutitas.		
				FORMACION SIPIN			Calizas arenosas y lutitas.			
				GRUPO YURA			Cuarcitas blanquesinas, areniscas calcáreas y calizas.			
		sico	SUPERIOR	GRUPO LAGUNILLAS			Calizas y gredas con intercalaciónes de calizas grises.			
		JRA	MEDIO	FORMACION SOCOSANI			Calizas oscuras intercaladas con tobas y lutitas calcáreas.			
		5	INFERIOR							
	TRIAS	SICO	INFERIOR	GRUPO ISCAY				Flujos de lava, niveles de tobas y lutitas calcáreas.		
	PERM	1ICO	INFERIOR	GRU	GRUPO COPACABANA		Calizas y lutitas			
8	CARE	ONIFERO	INFERIOR	GRUPO AMBO		Areniscas, lutitas carbonosas y limolitas rojizas.				
PALEOZOIC	DEVC	NICO	INFERIOR			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
	SILUF	RICO		GRUPO CABANILLAS				Lutitas y cuarcitas gris verdosas.		
	ORDO	OVICICO		FORMACION CALAPUJA		Lutitas arenosas, intercaladas con areniscas y cuarcitas.				
Compañia de Minas Buena⊽entura				ESCALA S/E	UNIVERSIDAD NACIONAL DE INGENIERI ESCUELA PROFESIONAL DE GEOLOGIA			ENIERIA .ogia		
PROYECTO TESIS										
DIBUJO CAD	Jorge Lui A. Arce G	Jorge Luis Quispe Cangana A. Arce G.							FIGURA	
REVISION CAD Carlos León Ojeda					DIC 2003		COLUMINA ESTRATIGRAFICA			
APROBADO César Vidal Coblán REVISIONES					R		EGIONAL			
OBSERVACIONES:					ARCHIVO					
					George.dwg					

Compañia de Minas Buena⊽entura		ESCALA 1/750,000	UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA GEOLÓGICA, MINERA Y METALÜRGH ESCUELA PROFESIONAL DE GEOLOGIA			
TESIS GEOLOGIA DIBUJO CAD	PETROGRAFIA, GEOQUINICA E IMPLICANCIAS METALOGENETICAS DE LOS VOLCANICOS CENOZOICOS DEL SURESTE DEL PERU: ZONA DE MAZO CRUZ Jorge Luis Quispe Cangana Alejandro Arce Gonzalez	FECHA ENERO - 2004	PLANO GEOLOGICO	LÁMINA		
REVISION CAD	Carlos León Ojeda César Vidal Coblán	ARCHIVO Lám_2_4_6	REGIONAL	4		

2.2.2.2 Grupo Yura (Jurásico Superior a Cretáceo Inferior)

Constituido por cuarcitas, areniscas cuarzosas, lutitas y calizas. Se extiende dentro del área de estudio, principalmente hacia la Cordillera Occidental. Tiene una potencia \pm 1,260 m.

2.2.2.3 Formación Sipín (Jurásico Superior a Cretáceo Inferior)

Está conformada por calizas, lutitas y areniscas calcáreas. Aflora en los alrededores de Sipín, provincia de Huancané. Su potencia es ± 33 m.

2.2.2.4 Formación Huancané (Cretáceo Inferior)

Presenta areniscas gruesas, cuarzosas con estratificación cruzada, lentes de areniscas conglomerádicas y delgados lechos de lutitas. Aflora en los alrededores del poblado de Huancané y alcanza una potencia ± 600 m.

2.2.2.5 Formación Ayavacas (Cenomaniano–Cretácico Superior)

Constituido por calizas grises y calizas lutáceas. Su localidad tipo se encuentra en el poblado de Ayavacas. Tiene una potencia ± 300 m.

2.2.2.6 Formación Vilquechico (Cretácico Superior)

Presenta lutitas silíceas de color gris olivo oscuro, con lechos de cuarcita. Su localidad tipo se encuentra alrededor de Vilquechico, provincia de Huancané. Su potencia aproximada es ± 728 m.

2.2.3 CENOZOICO

2.2.3.1 Grupo Puno (Terciario Inferior)

Constituido por sedimentos molásicos (capas rojas), areniscas arcósicas, areniscas tufáceas, conglomerados y lutitas yesíferas. Su localidad tipo se encuentra alrededor de la ciudad de Puno. Tiene una potencia ± 7,000 m.

2.2.3.2 Grupo Tacaza (Oligoceno tardío a Mioceno Medio)

Está representado por secuencias de basaltos y arcosas en la base (secuencias fluviatiles) y aglomerados de andesita con tufos de dacita hacia el tope. Tiene su localidad en los alrededores de la mina Tacaza, distrito de Santa Lucía, provincia de Lampa. Alcanza una potencia ± 3,600 m.

2.2.3.3 Grupo Palca (Mioceno Inferior a Superior)

Presenta ignimbritas intercaladas con sedimentos arenosos, limolitas, areniscas tobáceas y conglomerados. Su localidad tipo se ubica alrededor del poblado de Palca. Su potencia aproximada es \pm 6,000 m.

2.2.3.4 Grupo Sillapaca (Mioceno Medio)

Conformado por lavas dacíticas y traquiandesíticas, niveles de areniscas arcósicas y conglomerados. Tiene su localidad tipo en la Cordillera de Sillapaca. Dentro del área de estudio aflora alrededor de los poblados de Ocuviri y Palca. Alcanza una potencia aproximada ± 2,000 m.

2.2.3.5 Grupo Maure (Mioceno Medio a fines del Mioceno Superior)

Constituido por tobas aéreas, lavas andesíticas y sedimentos lacustres (limolitas, fangolitas, calizas, areniscas, conglomerados, lutitas negras). Sus afloramientos se extienden desde el Norte del poblado de Ichuña hacia el Sur del poblado de Mazo Cruz. Alcanza una potencia ± 1,000 m.

2.2.3.6 Grupo Barroso (Plioceno al Pleistoceno Inferior)

Conformado por derrames andesíticos, piroclásticos y brechas volcánicas. Dentro del área de estudio aflora principalmente alrededor de los poblados de llave, Huaitire y Mazo Cruz. Tiene una potencia ± 2,200 m.

2.2.3.7 Formación Azángaro (Plioceno al Pleistoceno)

Representado por limos, areniscas calcáreas y areniscas cuarzosas con estratificación cruzada. Su localidad tipo se ubica entre el cerro Alarcón y la laguna Luncha (Juliaca). Alcanza una potencia ± 100 m.

2.2.3.8 Volcánicos Ubinas (Pleistoceno Superior al Holoceno)

Constituida por flujos lávicos andesíticos negros, bancos irregulares de lapillis y cenizas. Aflora al Norte del poblado de Ubinas.

2.2.3.9 Depósitos Recientes

Representado por depósitos fluvio-glaciares, morrénicos, fluvioaluviales y coluviales.

2.3 ROCAS INTRUSIVAS

Las rocas intrusivas dentro del área de estudio varían en edad desde Paleozoicas hasta Cenozoicas (Lám. No. 5 y Tabla No. 1 – Anexo III).

2.3.1 INTRUSIVOS PALEOZOICOS

A 25 km al Noreste de Juliaca (357,000E – 8'302,000N), se tiene un cuerpo tonalítico el cual intruye rocas pertenecientes al Grupo Ambo y a su vez es cortado por un conjunto de fallas pre - Grupo Iscay datadas en 262 \pm 7 Ma. En consecuencia este cuerpo es de edad Pérmica.

A 10 km al Noroeste de Cabanillas (345,000E – 8'277,000N), aflora un monzogranito de grano medio, rosáceo, datado en 270 Ma por el método K/Ar en biotitas (Kontak, et al., 1985), el cual intruye a las cuarcitas y lutitas del Grupo Cabanillas, sugiriendo una edad Carbonífera.

2.3.2 INTRUSIVOS MESOZOICOS

A 42 km al Norte de Juliaca, se tiene una tonalita (378,500E – 8'331,000N) que intruye a las lutitas del Grupo Cabanillas y está cubierto por conglomerados con clastos de cuarcitas de la Formación Angostura. La datación radiométricas K/Ar en biotitas indica una edad K/Ar 236 \pm 6 Ma (Palacios et al., 1993), perteneciente al Triásico Medio.

A unos 10 km al Noreste de Santa Lucía (334,000E - 8'272,000N), se tiene una dacita porfirítica datada en 104 ± 4 Ma por el método de edad K/Ar en biotitas (Palacios et al., 1993), evidenciando una edad Albiana.

Alrededor del poblado de Omate, se tienen cuerpos que intruyen a los Volcánicos Matalaque del Cretáceo Medio, presumiéndose una edad Cretácica Superior. Sus composiciones varían entre granodioritas, granitos y monzogranitos,.

2.3.3 INTRUSIVOS CENOZOICOS

Se tiene plutones (dioríticos y granodioríticos) y cuerpos subvolcánicos (riolíticos, dacíticos y andesíticos).

A 15 km al Noreste de Palca, se tienen intrusiones, mayormente de composición granodiorítica, con edades radiométricas entre 23.1 \pm 1.1 Ma (Bonhomme et al., 1985) y 15.2 \pm 1.40 (Klinck et al., 1986), datadas por el método K/Ar en feldespatos potásicos y biotitas, respectivamente.

Entre los poblados de Mañazo, San Román y Santa Lucía (347,300E – 8'259,300N), se tiene una serie de pórfidos dioríticos cortados por diques de composición monzodiorítica y elongados en dirección del sistema de fallas Lagunillas. Se registra un rango de edades datadas por el método K/Ar, en plagioclasa 28.66 \pm 0.70 Ma (Wasteneys, 1990) y roca total 19.5 \pm 0.90 Ma (Klinck et al.,1986). Este último intruye al Grupo Tacaza y está cubierto por el Grupo Palca. También cabe destacar la presencia de pequeños stocks pórfidos dioríticos al Noroeste y Sureste de la ciudad de Puno.

2.4 MARCO TECTÓNICO

Los ciclos orogénicos que han afectado el área de investigación corresponden al Ciclo Orogénico Paleozoico (Fase Eoherciniana) y al Ciclo Andino (Fase Peruana, Inca y Quechua).

2.4.1 CICLO OROGÉNICO PALEOZOICO

2.4.1.1 Fase Eoherciniana (Devónico Superior al Carbonífero)

La Fase Eoherciniana fue propuesta por Laubacher (1978), quien registró una edad entre 320 Ma y 340 . Esta fase produce el plegamiento de rocas del Paleozoico Inferior y está determinada por la discordancia erosional del Grupo Ambo sobre el Grupo Cabanillas (372,900E - 8'286,600N), al Noroeste de Juliaca.

2.4.2 CICLO OROGÉNICO ANDINO

2.4.2.1 Fase Peruana (Santoniano – Cretácico Superior)

Investigada por Megard (1984) y propone una edad aproximada de 80 Ma. Esta fase provoca el plegamiento de rocas Cretácicas y la deposición continental del Grupo Puno.

2.4.2.2 Fase Inca (Eoceno Superior – Oligoceno Inferior)

Estudiada por Noble et al. (1974), McKee et al (1975) y Eyzaguirre (1975), estos autores sugieren una edad anterior a 40 Ma. Origina fallas inversas, plegamiento del Grupo Puno y actividad volcánica del Grupo Tacaza a través del sistema de fallas Lagunillas.

Las fallas mencionadas ponen en contacto a las calizas de la Formación Ayavacas con secuencias plegadas del Grupo Puno.

Al Norte de la laguna Lagunillas (293,000E – 8'280,000N), se observa unidades volcánicas del Grupo Tacaza sobreyaciendo en discordancia erosional a las capas rojas del Grupo Puno.

2.4.2.3 Fase Quechua (Mioceno Medio al Plioceno Superior)

Investigada por Mckee & Noble (1982) y Megard (1984). Esta fase produce plegamientos y desplazamientos horizontales de bloques. Dentro del área de estudio ha sido subdividida en tres sub-fases denominadas Quechua I, II y III. La Fase Quechua I (post - Grupo Tacaza y pre – Grupo Maure), produce la discordancia angular entre el Grupo Palca y secuencias plegadas del Grupo Tacaza (identificada al Norte del poblado de Palca).

La Fase Quechua II (Sin - Grupo Maure y pre – Grupo Barroso) causa fallas inversas de alto ángulo de buzamiento que ponen en contacto (en estrechas franjas) afloramientos del Grupo Puno y calizas de la Formación Ayavacas (Observada al Sur del poblado de Mañazo).

La Fase Quechua III (post - Grupo Maure y pre - Grupo Barroso), genera el plegamiento del Grupo Maure y actividad volcánica del Grupo Barroso. Al Sur del río Titire (353,500E - 8'151,000 N), piroclástos y lavas del Grupo Barroso, sobreyacen al Grupo Maure plegado, el cual está datado entre 8 Ma y 10 Ma, sugiriendo una edad de 7 Ma para la fase tectónica Quechua III.

2.5 MARCO ESTRUCTURAL

El análisis estructural ha sido realizado a través de la interpretación de hojas geológicas a escala 1/100,000 de la Carta Geológica Nacional (INGEMMET), imágenes de satélite Landsat TM (B4 – Filtro 14) y análisis del contexto geológico en base a observaciones de campo (Lám. No. 6 y No. 7).

2.5.1 FALLAS

2.5.1.1 Sistema de fallas Lagunillas

Se despliegan longitudinalmente desde el Noroeste del distrito de Santa Lucía hacia la ciudad de Puno. Tienen una orientación NW - SE. El corredor de Lagunillas corresponde a una zona de transcurrencia dextral y constituye el limite Noreste de la cuenca Miocena del Grupo Maure (Sempere et al., 2002). Pone en contacto al Grupo Puno con el Grupo Maure y hace cabalgar a la Formación Ayavacas sobre el Grupo Tacaza y al Grupo Lagunillas sobre la Formación Ayavacas. Este sistema de fallas parece controlar el emplazamiento de cuerpos intrusivos sub – volcánicos y el volcanismo del Grupo Tacaza(Láms. No. 5 y No.6).

2.5.1.2 Sistema de fallas Ayaviri

Se extiende hacia el Norte de Juliaca con una dirección NW – SE. El sistema de fallas Ayaviri es un sistema de fallas transcurrentes sinestral y constituye el limite Suroeste de la faja corrida y plegada de Putina (Sempere et al., 2002). Hace cabalgar a rocas Paleozoicas de la Formación Calapuja sobre calizas de la Formación Ayavacas.

2.5.1.3 Sistema de fallas E - W

Se extiende entre los poblados de Matalaque y Mazo Cruz (Sur del área de estudio), corta secuencias Cretácicas de los volcánicos Matalaque, facies conglomerádicas de la Formación Pichu y secuencias volcánicas del Grupo Tacaza. Además controla el volcanismo fisural del Grupo Barroso al Sur de Mazo Cruz.

		0 km ESC/	25 km ALA GRÁFICA	50 km	
LEYENDA					
Yacimientos epitermales					
Complejo Volcánico Mazo Cruz 1 - 12	Compañia de Minas Buena v entura		ESCALA 1/750,000	UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y METALÚRGICA ESCUELA PROFESIONAL DE GEOLOGÍA	
	TESIS	METALOGENÉTICAS DE LOS VOLCÁNICOS CENOZOICOS DEL SURESTE DEL PERÚ: ZONA DE MAZO CRUZ	FECHA	LANDSAT TM	LÁMINA
	INTERPRETACION	Jorge Luis Quispe Cangana Julio Reyno Nolberto	MARIZEI - 3404	BA - EILTRO 14	-
	REVISION CAD	Carlos León Ojeda	ARCHIVO		
	APROBADO	César Vidal Cobián	Lán _T.dog	REALCE DE ESTRUCTURAS	

2.5.1.4 Fallas Menores

Existen varias fallas menores con diferentes direcciones y relacionadas a los sistemas de fallas anteriormente mencionados (Lagunillas y Ayaviri). Estas preferentemente tienen rumbo NE – SW y EW. Ponen en contacto rocas Mesozoicas y Cenozoicas.

2.5.2 LINEAMIENTOS

Los lineamientos han sido identificados a través de imágenes de satélite (Landsat TM, B4 – Filtro 14), diferenciándose los sistemas N 30° a 40° W, N 30° a 60° E, N - S y E - W.

Los lineamientos N 30° a 40° W, tienen una orientación andina y son más o menos paralelos a los sistemas de fallas Lagunilas y Ayaviri. El lineamiento más importante con este rumbo es el de Ocuviri, definido como posible centro fisural del Grupo Palca (Willians y Mc Birney, 1979).

El sistema N 30° a 60° E, es poco frecuente y se manifiesta principalmente entre los poblados de San Antonio de Esquilache y Huaitire.

Los lineamientos N - S y E - W, están mayormente restringidos hacia el Sur del área de estudio (Mazo Cruz).

2.5.3 ESTRUCTURAS VOLCÁNICAS

Se manifiestan a manera de formas circulares y corresponden a centros volcánicos, con erosión moderada, se extienden principalmente entre los poblados de Huaitire y Mazo Cruz.

2.6 GEOLOGÍA ECONÓMICA

La actividad minera en el área de estudio está orientada a yacimientos metálicos. Para tener una mayor referencia de estos, se ha realizado el inventario de 93 minas y 56 prospectos (Tabla No. 2, Anexo III). En la Lámina No. 8, se representa la distribución de dichos yacimientos metálicos y sus respectivos controles estructurales.

2.6.1 METALOGENIA

Metalogenéticamente la zona de estudio se ubica en la provincia polimetálica del Altiplano - Cordillera Occidental, con ocurrencias locales de yacimientos epitermales de Au - Ag, como son el Prospecto Mazo Cruz (INGEMMET), Proyecto La Rescatada (Anglo Gold) y mina Aruntani (Minera del Hill).

Los yacimientos polimetálicos están caracterizados por vetas de Pb – Ag – Cu – Zn, varían desde vetillas hasta filones de longitud moderada. El relleno de mineral es normalmente irregular y está asociado a intrusivos (ONERN & CORPUNO, 1984). Distritos de importancia regional son Condoroma - Palca, Santa Lucía, Cacachara y San Antonio de Esquilache, donde la mayoría de las minas están abandonadas o paralizadas.

También se registra mineralización de Cu tipo pórfidos (prospecto Los Calatos, Colquerani - Sallani), Cu como impregnaciones en capas rojas del Grupo Puno, manifestaciones menores de W (Mina Tungsteno, Rosa Calera I) y Hg (Cerro Azoguine, Puno).

2.6.1.1 Yacimientos filoneanos

Santa Bárbara (Pb, Ag, Cu)

El yacimiento de Santa Bárbara se ubica en el distrito de Santa Lucía, cuadrángulo de Lagunillas, sus coordenadas UTM son: 323,200E – 8'266,900N. La mineralización se ubica al borde de una diatrema de 1,400 m de diámetro, conformada por tufos dacíticos del Grupo Palca y brechas volcánicas del Grupo Tacaza. La mineralización de la mena está dada por tetraedrita, galena, esfalerita y trazas de calcopirita; mientras la ganga está constituida por dolomita, calcita, rodocrosita, cuarzo y pirita. Sus leyes promedio son 12 Oz/Tn Ag, 1% Pb y 0.5 %

Cu, existiendo zonas ricas que alcanzan leyes hasta 50 Oz/Tn Ag (Tumialán et al., 2003).

Berenguela (Ag, Cu, Mn)

Se encuentra en el distrito de Santa Lucía, cuadrángulo de Lagunillas, sus coordenadas UTM son: 332,822 E – 8'263,612 N. Se definen tres cuerpos mineralizados alineados en dirección E – SE, el ancho de los cuerpos varía entre 15 m a 30 m y un largo máximo de 1 km. Los minerales de mena están representados por plata nativa, covelita, calcopirita, crisocola, malaquita, psilomelano, pirolusita, todorokita y chalcofáno y están asociados con los minerales de ganga como: calcita, dolomita, sílice negra y jaspe. La mineralización está hospedada dentro de calizas de la Formación Ayavacas.

Los Rosales (Cu, Ag, Au)

Se encuentra ubicada en la parte oriental del Cerro Quearaya, en el distrito de Vilque, cuadrángulo de Puno. Sus coordenadas UTM son: 362,670E – 8'251,550N. La mineralización está relacionada a intrusiones de roca diorítica en forma de diques paralelos, emplazada a través de vetas N - S con una longitud de 900 m y un ancho promedio de 30 cm. Los minerales de mena están conformados por calcopirita, tenantita, galena esfalerita y oro nativo. Los minerales de ganga, dolomita, calcita, cuarzo y pirita. Su producción en el año 1993, estuvo registrada en 120 TM/día con 0.56% Cu, 1.20 Oz/Tc Ag y 0.33 Oz/Tc Au (Tumialán et al., 2003).

Mina Blanca (Au, Pb, Zn, Cu)

Se ubica cerca del caserío de San Antonio, cuadrángulo de Ichuña, al Norte del pueblo de Matalaque, sus coordenadas UTM son: 303,039E – 8'177,432N. Sus vetas presentan un rumbo promedio N 55° a 70° E y buzamiento 75° SE a 90°, cuyas potencias varían entre 0.10 m a 0.70 m.

Mina San Francisco (Pb, Cu, Zn, Ag)

Se encuentra dentro del cuadrángulo de Ichuña, 5 km al Oeste en línea recta del pueblo de Matalaque. Tiene las siguientes coordenadas UTM: 301,871E – 8'176,731N. Consta de un relleno polimetálico tipo vetas, con rumbo N 80° E y buzamiento sub – vertical.

San Antonio de Esquilache (Pb, Zn, Ag)

Se encuentra ubicada en el distrito del mismo nombre, al Suroeste de la ciudad de Puno, Cuadrángulo de Pichacani, sus coordenadas UTM son: 362,036E - 8'219,305N. Las vetas se encuentran emplazadas dentro de andesitas del Grupo Barroso y asociadas a intrusivos sub-volcánicos, presenta una mineralogía compleja, conformada por galena, esfalerita, tetraedrita, calcopirita, platas rojas y argentita, como minerales de mena y como ganga, pirita, calcita, cuarzo y rodocrosita.

Santa Rosa (Pb, Cu, Zn, Au)

Se ubica al Sur del pueblo de Matalaque, cuadrángulo de Omate. Sus coordenadas UTM son: 304,150E – 8'173,710N. Este yacimiento consta de vetas N 78° E y buza 58° SE, con 1.20 m de potencia, con presencia de galena, calcopirita, esfalerita y como ganga cuarzo, pirita y limonitas. Se reportó un valor de Au hasta 1.5 gr/TM (Palacios et al., 1993). La roca caja está conformada por volcánicos porfiríticos del Grupo Toquepala.

Mina Pavico (Ag, Zn, Pb, Cu, Au)

Ubicada a 42 km al Noreste del poblado de Huaitire, distrito de Acora, provincia del Collao, departamento de Puno. Sus coordenadas UTM son: 383,454E – 8'161,255N. La mineralización está dada por galena, esfalerita, pirargirita, tetraedrita, polibasita y electrum, relacionada a cuerpos de brechas en andesitas y dacitas del Grupo Tacaza.

Cacachara (Ag, Pb, Zn, Cu)

Se encuentra dentro del cuadrángulo de Huaitire, en las siguientes coordenadas 386,064E – 8'157,511N, el tipo de mineralización que presenta es del tipo filoneano a modo de vetas irregulares, con presencia de pirargirita, galena, esfalerita, y en menor cantidad calcopirita; como minerales ganga presenta cuarzo lechoso, pirita y calcita. Tiene como roca caja al Grupo Tacaza, cubierto por flujos post-hidrotermales correspondientes al Grupo Barroso.

2.6.1.2 Yacimientos epitermales

Proyecto La Rescatada (Au, Ag)

Se encuentra dentro del cuadrángulo de Ocuviri, sus coordenadas UTM son: 304,000E – 8'313,000N. La mineralización está hospedada en secuencias volcánicas de los Grupos Tacaza y Sillapaca, controlada estratigráficamente. Los niveles piroclásticos alcanzan una silicificación fuerte con desarrollo estructuras tipo "Vuggy Silica", mientras que las secuencias lávicas sólo presentan una alteración argílica avanzada con silicificación débil.

Mina Aruntani (Au, Ag)

Se ubica dentro del cuadrángulo de Huaitire, tiene dos unidades productivas, denominadas Tucari con coordenadas UTM: 372,600E – 8'167,800N y Santa Rosa cuyas coordenadas UTM son: 388,000E – 8'159,000. La mineralización se encuentra hospedada en volcánicos del Grupo Tacaza, con un control estructural N 15° W y cubierta por flujos post – mineralización del Grupo Barroso.

Proyecto Mazo Cruz (Au, Ag)

Se localiza en el departamento de Puno, provincia El Collao, distrito Capaso, dentro del cuadrángulo de Mazo Cruz. Comprende los sectores denominados Yulaca y Japo.

El sector Yulaca tiene como coordenadas UTM: 440,000E – 8'134,500N, presenta cuerpos de brecha hidrotermal de diferentes dimensiones, con silicificación fuerte y desarrollo estructuras tipo "vuggy silica". Se registran contenidos hasta de 1.14 ppm Hg, 5.0 ppm Au, 160 ppm de Ag y 2469 ppm de arsénico (Morche et al., 1994).

El sector Japo, tiene las siguientes coordenadas UTM: 439,000E – 8'130,000N. Presenta zonas de silicificación restringidas a cuerpos de brechas y zonas de fallas de rumbo N - S y NE - SW. Los valores de Au llegan hasta 0.16 g/TM (Morche et al. 1994).

2.6.1.3 Yacimientos tipo pórfido

Prospecto Los Calatos (Cu)

Este prospecto se ubica en el cerro Los Calatos, provincia General Sánchez Cerro, departamento de Moquegua. Se enmarca dentro del cuadrángulo de Omate, tiene las siguientes coordenadas: 286,222E – 8'130,000N. En superficie presenta oxidación "leach capping" con presencia de jarosita, hematita y gohetita. Las rocas volcánicas aflorantes presentan alteraciones fílica, propilítica y sílico - argílica.

CAPÍTULO III

CARACTERIZACIÓN PETROGRÁFICA DE LA FRANJA VOLCÁNICA CENOZOICA

Los volcánicos Cenozicos del Sureste del Perú están representados por los Grupos Tacaza, Palca, Sillapaca, Maure y Barroso, se encuentran conformando el segmento Norte de la Zona Volcánica de los Andes Centrales (ZVC, ver Fig. No.1). Este conjunto se extiende principalmente desde el departamento de Apurimac hacia el Sur aproximadamente hasta el paralelo 28°.

Litológicamente cada unidad presenta características distintivas que permiten su reconocimiento y diferenciación en el campo, tales como las que se mencionarán a continuación:

- El Grupo Tacaza está conformado por facies conglomerádicas y niveles volcánicos que gradan de lavas ricas en olivino - augita a ricas en plagioclasas. Estas secuencias están cubiertas por flujos piroclásticos de composición riolítica.
- El Grupo Palca presenta potentes secuencias ignimbríticas de composición riolítica con megacristales de sanidina.
- El Grupo Sillapaca exhibe lavas porfiríticas de composición dacítica, algunas veces con niveles piroclásticos.
- El Grupo Maure está conformado por tobas retrabajadas, limolitas, fangolitas, lutitas negras intercaladas con niveles calcáreos y secuencias volcánicas andesíticas, dacíticas y riolíticas.
- El Grupo Barroso muestra en su base niveles piroclásticos y hacia su tope secuencias lávicas andesíticas y andesíticas basálticas.

Del estudio petrográfico, se puede decir que las rocas volcánicas Cenozoicas consisten en lavas y piroclásticos de composición variable entre basalto, andesita, traquita, dacita y riolita. El contenido de fenocristales es menor al 20%. Las principales texturas reconocidas son porfiríticas, hialopilítica y pilotaxítica. También se tienen texturas de desequilibrio mineralógico, tal como coexistencia de piroxenos con cuarzo, zonación de plagioclasas, fenocristales con bordes de reacción y alteración de minerales hidratados (anfíboles y biotitas) a óxidos de Fe. Un alcance más detallado se presenta en el **Cuadro No. 1 y Anexo I.**

Muestra	Unidad	Minerales Prin	narios	Minerales Secundarios	Textura	Composición
	Litológica	Principales	Accesorios			
62436	Tacaza	Qz, Plg, Fpt - K, Bio	Rt	ARCs, Musc, OPs	Porfirítica	Riodacita
62483	Tacaza	Plg, Hbn	No identificados	Oxs - Fe, Cac, Tr	Pilotaxítica	Andesita
Palc 1	Palca	Qz, Plg, Fpt - K, Bio	Rt, Zir	Oxs - Fe	Hialopilítica	Riolita
Sill 1	Sillapaca	Qz, Plg, Fpt - K, Prx	Zir	Oxs - Fe	Porfirítica	Dacita
64199	Maure	Qz, FPTs, Hbn	No identificados	Oxs - Fe, Zeo	Perlítica	Riodacita
64207	Maure	FPTs, Bio	No identificados	Oxs - Fe, Zeo	Hialopilítica	Riodacita
64323	Maure	Plg	No identificados	Cac, Zeo	Perlítica	Traquita
64191	Barroso	Plg, Hbn	Zir	No identificados	Traquítica	Traquita
64190	Barroso	Plg, Qz, San, Bio, Prx	Rt, Zir	No identificados	Traquítica	Traquita
62541	Barroso	Plg, Hbn	No identificados	ARCs, Oxs - Fe, Oxs - Ti	Brechoide	Andesita
62540	Barroso	Plg, Qz, Hbn, Aug	No identificados	Oxs – Fe	Hialopilítica	Andesita
62505	Barroso	Plg, Hbn	Zir	Oxs - Fe, OPs	Traquítica	Traquita
67062	Barroso	Plg, Hbn	Zir	OPs, Oxs - Fe	Felsofídica	Dacita
67173	Barroso	Plg, San, Hbn	Zir	Oxs – Fe	Porfirítica	Traquiandesita
64150	Barroso	Plg, San, Qz	Zir	ARCs, Qz	Porfirítica	Riodacita
68245	Barroso	San, Qz, Bio	Rt	Musc	Porfirítica	Dacita

Cuadro No. 1: Características petromineralógicas de los volcánicos Cenozoicos

Abreviaturas de minerales utilizados:

Arcillas: ARCs	Cuarzo: Qz	Opacos: OPs	Sanidina: San
Augita: Aug	Feldespatos: FPTs	Óxidos de hierro: Oxs - Fe	Tridimita: Tr
Biotita: Bio	Feldespato potásico: Fpt - K	Óxidos de titanio: Oxs - Ti	Zeolitas: Zeo
Calcita: Cac	Hornblenda: Hbn	Plagioclasa: Plg	
Circón: Zir	Muscovita: Musc	Rutilo: Rt	

Figura No. 3: Diagrama simplificado de la Estratigrafía de los volcánicos neógenos existentes entre Ocuviri y Mazo Cruz, en base al trabajo del INGEMMET (Boletín N° 42 de la Carta Geológica Nacional, 1993).

De acuerdo al trabajo de Palacios et al (1993), edades radiométricas de rocas volcánicas de la zona de estudio y observaciones de campo, se plantea un diagrama simplificado de la estratigrafía de los volcánicos Cenozoicos entre los poblados de Ocuviri y Mazo Cruz **(Fig. No. 3)**.

Seguidamente se describen las unidades volcánicas Cenozoicas, representadas por los Grupos Tacaza, Palca, Sillapaca, Maure y Barroso.

3.1 GRUPO TACAZA

Asignado como Grupo por Marocco y Del Pino (1966). Representa un campo volcánico en el transcurso del Oligoceno tardío al Mioceno medio, dicho Grupo está vinculado a un volcanismo del tipo fisural y a la deposición de sedimentos fluviales, como resultado de una serie de fallamientos en bloques relacionados a la fase tectónica Inca (Palacios et al., 1993).

El Grupo Tacaza dentro del área de estudio aflora principalmente a lo largo del sistema de fallas Lagunillas y alrededor de los poblados de Ocuviri, San Antonio de Esquilache, Ichuña y Lloque **(Lám. No. 9)**. Regionalmente está conformado por sedimentos fluviales, flujos lávicos de composición andesítica basáltica a riolítica, flujos piroclásticos y tobas.

En el Cº Yapoco (323,200E – 8'271,300N), 8 km al Noroeste del distrito de Santa Lucía, Palacios et al (1993) diferencian dos eventos del Grupo Tacaza, definidos como Tacaza Inferior y Tacaza Superior.

El Tacaza inferior está conformado en su base por una gruesa deposición de sedimentos fluviales, seguido de secuencias de andesitas basálticas ricas en olivino y augita, que gradan a andesitas porfiríticas con fenocristales de plagioclasas. Discordantemente se Tiene al Tacaza superior, conformada principalmente por secuencias piroclásticas de ignimbritas, tobas de bloques y tobas de lapilli.

Alrededor del poblado de Ichuña aflora el Tacaza Superior conformado por flujos piroclásticos y flujos lávicos andesíticos. En sección delgada, los flujos piroclásticos tienen una composición riodacítica, color blanquecino, textura porfirítica, fenos de cuarzo corroído, plagioclasas (oligoclasas) ligeramente alteradas a muscovita, feldespatos potásicos alterados a arcillas (halloisita?), biotitas ligeramente alteradas a óxidos de Fe (Muestra No. 62436, Anexo I). Los flujos lávicos andesíticos son de color gris oscuro, textura pilotaxítica, plagioclasas

LEYENDA

Fallas

0

GRUPO TACAZA (17.3 ± 0.70 Ma - 30.53 ± 1.28 Ma)

intercrecidas con hornblendas; estás últimas ligeramente alteradas a cloritas y óxidos de Fe. También exhibe agmidalas rellenas de calcita con textura coloforme, ocasionalmente acompañado con tridimita (**Muestra No. 62483, Anexo I**).

Las edades radiométricas asignadas al Grupo Tacaza (**Tabla No. 3**, **Anexo III**), varían en el rango de 17.3 ± 0.70 Ma (Klinck et al., 1981) y 30.53 ± 1.28 Ma (Wasteneys, 1976). Dentro de este Grupo están incluidas las Formaciones Colquerane (20 Ma) y Huaylillas (17.6 a 22.8 Ma; Tosdal et al., 1981).

3.2 GRUPO PALCA

Definido como Grupo por Palacios et al. (1993), tiene un rango de edad que va del Mioceno Inferior a Superior. Se Considera que ha sido originado por volcanismo fisural controlado principalmente por el lineamiento de Ocuviri y relacionada a la fase tectónica Quechua I (Willians y Mc Birney, 1979).

El Grupo Palca alcanza un espesor aproximado de 6,000 m, tiene una gran extensión alrededor del poblado de Lampa y en la Cordillera Sillapaca (317,200E – 8'276,300N) (Lám. No. 10). Litológicamente está constituido por ignimbritas soldadas, ignimbritas inconsolidadas y tobas laminadas con intercalaciones sedimentarias. Al Norte del pueblo de Palca este Grupo descansa en discordancia angular sobre el Grupo Tacaza.

Hacia el C^o Visa Visa (326,500E – 8'295,600N), se puede apreciar un nivel potente de ignimbritas soldadas con textura eutaxítica.

Al Noroeste de Santa Lucía (318,000E – 8'274,000N), se tiene expuesta ignimbritas blanquecinas de composición riolítica, con una potencia aproximada de 300 m. En sección delgada presenta una textura hialopilítica, fenocristales rotos de plagioclasas, feldespato potásico y cuarzo; biotita con inclusiones de rutilo; presencia de fragmentos líticos y vidrio volcánico, inclusiones de zircón en feldespato potásico y matriz criptocristalina con textura perlítica (Muestra Pal – 1, Anexo I).

Las edades radiométricas asignadas al Grupo Palca (**Tabla No. 3**, **Anexo III**) oscilan en el rango de 11.2 ± 1.1 Ma y 19.5 ± 0.9 Ma (Klink et al, 1986), la primera edad corresponde al pórfido de Caramocco (337,000E – 8'313,800N), el cual está cubierto por secuencias ignimbríticas y representarían la base del Grupo Palca. La segunda edad corresponde a una ignimbrita riolítica, ubicada al Este del poblado de Ocuviri.

Dentro de este Grupo se incluye a la Formación Ignimbrita Santa Lucia, asociada a estructuras circulares cercanas a la mina Santa Bárbara (323,200E - 8'266,900N) y correlacionable con las Tobas Ocuviri (Mamani & Ibarra, 2000), datada en 18.74 ± 0.19 Ma (Carlotto, inédito).

LEYENDA

GRUPO PALCA (19.5 ± 0.9 Ma - 11.2 ± 1.1 Ma)

3.3 GRUPO SILLAPACA

Nominado por Jenks y Newell (1949). El Grupo Sillapaca representa una secuencia volcánica del Mioceno medio, tiene su localidad tipo en el C^o Sillapaca (311,200E – 8'276,400N), en dicha área descansa concordantemente sobre el Grupo Palca. Hacia el Sur del poblado de Lampa se encuentra discordante sobre el Grupo Tacaza.

El Grupo Sillapaca está dominado por secuencias de flujos laminados de composición dacítica, textura porfirítica y color gris oscuro, andesitas rojizas con fenocristales de plagioclasas, traquiandesitas microporfiríticas y niveles tobáceos. Dentro del área de investigación sus afloramientos se exponen principalmente alrededor de Ocuviri (Lám. No. 11).

A 15 km de llave, se tienen pequeños afloramientos del Grupo Sillapaca indiviso, discordantes sobre los Grupos Tacaza y Puno.

Al Noroeste del distrito de Santa Lucía (312,000E – 8'274,500N), se diferencia flujos lávicos de composición dacítica, color gris claro. En sección delgada exhibe una textura traquítica - pofirítica. Fenocristales de feldespato potásico, plagioclasa, cuarzo y piróxeno. Presencia de apatito entrecrecida en la matriz. Feldespato potásico zoneado y con inclusiones de circón. Óxidos de Fe asociado a opacos. Matriz cuarzo – feldespática, (Muestra Sill – 1, Anexo I).

Las edades radiométricas asignadas al Grupo Sillapaca (Tabla No. 3, Anexo III) están en el rango de 13.6 ± 0.6 (Klinck et al., 1986) y 17.39 ± 0.91 Ma (Wasteneys, 1990).

LEYENDA

GRUPO SILLAPACA (17.39 ± 0.91 Ma - 13.6 ± 0.6 Ma)

			0 km	25 km	50 km	
	SIMBOLOS			ESCALA GR	ÁFICA	
46.17.3 ± 0.70	Edad radiométrica					
/	Fallas					
	Fallas inferidas		B	ESCALA		
	Cabalgamientos	Comp de M	^{añla} Buena⊽entura	1/750,000	ESCUELA PROFESIONAL DE GEOLOGÍA	
A A	Cabalgamonto	TESIS	PETROGRAFÍA, GEOQUÍMICA E IMPLICANCIAS METALOGENÉTICAS DE LOS VOLCÁNICOS CENOZOICOS DEL SURESTE DEL PERÚ: ZONA DE MAZO CRUZ.	FECHA		
	Centros poblados	GEOLOGIA	Jorge Luis Quispe Cangana	MARZO - 2004	DISTRIBUCIÓN DEL GRUPO	
•		DIBUJO CAD	Alejandro Arce Gonzalez		SILLADACA	11
		REVISION CAD	Carlos León Ojeda	ARCHIVO	JILLAFACA	
		APROBADO	César Vidal Cobián	Lám_11.dwg		

3.4 GRUPO MAURE

Esta unidad litológica ha sido elevada a la categoría de Grupo por Palacios et al (1993). Tiene una edad que va del Mioceno medio a fines del Mioceno superior. Se relaciona a una cuenca de subsidencia, medio lacustrino y ambiente sub – aéreo (Mendivil, 1965). Está unidad consiste de secuencias volcánicas y sedimentos lacustres, con una potencia de más de 1000 m. Los niveles volcánicos están dados por ignimbritas, tobas y lavas andesíticas. Los sedimentos lacustres están conformados por tobas retrabajadas, limolitas, fangolitas, calizas, areniscas calcáreas, conglomerados y lutitas negras. Sus afloramientos están expuestos a lo largo de una franja de rumbo NW – SE de 30 km en promedio de ancho (Lám. No. 12).

Al Sur de San Antonio de Esquilache (358,118E – 8'200,489N) el Grupo Maure se encuentra representado por secuencias plegadas conformadas por tobas líticas con clastos sub-angulosos a redondeados milimétricos hasta cinco centímetros, biotitas, plagioclasas ideomórficas y matriz feldespática. Las tobas líticas se encuentran intercaladas, tobas calcáreas verdosas, dolomitas amarillentas, calizas grises y limolitas con colores abigarrados.

Hacia el Sureste de San Antonio de Esquilache (375,874E – 8'225,938N), el Grupo Maure está conformado por tobas y en sección delgada presenta las siguientes características: textura felsofídica, fenocristales de plagioclasas, venillas y cavidades rellenas de calcita intercrecida con zeolitas (natrolita) en agregados fibrosos radiales con textura perlítica. Matriz feldespática con pseudomorfos de fenocristales reemplazados por arcillas (halloisita?) (Muestra No. 64323, Anexo I).

En el Cerro Aconcahua (403,835E – 8'138,575N), Sur del poblado de Mazo Cruz, se puede diferenciarse secuencias de tobas riodacíticas rosáceas pertenecientes al Grupo Maure. En sección delgada presenta zeolitas (natrolita?) en agregados fibrosos radiales con textura esferulítica e intercrecida con lóbulos de vidrio y hornblendas, matriz conformada por vidrio, cuarzo y feldespatos, sugiriendo un estado de devitrificación (Muestra No. 64199, Anexo I).

Al Grupo Maure se le atribuye una edad entre 7 Ma (Tosdal et al., 1981) y 21.39 Ma (Carlotto, inédito) **(Tabla No. 3, Anexo I).** Dentro de este Grupo, se incluyen a las Formaciones Capillune (7.48 Ma; Tosdal et al., 1980) y Sencca (7 a 7.5 Ma; Tosdal et al., 1990).

LEYENDA

		0 km	25 km		50 km		
	SIMBOLOS		ESCALA GRÁFICA	Δ			
46 17.3 ± 0.70	Edad radiométrica						
/	Fallas						
	Fallas inferidas	Gamm	B	ESCALA			
سعسعسد	Cabalgamientos	de M	Inas Buenaventura PETROGRAFIA, GEOQUÍMICA E IMPLICANCIAS METALOGENÉTICAS DE LOS VOLCÁNICOS CENOZOICOS	1/750,000 	ESCUELA PROFESIONAL DE GEOLOGICA, MINIERA 1 MI ESCUELA PROFESIONAL DE GEOLOG	SIA	-
•	Centros poblados	GEOLOGIA DIBUJO CAD	DEL SURESTE DEL PERU: ZONA DE MAZO CRUZ Jorge Luis Quispe Cangana Alejandro Arce Gonzalez	MARZO - 2004	DISTRIBUCIÓN DEL GRUPO		
		REVISION CAD	Carlos León Ojeda César Vidal Cobián	ARCHIVO Lám_12.dwg	MAURE		

3.5 GRUPO BARROSO

Elevado a la categoría de Grupo por Mendivil (1965). Tiene su afloramiento tipo, dentro de la Cordillera del Barroso, comprende secuencias piroclásticas y lávicas posteriores a las Formaciones Capillune y Sencca (Grupo Maure).

El Grupo Barroso tiene un rango de edad que va del Plioceno al Pleistoceno inferior. Se Considera que ha sido originado a través de centros volcánicos y alimentadores fisurales, afectados por tectónica Quechua III (Mendivil, 1973).

Litológicamente está constituido por flujos piroclásticos y secuencias lávicas con composiciones andesíticas basálticas, andesíticas, traquiandesíticas, traquíticas, dacíticas y riolíticas.

Al Noreste de San Antonio de Esquilache se diferencian secuencias de flujos lávicos de composición traquítica (371,355E – 8'226,012N) y niveles de tobas de composición dacítica (371,220E – 8'227,380N). En sección delgada, los flujos traquíticos presentan textura traquítica - porfirítica, fenocristales de plagioclasas intercrecida con megacristales de sanidina y hornblenda. Matriz criptocristalina (**Muestra No. 67173, Anexo I**). Las secuencias de tobas dacíticas, preserva una textura porfirítica, presenta fenocristales de feldespato potásico, cuarzo corroídos y plagioclasas. Matriz constituida por cuarzo y feldespatos (**Muestra No. 64150, Anexo I**).

Al Sur del poblado de Mazo Cruz, el Grupo Barroso está representado por flujos lávicos de composición andesítica y niveles de flujos piroclásticos de naturaleza andesítica. Se extienden a lo largo de las cumbres de los cerros Aconcahua (403,185E – 8'140,084N) y San Francisco de Peñón, respectivamente. En sección delgada, las lavas andesíticas presentan una textura pilotaxítica, plagioclasas ideomórficas orientadas e intercrecidas con hornblendas ligeramente alteradas a óxidos de Fe y matriz criptocristalina (Muestra No. 64191, Anexo I). Los niveles de flujos piroclásticos de composición andesítica, conservan una de textura hialopilítica, fenocristales de plagioclasas, cuarzo, augita, hornblendas débilmente alterada a óxidos de Fe y matriz vítrea (Muestra No. 62540, Anexo I).

Las edades radiométricas por el método K/Ar en biotitas asignadas al Grupo Barroso, oscilan en el rango de 1.6 \pm 0.2 Ma (Tosdal et al, 1981) y 7.04 \pm 0.43 Ma (Clark et al., 1990). **(Tabla No. 3, Anexo III)**

LEYENDA

GRUPO BARROSO (7.04 ± 0.43 Ma - 1.6 ± 0.2 Ma)

CAPITULO IV

GEOQUÍMICA DE LOS VOLCÁNICOS CENOZOICOS

4.1 MÉTODOS ANALÍTICOS

Para realizar la evaluación geoquímica de las rocas volcánicas materia del presente estudio, se han empleado resultados de 36 ensayes químicos de elementos mayores y menores (Tablas No 5, No. 6, No. 7, No. 8 y No. 9, Anexo III). Algunos análisis han sido preparados especialmente para el presente estudio, mientras que otros han sido tomados de los trabajos de Palacios et al (1993) y Mamani e Ibarra (2000).

Para los ensayes químicos de elementos mayores y menores se emplearon muestras de rocas inalteradas, es decir, sin modificación en su composición química por procesos de alteraciones hidrotermales y/o meteóricos.

Los métodos analíticos corresponden a Análisis por Roca Total, realizado en CIMM PERÚ S.A. y Análisis Multielemental (ICP – MS 47 elementos), efectuado en ALS Chemex.

4.2 GEOQUÍMICA DE ELEMENTOS MAYORES

El comportamiento geoquímico de elementos mayores ha sido observado en los diagramas composicionales definidos como TAS, KS y AFM (Gráficos No. 1, No 2, No. 3 y No. 4).

4.2.1 DIAGRAMA TAS

Este diagrama relaciona el contenido total de sodio y potasio (Na₂O + K_2O) versus sílice (SiO₂) (Gráficos No.1 y No. 2).

Según el contenido sílice, Peccerillo & Taylor (1976), subdividen a las rocas volcánicas en ultrabásicas (SiO₂ < 45%), básicas (45%<SiO₂<52%), intermedias (52%< SiO₂< 63%) y ácidas (SiO₂>63%).

50Km LEYENDA Ensaye químico Estudio petrográfico igodolEstudio petrográfico, ensaye químico B UNIVERSIDAD NACIONAL DE INGENIERIA ESCALA Compañía de Minas FIGMM ESCUELA PROFESIONAL DE INGENIERIA 1/750,000 Buena ventura PROYECTO TESIS LAMINA FECHA DATOS BUENAVENTURA PREPARADO A. ARCE

REVISION

APROBADO

REVISIONES

FUENTE:

CARLOS LEON

CESAR VIDAL

DIC. 2003

ARCHIVO

plano de mues

PLANO DE UBICACION

DE MUESTRAS

14

Gráfico No 1: Diagrama TAS (Alcalis Total vs. Silice) mostrando la clasificación de rocas volcánicas (Le Maitre et al., 1989)

TIPO DE ROCA F: Fonolita TF: Tefrifonolita FT: Fonotefrita T/B: Tefrita/Basanita PB: Picrobasalto TB: Traquibasalto TAB: Traquiandesita basáltica AB: Andesita basáltica T: Traquita T: Traquidacita D: dacita R: Riolita A: Andesita

LEYENDA
o Grupo Barroso
🕂 Grupo Maure
🔺 Grupo Sillapaca
🗙 Grupo Palca
🔶 Grupo Tacaza

B: Basalto

Gráfico No 2: Diagrama TAS mostrando los campos de las series magmáticas alcalina y subalcalina (Miyashiro, 1978) y el límite entre las calcoalcalinas y toleíticas (Kuno, 1968).

CLASIFICACIÓN QUÍMICA F: Fonolita TF: Tefrifonolita FT: Fonotefrita T/B: Tefrita/Basanita PB: Picrobasalto TB: Traquibasalto TAB: Traquibasalto TAB: Traquiandesita basáltica AB: Andesita basáltica T: Traquita T: Traquidacita D: dacita R: Riolita

A: Andesita B: Basalto

Kuno (1968) y Miyashiro (1978), mediante el contenido de álcalis total (Na₂O + K_2O) y sílice, diferencian las series magmáticas toleítica, calco-alcalina y shoshonítica.

Le Maitre et al. (1989), utilizando los mismos parámetros (álcalis total y sílice), proponen una clasificación litológica.

En el diagrama TAS, se puede distinguir que las rocas correspondientes al Grupo Tacaza definen una tendencia calco-alcalino con ligera disposición alcalina. Según el diagrama de Le Maitre et al (1989), las composiciones litológicas varían entre traquibasaltos, traquiandesita basáltica, traquiandesita y traquita. Entonces se clasifican como básicas a intermedias con concentraciones de SiO₂ entre 50.85% a 61.21%.

Las rocas de los Grupos Palca, Sillapaca, Maure y Barroso, definen una evolución calco-alcalina bien marcada. Por sus respectivas concentraciones de álcalis total y sílice tienen una variación litológica amplia.

El Grupo Palca varía entre traquidacitas, dacitas y riolitas; catalogadas como rocas ácidas cuyas concentraciones de SiO_2 van de 63.77% a 70.52%.

El Grupo Sillapaca varía entre traquiandesita, traquita y traquidacita, también son rocas ácidas con valores de SiO₂ entre 62.36% a 64.93%.

El Grupo Maure químicamente varía entre dacitas y riolitas, definidas como rocas ácidas con SiO₂ entre 69.58% a 73.61%.

El Grupo Barroso varía entre traquita, traquidacita, dacita y riolita, descritas como rocas ácidas con SiO₂ entre 63.30% a 73.40%.

4.2.2 DIAGRAMA KS

Este diagrama relaciona el contenido de potasio (K₂O) versus sílice (SiO₂).

Le Maitre et al. (1989), compara las concentraciones de potasio y sílice, y establece limites entre las series magmáticas toleítica (bajo potasio), calco-alcalina (medio potasio y alto potasio) y shoshonítica (**Gráfico No. 3**).

En el diagrama KS, se puede observar que el Grupo Tacaza presenta concentraciones variables de potasio que van de 1.64% a 4.26% y definen una serie calco-alcalina rica en potasio con ligera tendencia hacia el alcalinismo (shoshonítica).

Los Grupos Palca, Sillapaca, Maure y Barroso, definen una serie calco-alcalina rica en potasio, cuyas concentraciones de potasio varían entre 4.49% a 4.81%, 3.66% a 4.01%, 3.88% a 6.77% y 2.48% a 4.35%, respectivamente.

4.2.3 DIAGRAMA AFM

Permite determinar la tendencia de evolución magmática a partir del magma inicial, en función de los contenidos de álcalis total ($K_2O + Na_2O$), hierro total (FeO + Fe₂O₃) y magnesio (MgO).

Irvine & Baragar (1971), empleando dichos parámetros plantea el límite entre los campos toleítico y calco-alcalino **(Gráfico No. 4)**.

En el diagrama AFM, se puede notar que las rocas de los Grupos Tacaza, Palca, Sillapaca, Maure y Barroso, muestran una tendencia evolutiva calco-alcalina.

Gráfico No 3: Diagrama KS mostrando las subdivisiones entre las series shoshonítica y calcoalcalina y toleítica (Le Maitre et al, 1989).

Gráfico No 4: Diagrama AFM mostrando los límites entre los campos toleítico y calcoalcalino (Irvine y Baragar, 1971).

4.2.4 INDICES DE CORRELACIÓN PEARSON

El índice de correlación Pearson permite establecer la comparación matricial de dos variables (Beach & Tarney, 1978). Los valores del índice de correlación varían entre 0 y \pm 1. El valor 0 implica una distribución con alta dispersión, sin una notoria relación entre ambas variables. Un valor de + 1, implica una buena relación entre las variables, por el contrario, un valor de – 1, implica un estado de relación indirecta.

Para nuestro análisis, sólo nos interesa aquellos pares con alta correlación positiva (mayores a + 0.7) y alta correlación inversa (menores a – 0.7); por medio de está discriminación podemos organizar ternas (diagramas triangulares) en la que un par tenga buena correlación de un signo y los otros dos pares tengan buena correlación del otro signo (Tabla No. 10 – Anexo III, Gráficos 5A a 5N).

En los diagramas triangulares (**Gráficos 5A a 5N**), se puede observar que las rocas volcánicas Cenozoicas presentan un mismo "trend" evolutivo, donde las unidades litológicas del Grupo Tacaza se encuentran menos diferenciadas, en comparación a las rocas del Grupo Maure.

Los diagramas que involucran concentraciones de hierro, calcio, magnesio, titanio, fósforo, manganeso y sílice (Gráficos 5A a 5K); presentan una diferenciación acompañada de la disminución de contenidos de fierro, calcio y magnesio. No están afectados por las leves variaciones de las concentraciones de titanio, fósforo y manganeso.

En los diagramas $Fe_3O_4 - K_2O - CaO$, $P_2O_5 - K_2O - Fe_3O_4$ y $P_2O_5 - K_2O - CaO$ (Gráficos 5L, 5M y 5N), es notable que la diferenciación va seguida de un enriquecimiento de potasio y un consumo de hierro y calcio. Las concentraciones de fósforo no causan ninguna perturbación (Gráficos 5M y 5N).

4.3 GEOQUÍMICA DE ELEMENTOS TRAZAS

Las concentraciones de elementos trazas en las rocas volcánicas Cenozoicas indican que están enriquecidas en elementos incompatibles como Ba, Sr, Rb y tierras raras ligeras como La. Así mismo están empobrecidas en elementos incompatibles como Nb y Zr (Mamani & Ibarra, 2000) **(Tablas No. 5, No. 6, No. 7, No. 8 y No. 9, Anexo III)**. A continuación, se muestran diagramas de elementos menores y tierras raras ligeras para caracterizar el ambiente

Gráfico No 6: Diagrama La/10-Y/15-Nb/8 para discriminación de basaltos (Cabanis y Lecolle, 1989).

- (1A) Basaltos calcoalcalinos
- (1C) Arcos volcánicos toleíticos
- (1B) superposición entre 1A y 1C
- (2A) Basaltos continental
- (2B) Basaltos de cuenca Tras-Arco
- (3A) Basaltos alcalinos de Rift intercontinental
- (3B, 3C) MORB Tipo-E (3B enriquecida, 3C débilmente enriquecida)
- (3D) MORB Tipo-N (Basalto de Rift Meso-Oceánico tipo N)

Gráfico No 7: Diagrama Ti-Zr-Sr para la discriminación de basaltos (Pearce y Caan, 1973), según el cual se tiene Toleitas de Arco de Isla en el campo A, basaltos calcoalcalinos en B y MORB en C.

magmático de basaltos. Por está razón, sólo nos interesa considerar rocas de composición basáltica o similares, correspondiendo únicamente a litologías del Grupo Tacaza.

4.3.1 DIAGRAMA La/10 – Y/15 – Nb/8

Este diagrama fue propuesto por Cabanis & Lecolle (1989) y permite diferenciar basaltos de cuenca tras-arco, calco-alcalinos, toleíticos de arcos volcánicos, alcalinos de rift intercontinental y basaltos de rift meso-oceánico (Gráfico No. 6).

De acuerdo a las concentraciones de La, Y y Nb de las rocas estudiadas y observadas en el diagrama La/10 - Y/15 - Nb/8, indican que sus composiciones pertenecen a basaltos calcolacalinos.

4.3.2 DIAGRAMA Zr – Ti/100 – Sr/2

Este diagrama fue planteado por Pearce & Cann (1973), discrimina los basaltos toleíticos de arco de isla, calco-alcalinos y de rift meso-oceánico (Gráfico No. 7).

Los contenidos de Zr, Ti y Sr ploteados en el presente diagrama revalidan la composición para basaltos calcoalcalinos.

4.4 ROL HIDROTERMAL DE LOS MAGMAS RESPECTO A SU ORIGEN Y DIFERENCIACIÓN

Habiendo definido la evolución química de cada pulso magmático y sabiendo que han sufrido procesos de diferenciación (**Gráficos 5A a 5N**); ahora nos interesa saber si los diferentes procesos han dado origen a fases fluidas que concentren iones metálicos. Por ello es conveniente entender el comportamiento de la viscosidad de los magmas que dieron origen a los volcánicos Cenozoicos. Esto se va ha conseguir a través de la evaluación de relación de los ratios A/CNK (Al₂O₃ / 101.96) / [(CaO /56.08) + (Na₂O / 61.98) + (K₂O / 94.20)]) (Barnes, 1997). Para valores mayores a uno, significa que van ha ser más ricas en alúmina por ende más viscosas y menos fluidas, y se interpretaría como menos probables para concentrar metales. El valor de la relación menor a uno involucra un comportamiento inverso.

Otro punto importante es diferenciar una fase sulfurada en los fluidos, esto lo conseguiremos gráficamente comparando las concentraciones de

CONTROLES GEOQUÍMICOS PARA EXPLORACION RESPECTO A LA GENERACIÓN Y DIFERENCIACION DE MAGMAS DE LOS VOLCÁNICOS CENOZOICOS DEL SE DEL PERÚ

metales (para nuestro caso solamente: Pb, Zn y Cu) con sus abundancias (background) y sus variaciones con el incremento de sílice y con la relación A/CNK.

De los **gráficos No. 8 y No. 9**, se puede interpretar que los magmas que dieron origen a las rocas volcánicas de los Grupos Palca y Maure, presentan mayor viscosidad; en comparación con los magmas de los Grupos Tacaza, Sillapaca y Barroso. Así mismo se puede observar que solamente los Grupos Tacaza; Sillapaca y Barroso desarrollan fases sulfuradas.

CAPÍTULO V

ALTERACIONES HIDROTERMALES GENERALES EN LOS VOLCÁNICOS CENOZOICOS

En el presente capítulo se resume el estudio petromineralógico de 08 muestras de rocas volcánicas de superficie, las que se encuentran alteradas por fluidos hidrotermales. De acuerdo a los minerales identificados en el microscopio de polarización, se ha establecido ensambles mineralógicos para cada tipo de alteración. Los resultados son agrupados y descritos en forma sintetizada y servirán como modelo para diferenciar las alteraciones en el siguiente capítulo.

5.1 ALTERACIÓN PROPILÍTICA

La alteración propilítica está definida por el ensamble cuarzo – clorita pirita – muscovita (**Muestra No. 68248, Anexo II**), corresponde a un flujo lávico de probable composición andesítica moderadamente alterado. Exhibe moldes de fenocristales de hornblendas reemplazados muscovita y cortados por cuarzo secundario. Algunos feldespatos se encuentran alterados a halloisita, producto de la acción del intemperismo.

5.2 ALTERACIÓN ARGÍLICA

La alteración argílica presenta el ensamble kaolinita – cuarzo (Muestra No. 67170, II) y afecta a lavas de posible composición traquiandesítica. Esta presenta moldes de probables feldespatos con kaolinita de grano fino y dos

generaciones de cuarzo, uno reemplazando la matriz y el otro en forma de venillas.

5.3 ALTERACIÓN ARGÍLICA AVANZADA

La alteración argílica avanzada está representada por el ensamble alunita – cuarzo ± pirofilita – dickita. Esta alteración tiene carácter penetrativo y presenta dos generaciones de alunita, una reemplazando feldespatos (**Muestra No. 68027**) y otra rellenando fracturas (**Muestra No. 68069**).

5.4 SILICIFICACIÓN

La silicificación esta determinada por las generaciones de cuarzo. En nuestro caso se registraron tres eventos. El primer evento corresponde al reemplazamiento de la matriz por cuarzo microgranular. El segundo evento tiene una granulometría más gruesa y se emplaza en venillas. El tercer evento se encuentra como relleno de poros irregulares a manera de geodas (Muestra No. 67090, Anexo II).

Complementando la caracterización de alteraciones hidrotermales se ha realizado el estudio de arcillas mediante lecturas de PIMA (**Cuadro No. 2**).

Cuadro No. 2: Ensambles mineralógicos de alteraciones hidrotermales (modificado de Hedenquist J., 1996), definidos por estudios microscópicos y lecturas PIMA.

Identificación de minerales	рН	Temperatura	Alteración
alunita – cuarzo	1.0 - 2.0	100 °C - 320 °C	Argílica avanzada
dickita ± pirofilita – kaolinita - cuarzo	3.0 - 4.0	200 °C - 300 °C	Argílica
kaolinita ± cuarzo - montmorillonita -	3.5 - 4.0	< 200 °C	Argílica intermedia
illita – muscovita – fengita	4.0 - 5.5	200 °C - 300 °C	Fílica
cuarzo – clorita - pirita - muscovita ± montmorillonita	4.0 - 6.0	< 200 °C	Propilítica

CAPITULO VI MARCO GEOLÓGICO, ALTERACIONES Y MINERALIZACIÓN EN EL COMPLEJO VOLCÁNICO BARROSO "MAZO CRUZ 1 – 12"

6.1 INTRODUCCIÓN

El área denominada "Mazo Cruz 1 – 12" pertenece a Cía. de Minas Buenaventura S.A.A. Tiene una extensión de 11,000 Has y se ubican al Sur de Mazo Cruz, en el departamento de Puno. Comprende cuatro centros volcánicos del Grupo Barroso (1 - 7 Ma), denominados Aconcahua, Peñón, Orcorara y Antajave. Los centros volcánicos están levemente erosionados, constituidos por secuencias de flujos piroclásticos y lávicos de composición mayormente andesítica. Este complejo volcánico fue definido como prospectivo por sistemas epitermales, debido a la presencia de anomalías de color (arcillas + óxidos) ubicadas en las partes centrales de cada centro volcánico.

El reconocimiento geológico se realizó con un mapeo a escala 1:10,000 y muestreos correspondientes, recolectándose muestras para modelamiento de alteraciones con PIMA y estudios petrominerálogicos. Dichas actividades se llevaron a cabo el año 2002.

6.1.1 UBICACIÓN Y ACCESO

La zona de estudio del presente capítulo se ubica alrededor de la comunidad de Chichillapi a 20 km al Sur del poblado de Mazo Cruz, 140 km en línea recta de la ciudad de Puno. Políticamente pertenece al distrito de Santa Rosa, provincia de Collao, departamento de Puno (**Fig. No. 4**). Se enmarca dentro de la hoja topográfica de Mazo Cruz (34 - x) a escala 1/100,000 del IGN.

La distancia de Puno a Mazo Cruz (carretera asfaltada) es de 141 km, con un tiempo de viaje de 2½ horas y la distancia de Mazo Cruz a la comunidad de Chichillapi (carretera afirmada), es 20 km, recorriéndose en ½ hora.

6.1.2 TRABAJOS REALIZADOS

Mediante dos campañas de campo se reconoció el bloque de Mazo Cruz, entre los meses de Abril y Junio del 2002. Los trabajos realizados fueron los siguientes:

- Mapeo geológico a escala 1:10,000 de un área total de 11,000 has.
- Modelamiento de alteraciones mediante estudios de PIMA, colectándose 209 muestras.

Cuadro No. 3: Relación de zonas investigadas y muestras recolectadas para estudios por PIMA

Zona	Área	Muestras PIMA
Aconcahua	3,500 has	51
Peñón	1,000 has	27
Orcorara	3,000 has	42
Antajave	3,500 has	89
Total	11,000 has	209

6.2 GEOMORFOLOGÍA

El bloque de Mazo Cruz está dentro de la unidad morfoestructural Cordillera Occidental, tiene alturas entre los 4200 m.s.n.m a 5230 m.s.n.m. Las altitudes máximas corresponden a las cumbres de los centros volcánicos, presentando relieves abruptos, modelado principalmente por la erosión glaciar; sus laderas están cubiertas por depósitos coluviales. Las máximas altitudes tienen predominantemente un drenaje radial. Las zonas más bajas muestran relieves ondulados suaves a llanos, con drenaje meandriforme.

6.3 ESTRATIGRAFÍA

Está definida por unidades litológicas de los Grupo Maure y Barroso (Lám. No. 15).

6.3.1 GRUPO MAURE

Constituye el basamento de los centros volcánicos, comprende una secuencia de flujos laminares y tobas intercaladas con sedimentos lacustrinos.

6.3.1.1 Flujos Laminares

Ocupan la zona central del cerro Aconcahua, siguiendo una orientación E-W y cubren un área de 3 km x 1 km. Se caracteriza por ser una secuencia volcánica de flujos laminares ácidos de naturaleza riolítica, con niveles de lapillis devitrificados en la base, seguidos de flujos silíceos hialinos, grises, blanquecinos y rosáceos (Fotos No. 1 y No. 2).

6.3.1.2 Tobas

Se encuentran mayormente ocupando las llanuras hacia las cotas más bajas. Alcanza un espesor hasta de 200 m; contiene niveles de vidrio volcánico devitrificado, sedimentos lacustrinos y flujos laminares.

6.3.2 GRUPO BARROSO

Distribuido ampliamente en el área de estudio. Las rocas aflorantes están constituidas por derrames lávicos y flujos piroclásticos. Las lavas tienen composiciones diversas entre andesita, andesita basáltica, dacita y traquiandesita.

6.3.2.1 Dacita porfirítica

Se extiende hacia el Sureste del área, se caracteriza por su color blanquecino. Presenta una foliación interna definida por la orientación de fenocristales de feldespatos calco-sódicos y potásicos.

6.3.2.2 Piroclástos

Se extienden principalmente en el área de Aconcahua, su naturaleza es andesítica y contienen hacia la base clastos angulosos de secuencias de

e		dc				P T T T T T T T T T T T T T T T T T T T
Test errorogania, recondenza FECHA GEOLOGIA DEL COMPLEJO LAMBA Testa arguna domesticante and testa MARZO - 2004 GEOLOGIA DEL COMPLEJO LAMBA Testa arguna domesticante and testa MARZO - 2004 VOLCANICO DE MAZO CRUZ 15 Testado domesticante and testa Arguna domesticante and testa VOLCANICO DE MAZO CRUZ 15 Testado domesticante and testa Lam taxa 1 - 12 15 15	Campania Baragraphila Bascala INNVERSIDAD NACIONAL DE INGENIERIA de Massi Buengrephila Buengrephila Bakera	 → Discordancia → → Sección geológica Areas investigadas 0 km 2 km 4 km ESCALA GRÁFICA 	SIMBOLOS A ∆ ∆ △ Brechas BP BP BP Brechas Piroclásticas Mega stockwork Fallas, definidas / inferidas Lineamientos Estructuras vetiformes Rumbo y buzamiento de estructuras So Rumbo y buzamiento de estructuras Contacto litológico	ALTERACIONES Silicificación Filica Argilica avanzada Mización	NEOGENO CUATERMARIO MOCENO PLUSCENO Gro. MURE Gro. BARROSO Gro. MURE Gro. BARROSO P T Composition and multipled Provide Collar State P Fluts Electors and dealitions Detaile portificities Andeletities Mittige Electors and dealitions Loss Detaile portificities Andeletities Mittige Electors and dealitions Loss Detaile portificities Andeletities Mittige Electors and dealitions Loss Detaile portificities Mathematical and multipled Mittige Electors and dealitions Mathematical and multipled Mittige Electors and dealities Mathematical and multipled Mathematical and multipled Mathematical and multipled Mathematical and multipled Mathematical and multipled	INIDADES LITOESTRATIGRAFICAS

flujos laminares, tobas y vidrio y hacia el tope litoclastos de lavas andesíticas y andesitas basálticas.

6.3.2.3 Intercalación de lavas andesíticas y piroclástos

Se distribuyen principalmente hacia la zona de Antajave. Se compone de secuencias de flujos y brechas piroclásticas andesíticas a andesíticobasálticas con niveles lávicos de similar composición. Los flujos lávicos se ubican con mayor frecuencia hacia el tope de la secuencia. Las rocas piroclásticas mayormente contienen fragmentos angulosos a sub-redondeados de anteriores flujos lávicos oscuros y/o de otros depósitos piroclásticos dentro de una matriz rosácea a gris.

6.3.2.4 Andesitas basálticas

Conforman principalmente la zona de Orcorara, tienen textura pórfidoafanítica, color gris oscura a negra. Los pseudo-estratos alcanzan espesores hasta 0,5 m, hacia su tope presenta niveles vesiculares.

6.3.2.5 Andesita gris clara

Se pudo definir sólo hacia el Sur, destaca por tener una matriz vítrea gris clara.

6.3.2.6 Piroclástos traquíticos

Tiene afloramientos hacia el extremo Sur de la zona de estudio y dentro de la zona de Aconcahua, presentan coloraciones rosáceas y grises. Se caracterizan por el desarrollo de fenocristales de sanidina que alcanzan 1cm de diámetro.

6.3.2.7 Ignimbritas

Están dispuestas al Este, dentro de la zona de Aconcahua, presentan gran desarrollo de sanidina. Su naturaleza es traquítica y están fuertemente soldadas. Esta unidad cubre en discordancia erosional a los niveles tobáceos del Grupo Maure.

6.4 METALOGENIA Y ACTIVIDADES MINERAS

Dentro del área de investigación no existen evidencias de actividades mineras, a excepción de un pequeño cateo abandonado ubicado dentro del área de Peñón.

Las ocurrencias metálicas documentadas en los alrededores del área Mazo Cruz corresponden mayormente a ocurrencias polimetálicas (Ag, Cu, Pb) y a mineralizaciones por Au hacia el Este (30 km) y el Noroeste (55 km), la primera fue revisada por el INGEMMET bajo el nombre de Mazo Cruz y la segunda de propiedad de Minera Hill, conocida como la mina Aruntani.

6.5 GEOLOGÍA ESTRUCTURAL

Dentro del área, el tectonismo es poco evidente, no se tienen grandes fallas reconocidas; sólo se pudieron diferenciar fallas menores y lineamientos por intermedio de foto-interpretación, análisis estructural de imagen satelital y observaciones de campo (Láminas No. 6 y No7).

Las pocas fallas existentes están diferenciadas principalmente en los centros volcánicos, las cuales originan fallamientos en bloques destacando geometrías tipo horst y graben.

Los lineamientos tienen dos sistemas ortogonales uno N 40° a 50° E – N 45° a 50° W y el otro NS – EW. Los rasgos estructurales no son muy marcados debido al vulcanismo joven que los cubre.

El análisis estructural se definió en cuatro zonas, correspondiendo cada una a los centros volcánicos diferenciados.

6.5.1 ZONA ACONCAHUA

Está afectada por fallamientos en dirección N 60° a 85° E, los mismos que han originado movimientos en bloques a manera de horst. En el área central de Aconcahua se tienen secuencias de flujos laminares del Grupo Maure en contacto con rocas piroclásticas y lávicas del Grupo Barroso.

También se tienen fallas de rumbo andino con orientaciones N 40° a 60° W y cortan al sistema N 60° a 85° E (Láms. No. 16 y No. 17).

El sistema N 60° a 85° E representa una vía estructural de emplazamiento hidrotermal en donde el fracturamiento paralelo a este sistema ha permitido el paso de fluidos hidrotermales originando alteraciones propilíticas, argílicas y argílicas avanzadas como veremos más adelante.

6.5.2 ZONA PEÑÓN

No se tienen grandes fallas (a diferencia del sector Aconcahua), destacando en la zona central sólo lineamientos de rumbo N 70° W a E-W, a lo largo de los cuales se han emplazado algunas estructuras vetiformes discontinuas de 20 m de afloramiento (Láms. No. 18 y No. 19).

6.5.3 ZONA ORCORARA

Está afectada por un fallamiento en bloques, controlado mayormente por fallas normales de rumbo E-W, N 25° W y N 45° E, que buzan del centro efusivo-hidrotermal hacia afuera (Láms. No. 20 y No. 21, fotos No. 8 y No. 9).

Las fallas E-W coinciden con un lineamiento del mismo rumbo que figura en imágenes satelitales y fotos aéreas, y cruza el centro volcánico Orcorara. El volcanismo y emplazamiento del cono volcánico posiblemente estuvo controlado por este lineamiento de rumbo E-W.

Sin embargo, no hay evidencia para un control estructural de la alteración hidrotermal. Las fallas reconocidas son de carácter post-volcánico y post-hidrotermal, las que modifican levemente la geometría del sistema. No se han encontrado evidencias de un control estructural significativo para el sistema volcánico-hidrotermal.

6.5.4 ZONA ANTAJAVE

El tectonismo en la zona de Antajave está limitado a la orientación N-S del complejo volcánico fisural, al cual corta un patrón ortogonal de fallas normales con rumbos E-W con desplazamientos menores, formando bloques desplazados del centro volcánico hacia sus alrededores. De este modo el centro volcánico está expuesto en una geometría estructural que correspondería al tipo horst (Láms. No. 22 y No. 23).

Las estructuras con alteraciones hidrotermales y mineralizaciones menores están asociadas a varias fallas que se originaron probablemente de un pulso hidrotermal tardío.

Como lineamientos más prominentes se puede interpretar los de rumbo N-S del complejo volcánico mismo y las fallas transversales de rumbos N 60° E y N 60° W que siguen las quebradas mayores.

6.6 ALTERACIÓN Y MINERALIZACIÓN

Las áreas de alteración se restringen a los centros volcánicos mencionados anteriormente, por tal motivo se establecieron las zonas prospectivas, denominadas Aconcahua, Peñón, Orcorara y Antajave.

6.6.1 ZONA ACONCAHUA

Las alteraciones hidrotermales se presentan de manera puntual no exponiéndose en grandes áreas, están controladas estructuralmente emplazándose en las zonas de intersección de fallas y/o en fracturamientos paralelos (Láms. No. 16 y No. 17).

El estudio del PIMA muestra preferentemente áreas con arcillas de baja temperatura (halloisita, nontronita y montmorillonita) definiendo sectores propilíticos que en su mayoría son el resultado de procesos supérgenos por meteorización (Foto No. 3). Se tiene una sola área con alteración hidrotermal del tipo argílica avanzada (403,250E - 8'138,600N), tiene un alcance de 200 m x 100 m (Tabla No. 11, Anexo III).

Entre la coordenada 403,000E - 8'138,960N se ha cartografiado crestones paralelos siguiendo el rumbo N 70° E los mismos que están controlados por el sistema de fallas NE - SW. Estos crestones generan halos con alteraciones propilíticas, argílicas y argílicas avanzadas a lo largo de 600 m aproximadamente (Foto No. 4), afectan niveles de lavas andesítico-basálticos. Dichos crestones en partes muestran venillas milimétricas de sílice gris con venillas y diseminación de pirita.

Siguiendo el mismo sistema, entorno a la coordenada 402,000E - 8'139,000N, se tienen estructuras menores de sílice masiva blanca a gris clara de rumbos N-S y N 65° E con longitudes de afloramiento de 1 m y 7 m respectivamente.

Hacia el Oeste (402,110E – 8'138,560N) y dentro de un área con alteración argílica de 700 m x 300 m y relacionada a lineamientos de rumbo N 50° a 70° E, se presenta una estructura vetiforme E-W y 70° S de buzamiento, tiene 2 m de ancho y 50 m de afloramiento discontinuo (Foto No. 5); está constituida mayormente por sílice blanca junto a algunas venillas de sílice gris con pirita diseminada (1%).

Alrededor de la coordenada 403,700E - 8'139,080N se tiene una secuencia piroclástica con limonita rellenando fracturas y cortada por algunas venillas milimétricas de sílice hialina (Foto No. 6).

Finalmente, cerca a la coordenada 401,750E - 8'140,000N dentro de una alteración propilítica de 25 m x 15 m, secuencias lávicas andesíticas han sido cortadas por venillas de sílice calcedónica blanca que incluyen sílice gris con pirita diseminada (2%).

Comp de M	añia Inas Buena⊽entura	ESCALA 1/25,000	UNIVERSIDAD NACIONAL DE INGE FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y M ESCUELA PROFESIONAL DE GEOLOGÍ/	ENIERIA ietalúrgica
TESIS GEOLOGIA	PETROGRAFÍA, GEOQUÍMICA E IMPLICANCIAS METALOGENÉTICAS DE LOS VOLCÁNICOS CENOZOICOS DEL SURESTE DEL PERÚ: ZONA DE MAZO CRUZ Jorge Luis Quispe Cangana	FECHA MARZO - 2004	GEOLOGÍA Y ALTERACIONES	LÁMINA
DIBUJO CAD	Alejandro Arce Gonzalez			16
REVISION CAD	Carlos León Ojeda	ARCHIVO		IU
APROBADO	César Vidal Coblán	Lám_16_18_20_22.dwg		

SIMBOLOS

$\Delta \ \Delta \ \Delta \ \Delta$	Brechas
BP BP BP	Brechas Piroclásticas
\bigstar	Mega stockwork
10°	Fallas, definidas / inferidas
	Lineamientos
	Estructuras vetiformes
50°	Rumbo y buzamiento de estructuras
50°	Rumbo y buzamiento de estratos, capas
50°	Rumbo y buzamiento de diaclasas
~~~	Contacto litológico
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Discordancia
A A' ≜∳	Sección geológica
62529	N° de Muestra

0 km 1 km ESCALA GRÁFICA

FOTO No. 1 : ZONA ACONCAHUA

Base de los flujos laminares ácidos con clastos de obsidiana.

FOTO No. 2: ZONA ACONCAHUA

Detalle de la foto No.1. Se muestra la devitrificación de lapillis de obsidiana.

FOTO No. 3: ZONA ACONCAHUA

Vista panorámica mirando al Noreste. Se muestra una extensa anomalía de color, que en el campo corresponde a la presencia de arcillas por devitrificación de niveles laminares ácidos, limitados estructuralmente por fallas inversas.

FOTO No. 4: ZONA ACONCAHUA

Vista panorámica mirando hacia el Oeste. Se muestra una extensa anomalía de color ubicada al Oeste del centro volcánico Aconcahua y corresponde a flujos laminares ácidos. Esta zona comprende crestones impregnados de sílice dentro de un halo de alteración (600m), que de Oeste a Este gradan desde propilíticos a argílicos y estos a argílico avanzado.

<u>FOTO No. 5</u>: ZONA ACONCAHUA

Estructura vetiforme (EW/70°S). Aflora 15m de largo por 2m de ancho, presencia de sílice blanca y manchas de sílice gris con pirita diseminada.

FOTO No. 6: ZONA ACONCAHUA

Brecha piroclástica, con alteración propilítica, limonitas en fracturas cortada por venillas mm de sílice hialina.

6.6.2 ZONA PEÑÓN

La alteración hidrotermal en el prospecto Peñón es débil, manifestándose como zonas propilíticas y argílicas en el sector central, estando controlada por sistemas de lineamientos estructurales y emplazamiento de crestones irregulares (Tabla No. 12 – Anexo III, Láms. No. 18 y No. 19).

Entorno a la coordenada 410,400E - 8'134,950N el afloramiento de una estructura moderadamente silicificada y una estructura con impregnación de limonita y hematita (Foto No. 7).

La estructura silicificada está brechada y expone unos 20 m de afloramiento discontinuo con un ancho de 1.80 m, muestra algunos puntos de covelita y calcosina.

La estructura de limonita-hematita está brechada e incluye fragmentos silicificados menores de 1cm de diámetro, forma suelos rojizos originando una limitada anomalía de color.

En las cercanías a la coordenada 409,090E - 8'134,850N aflora una pequeña zona silicificada de 20 m x 10 m que muestra una moderada impregnación de limonitas.

FOTO No. 7: ZONA PEÑÓN

Vista panorámica mirando al Noreste, en la parte central se observan impregnaciones de limonitas en los suelos que proceden de estructuras vetiformes con afloramientos discontinuos (20m de largo y 0.5m de ancho) y rumbo N 80° W, cajas propilitizadas a débilmente argilizadas. A la derecha flujos piroclásticos y lávicos sin alteración hidrotermal.

6.6.3 ZONA ORCORARA

En base a las observaciones de campo y resultados de PIMA se realizó el modelamiento y zonación de halos de alteración, definiéndose una facie proximal en el sector central y una facie distal hacia el Sur. Se tienen también estructuras menores con presencia de kaolinita y dickita (Tabla No. 13 – Anexo III, Láms. No. 20 y No. 21).

La facie proximal está caracterizada por un centro hidrotermal (Cerro Orcorara) con alteración argílica avanzada dada por el ensamble alunita ± cuarzo, presenta una textura porosa y leve impregnación de limonitas. Las proporciones de alunita y cuarzo son variables, predominando en algunos casos la alunita de grano fino y color blanco. El grado de silicificación asociada a la alteración argílica avanzada es generalmente débil. Puntualmente destaca una silicificación que llega hasta una intensidad fuerte, dando una textura de pseudovuggy silica. Las rocas con alteración propilítica afloran alrededor de la alteración argílica avanzada, interpretándose como flujos post-hidrotermales afectados por pulsos tardíos y débiles del sistema hidrotermal. Como resultado del pulso tardío se tienen cuerpos de stockwork y silicificaciones calcedónicas, que cortan rocas propilíticas (Fotos No. 8 y No. 9).

La facie distal del sistema presenta un control estructural – litológico. La presencia de pseudoestratos permeables (piroclásticos) dentro de secuencias poco permeables (flujos lávicos) han permitido el reemplazamiento hidrotermal selectivo. Entorno a la coordenada 417,410E – 8'131,570N, se tiene una secuencia de brechas piroclásticas silicificadas por venillas milimétricas de sílice hialina con pirita diseminada (3%). También destacan estructuras vetiformes N 70° E de sílice gris con pirita diseminada (1%) y con una potencia de 30 cm.

En la coordenada 417,710E - 8'131,825N se observan estructuras de cuarzo \pm alunita blanca cortadas por venillas milimétricas de sílice y limonita (10%).

Compa	añia	
de Mi	nas Buenaventura	
TESIS	PETROGRAFÍA, GEOQUÍMICA E IMPLICANCIAS METALOGENÉTICAS DE LOS VOLCÁNICOS CENOZOICOS DEL SURESTE DEL PERÚ: ZONA DE MAZO CRUZ	
GEOLOGIA	Jorge Luis Quispe Cangana	МА
DIBUJO CAD	Alejandro Arce Gonzalez	
REVISION CAD	Carlos León Ojeda	4
APROBADO	César Vidal Coblán	Lám_1

ES LITOESTRATIG	RAFICA	S
epósitos Coluviales		
epósitos Morrénicos	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ujos lávicos andesíticos ujos piroclásticos de naturaleza idesítica / alcance inferido	L-ba	Andesítas basálticas

LÁMINA 20

ZONA ORCORARA

ARCHIVO 16 18 20 22 dw

SIST.	SERIE		UNIDADES LITOESTRATIGRAFICAS
JATERNARIO	stoceno / oceno	RECIENTE	Q - col Depósitos Coluviales
C	PLEIS		
NEOGENO	PLIOCENO	Gpo. BARROSO	Flujos lávicos andesíticos (L) con intercalaciones de andesítas basálticas (L-ba) Flujos piroclásticos de naturaleza andesítica

Comp de M	añla inas Buena⊽entura	ESCALA 1/25,000	UNIVERSIDAD NACIONAL DE ING FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y N ESCUELA PROFESIONAL DE GEOLOGÍ	ENIERIA Ietalúrgica A
TESIS GEOLOGIA DIBUJO CAD	PETROGRAFÍA, GEOQUÍMICA E IMPLICANCIAS METALOGENETICAS DE LOS VOLCÁNICOS CENOZOICOS DEL SURESTE DEL PERÚ: ZONA DE MAZO CRUZ. Jorge Luis Quispe Cangana Alejandro Arce Gonzalez	FECHA MARZO - 2004	SECCION C - C' GEOLÓGICA Y ALTERACIONES	LÁMINA
REVISION CAD	Carlos León Ojeda César Vidal Cobián	ARCHIVO Lám_21.dwg	ZONA ORCORARA	

FOTOS No.8 Y No.9: ZONA ORCORARA

Vistas panorámicas tomadas desde Norte (foto superior) y Noreste (foto inferior). El centro hidrotermal y efusivo de Orcorara afectado por fallamiento en bloques ("block faulting"). En un nivel inferior se encuentra se encuentra la alteración argílica avanzada que pasa a una alteración propilítica. En la zona distal la alteración argílica avanzada esta restringida a capas con mayor permeabilidad mostrando un control litológico (derecha).

6.6.4 ZONA ANTAJAVE

El centro de la alteración hidrotermal coincide principalmente con el centro fisural efusivo Milluma – Antajave, de rumbo N-S. (Láms No. 22 y No. 23).

El sistema hidrotermal está cubierto en gran parte por material coluvial, eluvial y flujos lávicos inalterados correspondientes a un evento volcánico post-hidrotermal. Dichas rocas post-hidrotermales yacen directamente sobre rocas intensamente alteradas en gran parte de sus afloramientos o están cortados por fallas que fueron aprovechadas por uno o varios pulsos hidrotermales tardíos ocasionando halos métricos de alteraciones y brechas hidrotermales menores (Fotos No. 10, No. 11 y No. 12).

Como estilos de alteración se identificó los tipos argílica avanzada, argílica, fílica y propilítica (Tabla No. 14, Anexo III).

La alteración más prominente es la alteración argílica avanzada definida por el ensamble alunita - cuarzo \pm pirofilita que forma el núcleo del sistema hidrotermal (404,621E – 8'126,817N), esta alteración pasa gradualmente a argílica avanzada sin pirofilita y de allí a una alteración fílica.

La alteración fílica está caracterizada por el ensamble muscovita ± halloisita, se define en una posición más distal, al Este de la alteración argílica avanzada (405,109E – 8'127,906N).

La alteración argílica esta definida por el ensamble kaolinita ± halloisita – nontronita y corresponde exclusivamente a estructuras menores y distales.(405,622E – 8'127,367N).

La propilitización está dada por el ensamble halloisita ± montmorillonita – nontronita, tiene una amplia distribución, pero probablemente sea de origen supérgeno (Foto No. 13).

No se identificaron afloramientos con intensidades de silicificación considerables. Los débiles grados de silicificación encontrados sólo se restringen a estructuras menores de unos metros de largo y centímetros de ancho. Las estructuras y brechas hidrotermales son escasas y de poca dimensión.

SIST. SERIE UNIDADES LITOESTRATIGRAFICAS

SIST.	SERIE	ι	UNIDADES LITOESTRATIGRAFICAS				
UATERNARIO	PLEISTOCENO / HOLOCENO	RECIENTE	Q - col	Depósitos Coluviales			
0							
NEOGENO	PLIOCENO	Gpo. BARROSO	L P	Flujos lávicos andestiticos Flujos piroclásticos de naturaleza andestítica			

Compa de Mi	nñia nas Buena⊽entura	ESCALA 1/25,000	UNIVERSIDAD NACIONAL DE INGE FACULTAD DE INGENIERÍA GEOLÓGICA, MINERA Y MI ESCUELA PROFESIONAL DE GEOLOGÍ	E NIERIA etalúrgica a
TESIS	PETROGRAFÍA, GEOQUÍMICA E IMPLICANCIAS METALOGENÉTICAS DE LOS VOLCÁNICOS CENOZOICOS DEL SURESTE DEL PERÚ: ZONA DE MAZO CRUZ.	FECHA	SECCION D - D'	LÁMINA
GEOLOGIA Jorge Luis Quispe Cangana		MARZO - 2004		
DIBUJO CAD Alejandro Arce Gonzalez			GEOLÓGICA Y ALTERACIONES	72
REVISION CAD	Carlos León Ojeda	ARCHIVO	ZONA ANTAJAVE	ZJ
APROBADO César Vidal Cobián		Lám_23.dwg		

0 km		1	km
	ESCALA GRÁFICA		

FOTO No.10: ZONA ANTAJAVE

Foto tomada del Noreste mirando hacia el flanco Norte del C^o Milluma. Al fondo se observa unos afloramientos con alteración argílica avanzada, cubiertos por rocas volcánicas mayormente inalteradas (posthidrotermal). Hacia el Este la alteración argílica avanzada pasa a una alteración propilítica - argílica. En la intersección de las quebradas (izquierda), se tiene un afloramiento con silicificación moderada.

FOTO No.11: ZONA ANTAJAVE

Foto tomada desde el Noroeste mirando hacia el C^o Milluma. Se muestran sub-afloramientos con alteración argílica avanzada. Rocas inalteradas en las cumbres, al fondo (evento post-hidrotermal) que cubren probablemente la extensión de rocas alteradas hacia el Este (foto No. 10).

FOTO No.12: ZONA ANTAJAVE

Foto tomada del C^o Milluma mirando hacia el Norte. Con nieve al fondo figura el C^o Antajave. Por ambos lados de la cresta N-S, se observan sub-afloramientos con alteración argílica avanzada, mientras que en la cresta misma predominan rocas volcánicas sin alteración hidrotermal, cortados por fallas menores que controlan brechamientos y alteraciones tipo argílica avanzada de un pulso tardío.

FOTO No.13: ZONA ANTAJAVE

Foto tomada del C^o Milluma mirando hacia el Suroeste. El Sur del complejo volcánico de Antajave está caracterizado por rocas sin alteración hidrotermal, excepto una secuencia piroclástica con alteración propilítica controlada estructuralmente.

CAPÍTULO VII

INTERPRETACIONES

7.1 EVOLUCIÓN TECTÓNICA EN LA FRANJA VOLCÁNICA CENOZOICA

La interpretación de la evolución tectónica de la zona de estudio se puede representar en cuatro etapas. La primera fase está referida al tectonismo Ehoherciniano y las tres siguientes al ciclo Andino.

7.1.1 ETAPA I – FASE TECTÓNICA EOHERCINIANA

Las rocas sedimentarias Paleozoicas del basamento son sometidas a la tectónica Eoherciniana (340 Ma a 320 Ma; Laubacher, 1978), ocasionando fallamientos en bloques con relleno de depresiones por sedimentos fluviales y deltaicos (Grupo Ambo).

7.1.2 ETAPA II – FASE TECTÓNICA PERUANA

Se produce la deposición de rocas sedimentarias y volcanosedimentarias Mesozoicas, siendo perturbadas por la fase tectónica Peruana (80 Ma; Megard, 1984) manifestada a través de hundimientos, levantamientos y deformación compresiva (plegamiento de rocas). En los estadíos finales se produce la deposición continental de rocas Cenozoicas correspondiente al Grupo Puno.

7.1.3 ETAPA III – FASE TECTÓNICA INCA

Influenciada por la fase tectónica Inca (40 Ma; Noble et al.,1974; Megard, 1984), que produce perturbaciones locales con fuertes deformaciones compresionales, evidenciadas por plegamientos del Grupo Puno y fallamientos en bloques acompañados de vulcanismo activo fisural del Grupo Tacaza. Así mismo se produce un desgarre litosférico produciéndose el sistema de fallas Lagunillas transcurrentes dextrales con manifestaciones magmáticas (Fornari et al, 2002) y el sistema de fallas Ayaviri transcurrentes sinestrales (Sempere et al., 2002).

7.1.4 ETAPA IV – FASE TECTÓNICA QUECHUA

Involucra a la tectónica Quechua manifestada a través de sus tres fases (Quechua I, II y III).

La Fase Quechua I se caracteriza por esfuerzos menores compresivos, con pliegues abiertos y reactivación de fallas. Se asume producto de estas actividades la erupción ignimbrítica fisural del Grupo Palca (Willians y Mc Birney, 1979) y derrames lávicos del Grupo Sillapaca (Jenks & Newell, 1949), origen de la probable "caldera Ocuviri " y plegamientos abiertos en el Grupo Tacaza.

A fines de está etapa (pre–Quechua II) se produce una reactivación de fallas. El sistema de fallas Lagunillas cambia a movimientos sinestrales, permitiendo la apertura de la cuenca del Grupo Maure. Mientras el sistema de fallas Ayaviri produce levantamiento en bloques (Sempere et al., 2002).

Durante la Fase Quechua II prosigue el relleno de la cuenca del Grupo Maure, pero conjuntamente se producen una serie de fallas inversas de alto ángulo de buzamiento, las que ponen en contacto litologías del Grupo Palca con el Grupo Puno y con la Formación Ayavacas.

La Fase Quechua III genera plegamientos en secuencias del Grupo Maure y fallamientos EW - NS que controlan centros y fisuras volcánicas del Grupo Barroso.

7.2 RELACIÓN TECTÓNICA, MAGMÁTICA Y DE MINERALIZACIÓN

De acuerdo a la distribución de rocas intrusivas (Lám. No. 5), interpretación estructural (Lám. No. 6), ubicación de minas y prospectos (Lám. No. 8), análisis del contexto geológico y anomalías de color (óxidos + arcillas) obtenidas de imágenes de satélite (Lám. No. 25), se pudo establecer las sub – zonas (Lám. No. 24) relacionadas a la Caldera Ocuviri, sistema de fallas Lagunillas y al margen de la Cuenca Maure con fallas tensionales EW.

7.2.1 ZONA CON MINERALIZACIÓN (Au - Pb – Ag) ASOCIADA A LA CALDERA OCUVIRI

Se asume que la mineralización de La Rescatada (Au, Ag) y minas polimetálicas (Pb-Ag) estarían relacionadas con la evolución de la "Caldera Ocuviri". Esta ha sido interpretada mediante imágenes de satélite, donde los lineamientos cambian gradualmente de rumbo de NW – SE, EW y NE – SW (Lám. No. 6). Otro punto es la distribución de circular de facies piroclásticas (Grupo Palca con potentes niveles mostrando textura eutaxítica y aparentes estructuras de colapso) y efusivas (Grupo Sillapaca) (Láms. No.10 y No. 11). Así mismo, se tiene el emplazamiento de cuerpos intrusivos distribuidos en su periferie y en forma concéntrica (Lám. No. 5), también cabe destacar la zonación metálica, con una disposición de yacimientos polimetálicos en los alrededores (relacionados a estructuras tipo diatrema, como son las minas Santa Bárbara y Tacaza) y Au en la parte central (relacionada al emplazamiento de domos) (Lám. No. 8)

De acuerdo a los antecedentes planteados, se cree que la Caldera Ocuviri tiene una edad aproximada de 17 Ma (pre – Grupo Sillapaca) y probablemente guarde una estrecha relación tectónica con la fase Quechua I (post-Grupo Tacaza) y tendría origen a partir de una cámara magmática sometida a incrementos de presión (enriquecimiento en volátiles). Está induciría a la deformación superficial de las rocas situadas encima de la cámara magmática y a la apertura de fracturas anulares (tumescencia). Las fracturas permitirían el paso violento de las ignimbritas del Grupo Palca (Willians y Mc Birney, 1979). Después de la erupción piroclástica se produciría el colapso de la caldera (formación de la caldera) como consecuencia de la salida violenta de la fase enriquecida en volátiles. Seguidamente se daría una pre-resurgencia acompañada de erupciones lávicas del Grupo Sillapaca (Jenks & Newell, 1949). Después de está etapa ocurriría la resurgencia de la caldera y permitiría el ascenso de domos centrales resurgentes de composición dacítica acompañados de fluidos hidrotermales, aportando la mineralización de La Rescatada (Au, Ag) y alrededores (Pb, Ag). Las reactivaciones del sistema de fallas Lagunillas y del sistema de fallas Ayaviri (pre-Quechua II), permitirían el emplazamiento de stocks que controlarían los últimos estadíos de mineralización, a través de estructuras tensionales trasandinas.

7.2.2 ZONA DE PLEGAMIENTOS CON MINERALIZACIÓN DE (Cu, Pb, Ag) ASOCIADA AL SISTEMA DE FALLAS LAGUNILLAS

El trastorno del sistema geodinámico a partir de 30 Ma (tectónica Inca) permitiría el emplazamiento de un arco magmático vinculado con el funcionamiento del sistema de fallas Lagunillas como desgarre litosférico (Fornari et al., 2002) y tendría su extensión hacia el sistema de falla Domeyco en Chile, el controla estructuralmente los yacimientos tipos pórfido y epitermal.

Se propone el modelo emplazamiento de intrusivos en ambientes contraccionales (Quechua II) a través de fallas inversas (Skarmeta, 2003). Donde La mineralización (Cu, Pb, Ag) estaría relacionada a dichos intrusivos y su ascenso sería por permeabilidad de fracturas tensionales NE – SW, producidas por esfuerzos compresivos, ejemplos de esto son las minas Los Rosales y Quello Quello.

7.2.3 ZONA CON MINERALIZACIÓN (Au, Ag, Pb) RELACIONADA A LINEAMIENTOS EW – NS Y MARGEN DE CUENCA MAURE

Se interpreta que la mineralización de La Mina Aruntani y minas polimetálicas periféricas (Cacachara), estarían vinculadas a trampas estructurales definidas por el sistema de fallas EW, NE – SW y borde de la Cuenca Maure **(Lám. No. 24)**. Las fallas EW serían centros fisurales e hidrotermales.

7.3 ZONEAMIENTO METALOGENÉTICO

Se postula que la zonación metalogenética esta dada en seis franjas **(Lám. 24)** y no como tradicionalmente se conocía "Franja Polimetálica del Altiplano".

La franja I corresponde a la Franja Epitermal Pliocena, definida por la mineralización de Au (mina Aruntani y el proyecto Mazo Cruz) y Ag (Cacachara, Pavico), hospedadas en unidades de los Grupos Tacaza y Barroso. Estructuralmente esta controlada por el sistema de fallas E-W (centros efusivos e hidrotermales).

La franja II esta definida como la Franja Epitermal Miocena Media con mineralización Au (La Rescatada) y polimetálica (Tacaza, Santa Bárbara y Berenguela). Se emplaza en unidades volcánicas de los Grupos Tacaza y Sillapaca. Presenta un control estructural de rumbo andino y la mineralización guarda una estrecha relación con los intrusivos sub-volcánicos de composición dacítica relacionados a la "Caldera Ocuviri".

La franja III denominada Franja Polimetálica Miocénica comprende la mineralización de Cu, Pb y Zn en rocas del Grupo Maure.

La franja IV es la Franja Polimetálica asociada a intrusivos de edades comprendidas entre 22 y 19 Ma (Mina los Rosales, Quello Quello, San Antonio de Esquilache), están controlados estructuralmente por el sistema de fallas Lagunillas. La Mineralización está presente en calizas de la Formación Ayavacas, unidades de los volcánicos Tacaza y en los mismos intrusivos.

La franja V corresponde a la Franja Cuprífera del Eoceno, en la que se hallan algunos pórfidos como Los Calatos y Colquerani - Sallani.

La franja VI corresponde a la Franja Polimetálica Paleozoica y Mesocenozoicas, donde resalta localmente la mineralización de W relacionada a un intrusivo monzogranítico de 270 Ma. También se tiene mineralización de Cu asociada a un intrusivo Terciario de composición diorítica.
7.4 ÁREAS FAVORABLES PARA LA EXPLORACIÓN

- Discordancias entre rocas Mesozoicas con volcánicos Terciarios (Grupo Tacaza), podrían definir yacimientos similares al "Alto Chicama".
- Investigar los márgenes de la caldera de Ocuviri, estas podrían albergar mineralización epitermal, similar a la rescatada.
- Investigar los márgenes de la Cuenca Maure (trampa estructural), que por lo expuesto anteriormente, estaría controlada por fallas de rumbo y podrían ser zonas permeables para el emplazamiento de fluidos mineralizantes.
- Investigar el sistema de fallas Lagunillas con el concepto de potencial para pórfidos en ambientes contraccionales, donde las estructuras mineralizadas descritas (Los Rosales, Quello Quello, etc.), podrían ser sólo manifestaciones puntuales de sistemas tipo pórfido de Cu – Au.
- Contacto de intrusivos y volcánicos con rocas calcáreas de la Formación Ayavacas (a lo largo del sistema de fallas lagunillas), buscando evidencias para yacimientos tipo metasomáticos y carlín.
- Explorar la extensión de las nuevas franjas epitermales de Au Ag (franjas I y II), con el concepto de "búsqueda de yacimientos ciegos".

CONCLUSIONES

- Las edades radiométricas asignadas al Grupo Tacaza, varían en el rango de 17 Ma a 30 Ma. En este Grupo se puede admitir a las Formaciones Colquerane (20 Ma) y Huaylillas (17 Ma - 23 Ma). El Grupo Palca tiene un rango de edad entre 11 Ma y 19 Ma, es correlacionable en tiempo con la Formación Ignimbrita Santa Lucia (18 Ma). El Grupo Sillapaca varía en el rango de edad entre 13 Ma y 17 Ma. El Grupo Maure se encuentra entre 7 Ma y 21 Ma, este Grupo incluye a las Formaciones Capillune (8 Ma) y Sencca (6 Ma - 8 Ma). El Grupo Barroso oscilan en el rango de 1 Ma y 7 Ma.
- De acuerdo a las características litológicas, el Grupo Tacaza en su base presenta facies conglomerádicas, gradando de lavas ricas en olivino-augita a ricas en plagioclasas y estas a facies piroclásticas de composición riolítica. El Grupo Palca presenta potentes secuencias ignimbríticas de composición riolítica, con megacristales de sanidina. El Grupo Sillapaca está constituido por lavas porfiríticas de composición dacítica, algunas veces con niveles piroclásticos. El Grupo Maure está conformado por tobas retrabajadas, limolitas, fangolitas, lutitas negras intercaladas con niveles calcáreos. El Grupo Barroso muestra en su base niveles piroclásticos mayormente andesíticos y hacia su tope secuencias lávicas dacíticas, andesíticas y andesíticas basálticas.
- Desde el punto de vista petrográfico, las rocas estudiadas presentan texturas porfiríticas, hialopilítica y pilotaxítica, con un contenido de fenocristales menores al 20%. Exhiben texturas de desequilibrio mineralógico tal como coexistencia de piroxenos con cuarzo, zonación de plagioclasas, fenocristales con bordes de reacción y alteración de minerales hidratados (anfíboles y biotitas) a óxidos de Fe.

- La geoquímica de las rocas volcánicas Cenozoicos, definen una tendencia calco-alcalina rica en potasio y ligera tendencia alcalina del Grupo Tacaza. Están clasificadas como rocas básicas a intermedias (Grupo Tacaza) y ácidas (Grupo Palca, Sillapaca, Maure y Barroso).
- Se puede afirmar que los volcánicos Tacaza, Sillapaca y Barroso son más prospectivos, debido a la capacidad de albergar fluidos en su magma y por la capacidad de formar fases sulfurada.
- Las unidades volcánicas con alteraciones hidrotermales intensas corresponden a facies piroclásticas. La presencia de halloisita se debe a la acción del intemperismo y no forma parte de una alteración propilítica. La coloración beige en rocas silicificadas, se debe a la asimilación de rutilo durante el proceso de silicificación, donde el rutilo puede ser de origen hidrotermal (inclusiones en cuarzo secundario) o mineral accesorio en la composición original de la roca.
- En la zona de Mazo Cruz se han identificado 4 áreas prospectivas dentro del Complejo Volcánico Barroso, denominadas Aconcahua, Peñón, Orcorara y Antajave.
- La zona Aconcahua no cuenta con alteraciones hidrotermales de importancia. La anomalía de color en el Cerro Aconcahua corresponde a tobas riodacíticas meteorizadas acompañadas de devitrificación (presencia de feldespatos, cuarzo y zeolitas en agregados fibrosos radiales y textura esferulítica).
- La Zona Peñón tampoco cuenta con alteraciones importantes, sólo en el Cerro San Francisco de Peñón se pudo identificar alteraciones débiles restringidas a un control estructural.
- En la Zona Orcorara se reconoció una zona con alteración argílica avanzada de carácter penetrativo, que representa una alunitización con débil silicificación. La falta de arcillas de altas temperaturas (pirofilita, dickita, kaolinita) acompañantes a la alunita y buenos indicios de un zonamiento

hidrotermal sugieren que el origen de la alteración argílica avanzada estaría dada por una piritización intensa que fue oxidada supérgenamente.

- La Zona de Antajave encierra un sistema hidrotermal zoneado, que en gran parte está cubierto por flujos volcánicos post-hidrotermales y depósitos coluviales. Se interpreta un zonamiento a partir de un centro hidrotermal con ensamble alunita ± pirofilita, que pasa a alunita ± kaolinita (argílica avanzada) y luego a alteración fílica y propilítica. Con respecto al zonamiento del sistema hidrotermal y a los ensambles mineralógicos identificados, Antajave parece ser el área más prospectiva donde además existe un control estructural de fallas en bloques de orientación N-S y E-W.
- De acuerdo a la zonación metalogenética, se postula a la existencia de seis franjas mineralizadas dentro de región estudiada. La franja I corresponde a la Franja Epitermal Pliocena, definida por la mineralización de Au y Ag, hospedadas en unidades de los Grupos Tacaza y Barroso. Estructuralmente esta controlada por el sistema de fallas E-W (centros efusivos e hidrotermales). La franja II esta definida como la Franja Epitermal Miocena Media con mineralización Au y polimetálica. Se emplaza en unidades volcánicas de los Grupos Tacaza y Sillapaca. Presenta un control estructural de rumbo andino y la mineralización guarda una estrecha relación con los intrusivos sub-volcánicos de composición dacítica relacionados a la Caldera Ocuviri. La franja III denominada Franja Polimetálica Miocénica comprende la mineralización de Cu, Pb y Zn en rocas del Grupo Maure. La franja IV es la Franja Polimetálica asociada a intrusivos de edades comprendidas entre 22 y 19 Ma. están controlados estructuralmente por el sistema de fallas Lagunillas. La Mineralización está presente en calizas de la Formación Ayavacas, unidades de los volcánicos Tacaza y en los mismos intrusivos. La franja V corresponde a la Franja Cuprífera del Eoceno. La franja VI corresponde a la Franja Polimetálica Paleozoica y Mesocenozoicas, donde resalta localmente la mineralización de W relacionada a un intrusivo monzogranítico de 270 Ma. También se tiene mineralización de Cu asociada a un intrusivo Terciario de composición diorítica.

REFERENCIAS BIBLIOGRÁFICAS

- Alayza, F. & Paz-Soldán (1903): Informe sobre la Provincia Litoral de Moquegua y el Departamento de Tacna. Cuerpo de Ingenieros de Minas del Perú No. 3, p. 119.
- Candiotti de los Ríos, H. (1988): Progresos en el conocimiento de la Geología y Técnicas de Exploración de yacimientos de Plata y Oro en Ambientes Volcánicos Cenozoicos. – Boletín de la Sociedad Geológica del Perú, volumen 78, p. 1 – 21.
- Carlotto, V., (1998).- Évolution Andine et Raccourcissement au Niveau de Cusco (13-16°S), Pérou. Tesis Doctor, Universidad de Grenoble-Francia, p. 159.
- Carlotto, V., Carlier, G., Jaillar, E., Mascle, G., Cardenas, J., Fornari, M., Cerpa, L.,(2002).- Paleogeographic control in the evolution of Tertiary Basins in the Western Cordillera and Altiplano of Southern Peru. 5th Intern. Symp. And. Geodyn. ISAG, Toulouse, France 2002, ORSTOM ed. p. 117-120.
- Clark, A.H., Farrar, E., Kontak, D.J., Langridge, R.J., Arenas, M.J., France, L.J., McBride, S.L., Woodman, P.L., Wasteneys, H.A., Sandeman, H.A. & Douglas, D.A. (1990).- Geologic and geochronologic constraints on the metallogenic evolution of the Andes of Southeastern Peru. Econ. Geol., 85, p. 1520-1583.
- Cenzano, T (1987): Oro en Puno.- Circulo de Estudios y Promociones en Ciencias de la Tierra, Lima, CEPECT, p. 327 342.
- Chávez, J. (1996): Marco Geológico, Alteraciones y Mineralización en Rocas Volcánicas del Neógeno en el S.E. Peruano. – Simposium Internacional del Oro, 2, Lima, Soc. Nac. de Minería y Petróleo, p. 127 – 138.
- Fernández, S. & Hernández A. (1991): Cálculos y Diagramas Geoquímicos. p. 334.
- Hedenquist, J. & Lowenster, J. (1994): The Role of Magmas in the Formation of Hidrotermal ore Deposits. – Nature, volumen 370, No. 6490, p. 519 – 527.
- INGEMMET (1962): Geología de los cuadrángulos de Pachia y Palca. Boletín No. 4, Serie A, p. 82.
- INGEMMET (1965): Geología de los cuadrángulos de Maure y Antajave. Boletín No. 10, Serie A, p. 99.
- INGEMMET (1965): Geología del cuadrángulo de Tarata. Boletín No. 11, Serie A, p. 91.

- INGEMMET (1966): Geología del cuadrángulo de Ichuña. Boletín No. 14, Serie A, p. 57.
- INGEMMET (1969): Geología del cuadrángulo de Characato. Boletín No. 23, Serie A, p. 53.
- INGEMMET (1978): Geología de los cuadrángulos de Puquina, Omate, Huaitire, Mazo Cruz y Pizacoma. – Boletín No. 42, Serie A, p. 63.
- INGEMMET (1991): Procesos Formadores de Depósitos minerales en Ambientes Volcánicos. - Workshop, Lima 9 –13 de julio de 1991.
- INGEMMET (1993): Geología de la Cordillera Occidental y Altiplano al Oeste del Lago Titicaca, Sur del Perú. Boletín No. 42, Serie A, p. 257.
- INGEMMET (2000): Estudio de los Recursos Minerales del Perú, Franja No. 1. Boletín No. 8, Serie B, p. 169.
- INGEMMET (2003): Compendio de Yacimientos Minerales del Perú. Boletín No. 10, Serie B, p. 620.
- Klinck, B. A., Allison, R. A. & Hawkins, M. P. (1986).- The Geology of the Cordillera Occidental and Altiplano West Lake Titicaca, Southern: Lima, Peru, British Geol. Survey INGEMMET, p. 353.
- Mamani, M. & Ibarra, I. (2000).- Magmatismo y Tectónica Meso-Cenozoica del Altiplano y del Borde Noreste de la Cordillera Occidental de la Región de Puno. – Tesis Ing. Geólogo, UNSAAC, Cusco, p. 80.
- Mariño, J. & Thouret, J. (2003): Geología, Historia Eruptiva y Evaluación de los Peligros del Volcán Ticsani (Sur del Perú). – Boletín de la Sociedad geológica del Perú, volumen 95, p. 7 – 31.
- Morche, W., Tejada, R. & Mory, B. (1994): Alteración y Mineralización de las Anomalías Auríferas Epitermales (Sulfato – Acido) de Mazo Cruz, Puno. – Resúmenes extendidos del VIII Congreso de Geología, Lima, p. 18 – 22.
- ONERN & CORPUNO (1984): Inventario, Evaluación e Integración de los Recursos Naturales de la Micro Región de Puno. – p. 237.
- Paz, M. & Rodriguez, W. (1986): Recursos Minerales del Departamento de Puno. De Re Metallica, No. 13, p. 4 11.
- Perales, F. (1994): Glosario y Tabla de Correlación de las Unidades Estratigráficas del Perú. – p 158.
- Proyecto Multinacional Andino (2001): Mapa Metalogenético de la Región Fronteriza entre Argentina, Bolivia, Chile y Perú (14° S y 28°S), p. 96–222.

- Rytuba, J. (1994): Evolution of Volcanic and Tectonic Features in Caldera Settings and Their Importance in the Localization of Ore Deposits. – Economic Geology, volume 89, p. 1687 – 1696.
- Rollinson, H. (1993): Using Geochemical Data: Evaluation, Presentation, Interpretation. – p. 352.
- Servicio Geológico de Bolivia (1993): Mineralización y Potencial Minero del Altiplano y Cordillera Occidental. – Boletín No. 1, p. 140.
- Sempere, T. et al. (2002): Avances Geológicos en el Sur del Departamento de Puno. –Resúmenes extendidos del XI Congreso Peruano de Geología, Lima, p. 53.
- Sillitoe, R & Bonham, H. (1981): Volcanic Landforms and ore deposits. Economic Geology, volume 79, p. 1286 – 1298.
- Skarmeta, J., McClay, K. & Bertens, A. (2003): Control Estructural de los Pórfidos de Cu-Mo en el Norte de Chile: Nuevos Modelos y Modos de emplazamiento. – Pro Explo 2003, Lima.
- Torres, D. (1941): El Mercurio de Puno. Cuerpo de Ingenieros de Minas del Perú No. 128, p. 1 67.
- Tosdal, R. M., Farrar, E. & Clark, A.H. (1981).- K-Ar, Chonology of late Cenozoic
 Volcanism in the Cordillera Occidental, Southernmost Peru: Jour.
 Volcanology Geotherm. Research, v. 10, p. 157-173.
- Tosdal, R. M., Clark, A.H. & Farrar, E. (1984).- Cenozoic Polyfase Landscape and the Tectonic Evolution of the Cordillera Occidental, Southernmost Peru: Geol. Soc. America Bull., v. 95, p. 1318-1332.
- Troll, V. & Ulrich, H. (2002): Magma Mixing and Crustal Recycling Recorded in Ternary Feldespar from compositionally Zoned Peralkaline Ignimbrite "A", Gran Canaria, Canary Islands.- Journal of Petrology, volume 43, number 2, p. 243 – 270.
- U. S. Geological Survey (1992): Geology and Mineral Resources of the Altiplano and Cordillera Occidental, Bolivia. - Bulletin No. 1975, p. 365.
- Velasco, T. (2003): Procesos de Evolución Magmática en la Sierra de Chichinautzin, Cinturón Volcánico Mexicano. - Ciencia UANL, volumen VI, No. 1, México, p. 45 – 52.
- Wilson, G. (2000): Significado Tectónico de las Estructuras Menores y su Importancia para el Geólogo en el Campo. – p. 93.

- Wasteneys, H. A. & Clark, A.H. (1986).- Geological Map of the area Surrounding the Santa Barbara Silver Camp (1/50,000): Lima Peru, MINSUR S.A. Up pub. Rept.
- Wasteneys, H. A. & Clark, A.H. (1990).- Mineralogical Zoning in an Epitermal Silver Vein System, Santa Barbara Mine, Santa Lucia District, Southeastern Peru (abs): Geol. Assoc. Canada Mineralog. Assoc. Canada Program with abstracts, v. 15, p. 137.
- Wasteneys, H. A. (1990).- Epitermal Silver Mineralization Associated with a Mid-Tertiary Diatreme: Santa Barbara Mine, Santa Lucia District, Puno: Up pub. Ph.D. Thesis, Kingston, Queen's Univ., p. 367.
- Wolfgang, E. (1991): Siliceous Volcanic Centers as Guides to Mineral Exploration Review and Summary. – Economic Geology, volume 89, p. 1662 – 1686.

RELACIÓN DE ANEXOS

ANEXO I: ESTUDIOS PETROMINERAGRÁFICOS

MUESTRA: 62436, Condorasi Chico (334,508E – 8'207,896N), Grupo Tacaza. **DENOMINACIÓN DE LA ROCA**: flujo piroclástico riodacítico.

DESCRIPCIÓN MACROSCÓPICA

Color: blanco cremoso. Tamaño de grano: medio. Textura reconocible: textura porfirítica. Otras características: feldespatos alterados a arcillas.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: cuarzo, plagioclasas, feldespato potásico.
Minerales primarios accesorios: biotita.
Minerales secundarios: arcillas (haloisita), muscovita, opacos.
Minerales accesorios: rutilo.
Textura: porfirítica.

OBSERVACIONES / DESCRIPCIÓN

Piroclástico riodacítico. Textura porfirítica. Cuarzo redondeado con golfos de corrosión. Plagioclasas con macla polisintética, algunas alteradas a muscovita. Feldespato potásico alterado a arcillas (haloisita?). Biotita ausente en cortes basales con inclusiones de rutilo. Óxidos de Fe asociada a opacos. Matriz microgranular cuarzo – feldespática.

Luz transmitida, nícoles cruzados.

Luz transmitida, nícoles cruzados.

Foto izquierda, biotita (Bio) hipideomórfica. Cuarzo (Qz) redondeado con golfos de corrosión. Matriz constituida por cuarzo y feldespatos. **Foto derecha**, biotita (Bio) alterada óxidos de Fe. Feldespato potásico (Fpt-k) alterado a arcillas (haloisita?). Fenocristales de plagioclasas (Plg) rotos. Cuarzo (Qz) redondeado. Textura porfirítica.

MUESTRA: 62483, Condorasi Chico (339,354E – 8'203,371N), Grupo Tacaza. **DENOMINACIÓN DE LA ROCA**: flujo lávico andesítico.

DESCRIPCIÓN MACROSCÓPICA

Color: gris oscuro.
Tamaño de grano: fino a medio.
Textura reconocible: textura microporfirítica.
Otras características: presencia de agmidalas rellenadas por calcita.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: plagioclasas. Minerales primarios accesorios: hornblenda. Minerales secundarios: opacos, óxidos de Fe, calcita, tridimita. Minerales accesorios: ausentes. Textura: pilotaxítica.

OBSERVACIONES / DESCRIPCIÓN

Flujo lávico andesítico. Textura pilotaxítica, plagioclasas ideomórficas con macla polisintética, orientadas e intercrecidas con hornblendas. Óxidos de Fe asociadas a opacos. Presencia de agmidalas rellenas de calcita con textura coloforme, ocasionalmente acompañado con tridimita.

Luz transmitida, nícoles paralelos.Luz transmitida, nícoles cruzados.Hornblenda (Hbn) hipidiomórfica.Plagioclasas (Plg) idiomórficas orientadas en matrizcriptocristalina.Textura pilotaxítica.

MUESTRA: Pal - 1, Santa Lucía (318,000E – 8'274,000N), Grupo Palca. **DENOMINACIÓN DE LA ROCA**: ignimbrita.

DESCRIPCIÓN MACROSCÓPICA

Color: blanco cremoso.
Tamaño de grano: fino a medio.
Textura reconocible: textura porfirítica.
Otras características: presencia de fragmentos líticos.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: cuarzo, plagioclasas, feldespato potásico. Minerales primarios accesorios: biotita. Minerales secundarios: óxidos de Fe. Minerales accesorios: rutilo, circón. Textura: hialopilítica, perlítica.

OBSERVACIONES / DESCRIPCIÓN

Tufo riolítico. Fenocristales rotos de plagioclasas, feldespato potásico y cuarzo. Biotita ausente en cortes basales con inclusiones de rutilo. Inclusiones de circón en feldespato potásico. Presencia de fragmentos líticos y vidrio volcánico. Matriz criptocristalina con textura perlítica y tinción de óxidos.

Luz transmitida. nícoles cruzados.

Luz transmitida, nícoles cruzados

MUESTRA: Sill - 1, Santa Lucía (312,000E – 8'274,500N), Grupo Sillapaca. **DENOMINACIÓN DE LA ROCA**: lava dacítica.

DESCRIPCIÓN MACROSCÓPICA

Color: gris claro.
Tamaño de grano: fino a medio.
Textura reconocible: textura porfirítica.
Otras características: presencia de fragmentos líticos.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: cuarzo, plagioclasas, feldespato potásico.
Minerales primarios accesorios: piroxenos.
Minerales secundarios: óxidos de Fe, opacos.
Minerales accesorios: circón.
Textura: traquítica, porfirítica.

OBSERVACIONES / DESCRIPCIÓN

En sección delgada exhibe una textura traquítica. Fenocristales de feldespato potásico, plagioclasa, cuarzo y piróxeno. Presencia de apatito entrecrecida en la matriz. Feldespato potásico con macla carsbal, zoneado, inclusiones de circón y algunas veces entrecrecida con cuarzo desarrollando una textura tipo "rapa kiwi". Óxidos de Fe asociada a opacos. Matriz cuarzo – feldespática, feldespatos orientados.

Luz transmitida, nícoles cruzados.

Luz transmitida, nícoles cruzados

MUESTRA: 64199, Aconcahua (403,835E – 8'138,575N), Grupo Maure. **DENOMINACIÓN DE LA ROCA:** toba riodacítica.

DESCRIPCIÓN MACROSCÓPICA

Color: blanca rosáceo.
Tamaño de grano: fino a medio.
Textura reconocible: textura laminar.
Otras características: presencia de fragmentos líticos.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: cuarzo, feldespatos. Minerales primarios accesorios: hornblenda. Minerales secundarios: óxidos de Fe. Minerales accesorios: zeolitas. Textura: hialopilítica, esferulítica.

OBSERVACIONES / DESCRIPCIÓN

Toba riodacítica. Feldespatos y cuarzo hipideomórficos. Presencia de zeolitas (natrolita) en agregados fibrosos radiales y textura esferulítica. Hornblendas alteradas a óxidos de Fe. Lóbulos de vidrio. Matriz conformada por el intercrecimiento de cuarzo, feldespatos y vidrio.

Foto izquierda, zeolitas (Zeo) en agregados fibrosos radiales. Textura esferulítica. **Foto derecha**, hornblenda (Hbn) alterada óxidos de Fe, dentro de una matriz constituida por vidrio, cuarzo y feldespatos. Textura hialopilítica.

MUESTRA: 64207, Aconcahua (404,980E – 8'140,150N), Grupo Maure. **DENOMINACIÓN DE LA ROCA:** toba friable.

DESCRIPCIÓN MACROSCÓPICA

Color: blanca. Tamaño de grano: fino a medio. Textura reconocible: textura laminar. Otras características: aspecto devitrificado.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: feldespatos. Minerales primarios accesorios: biotita. Minerales secundarios: óxidos de Fe. Minerales accesorios: zeolitas, vidrio. Textura: hialopilítica, felsítica.

OBSERVACIONES / DESCRIPCIÓN

Toba probable composición riodacítica. Plagioclasas ideomórficas con macla polisintética. Lóbulos de vidrio dentro de matriz cuarzo-feldespática e intercrecidas con zeolitas. Biotitas ligeramente alteradas a óxidos.

Plagioclasa (Plg) con macla polisintética. Matiz constituida por cuarzo y feldespato. Textura felsítica.

MUESTRA: 64323, Pichacani (375,874E – 8'225,938N), Grupo Maure. **DENOMINACIÓN DE LA ROCA:** toba retrabajada.

DESCRIPCIÓN MACROSCÓPICA

Color: gris violáceo. Tamaño de grano: fino a medio. Textura reconocible: textura tobácea. Otras características: presencia de fragmentos líticos.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: plagioclasas. Minerales primarios accesorios: ausentes. Minerales secundarios: calcita. Minerales accesorios: zeolitas. Textura: felsofídica, esferulítica.

OBSERVACIONES / DESCRIPCIÓN

Toba. Plagioclasas hipideomórficas con macla polisintética. Cavidades y venilla rellena de calcita intercrecida con zeolitas (natrolita) en agregados fibrosos radiales con textura esferulítica. Fragmentos líticos redondeados de composición andesítica. Matriz feldespática con pseudomorfos de feldespatos reemplazados por arcillas (haloisita?), textura felsofídica.

Luz transmitida, nícoles cruzados. Foto izquierda, cavidades rellenas por calcita (Cac). Plagioclasas (Plg) hipideomórficas orientadas. Textura pilotaxítica. Foto derecha, venilla de calcita (Cac) intercrecida con zeolitas (Zeo) en agregados fibrosos radiales y textura esferulítica. Matriz criptocristalina.

MUESTRA: 64191, Aconcahua (403,185E – 8'140,084N), Grupo Barroso. **DENOMINACIÓN DE LA ROCA:** flujo lávico andesítico.

DESCRIPCIÓN MACROSCÓPICA

Color: gris oscuro. Tamaño de grano: fino. Textura reconocible: fluidal. Otras características: pasta muy fina

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: plagioclasa. Minerales primarios accesorios: hornblenda. Minerales secundarios: ausentes. Minerales accesorios: circón. Textura: pilotaxítica.

OBSERVACIONES / DESCRIPCIÓN

Lávico andesítica. Plagioclasas ideomórficas con macla polisintética orientadas e intercrecidas con hornblendas, estas con bordes corroídos. Inclusiones de circón en plagioclasas. Matriz criptocristalina. Textura pilotaxítica.

Luz transmitida, nícoles paralelosLuz transmitida, nícoles cruzados.Plagioclasas (PLG) con macla polisintética y orientadas. Hornblenda (Hbn) ideomórficas enmatriz criptocristalina. Textura pilotaxítica.

MUESTRA: 64190, Aconcahua (403,710E – 8'137,375N), Grupo Barroso. **DENOMINACIÓN DE LA ROCA:** piroclástico traquítico.

DESCRIPCIÓN MACROSCÓPICA

Color: gris oscuro. Tamaño de grano: fino a medio. Textura reconocible: tufácea. Otras características: fragmentos líticos y lapilli.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: plagioclasa, cuarzo, sanidina. Minerales primarios accesorios: piroxeno, biotita. Minerales secundarios: ausentes. Minerales accesorios: circón, rutilo. Textura: pilotaxítica.

OBSERVACIONES / DESCRIPCIÓN

Piroclástico traquítico. Cuarzo con bordes corroídos. Fenocristales de plagioclasas rotos, algunos parcialmente orientadas. Inclusiones de circón en plagioclasas y ocasionalmente en sanidina. Piroxeno ideomórfico. Biotitas ausentes en cortes basales con inclusiones de rutilo con textura sajenítica. Matriz constituida por feldespatos, vidrio y tinción de óxidos.

Luz transmitida, nícoles cruzados

Luz transmitida, nícoles cruzados

Foto izquierda, Fenocristal de sanidina (San) zoneada y alterada a muscovita (Musc). **Foto derecha**, plagioclasas (Plg) parcialmente orientadas y macladas. Biotita (Bio) hipideomórfica. Cuarzo (Qz) sub–anguloso a redondeado. Piroxeno (Prx) en matriz cuarzo-feldespática. Textura felsítica – pilotaxítica. MUESTRA: 62541, Peñon (410,053E – 8'135,592N), Grupo Barroso. DENOMINACIÓN DE LA ROCA: brecha volcánica.

DESCRIPCIÓN MACROSCÓPICA

Color: blanco con tinte verdoso.
Tamaño de grano: fino a medio.
Textura reconocible: brechoide.
Otras características: fragmentos líticos.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: plagioclasa. Minerales primarios accesorios: hornblendas. Minerales secundarios: arcillas, óxidos de Fe y Ti. Minerales accesorios: ausentes. Textura: brechoide.

OBSERVACIONES / DESCRIPCIÓN

Brecha volcánica. Hornblenda parcialmente alterada a óxidos de Fe con exsolución de óxidos de Ti. Moldes de feldespatos lixiviados. Fragmentos de vidrio intrecrecidos con pómez. Matriz conformada por plagioclasas xenomórficas ligeramente alteradas a arcillas.

Luz transmitida, nícoles paralelos.Luz transmitida, nícoles cruzados.Clastos angulosos de vidrio.Matriz constituida por cuarzo, feldespatos, arcillas(haloisita?), vidrio e impregnación de óxidos de Fe.

MUESTRA: 62540, Peñón (410,134E – 8'135,615N), Grupo Barroso. DENOMINACIÓN DE LA ROCA: piroclásto.

DESCRIPCIÓN MACROSCÓPICA

Color: gris claro. Tamaño de grano: fino a medio. Textura reconocible: tufácea. Otras características: fragmentos de vidrio.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: plagioclasa, cuarzo. Minerales primarios accesorios: hornblenda, augita. Minerales secundarios: óxidos de Fe. Minerales accesorios: ausentes. Textura: hialopilítica.

OBSERVACIONES / DESCRIPCIÓN

Piroclasto de composición andesítica. Fenocristales de plagioclasas, algunos rotos. Cuarzo con golfos de corrosión. Hornblenda y augita hipideomórficas, intercrecidas en matriz vítrea. Tinción de óxidos. Clastos de pómez. Textura hialopilítica.

Luz transmitida. nícoles paralelos. Luz transmitida. nícoles cruzados. Clasto de pómez. Plagioclasas (Plg) con macla polisintética, cuarzo (Qz) con golfos de corrosión. Augita (Aug) y hornblenda (Hbn) hipideomórficas. Matriz vítrea. Textura hialopilítica. MUESTRA: 62505, Orcorara (417,572E – 8'132,093N), Grupo Barroso. DENOMINACIÓN DE LA ROCA: lava traquítica.

DESCRIPCIÓN MACROSCÓPICA

Color: gris violáceo oscuro. Tamaño de grano: fino a medio. Textura reconocible: microporfirítica. Otras características: fragmentos de vidrio.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: plagioclasa. Minerales primarios accesorios: hornblenda. Minerales secundarios: opacos, óxidos de Fe. Minerales accesorios: circón. Textura: traquítica.

OBSERVACIONES / DESCRIPCIÓN

Lava traquítica. Plagioclasas ideomórficas zoneadas, orientadas e intercrecidas con hornblendas. Inclusiones de circón en plagioclasas. Matriz cuarzo – feldespática. Tinción de óxidos asociadas a opacos.

Luz transmitida, nícoles paralelos.Luz transmitida, nícoles cruzados.Plagioclasas idiomórficas orientadas y zoneadas.Venilla de cuarzo (extremo inferiorizquierdo).Matriz constituida por feldespatos y cuarzo.Textura pilotaxítica.

MUESTRA: 67062, Antajave (403,555E – 8'124,712N), Grupo Barroso. DENOMINACIÓN DE LA ROCA: piroclásto.

DESCRIPCIÓN MACROSCÓPICA

Color: blanco rosáceo. Tamaño de grano: fino a medio. Textura reconocible: tobácea. Otras características: fragmentos líticos.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: plagioclasa. Minerales primarios accesorios: hornblenda. Minerales secundarios: opacos, óxidos de Fe. Minerales accesorios: circón. Textura: felsofídica.

OBSERVACIONES / DESCRIPCIÓN

Toba dacítica. Textura felsofídica, plagioclasas hipideomórficas con inclusiones de circón, algunas débilmente alteradas a arcillas (haloisita?). Hornblendas alteradas a opacos y óxidos de Fe. Fragmentos líticos andesíticos y de vidrio. Matriz de arcillas (haloisita?, montmorillonita?), cuarzo y feldespatos.

Luz transmitida, nícoles paralelos. Luz transmitida, nícoles cruzados.

Hornblenda (Hbn) hipidiomórfica alterada a óxidos de Fe. Feldespatos (Fpt) alterado a arcillas (haloisita?). Matriz compuesta por feldespatos, cuarzo y vidrio. Textura felsofídica.

MUESTRA: 67173, Pichacani (371,355E – 8'226,012N), Grupo Barroso. **DENOMINACIÓN DE LA ROCA:** lava traquiandesítica.

DESCRIPCIÓN MACROSCÓPICA

Color: gris violáceo. Tamaño de grano: medio a grueso. Textura reconocible: porfirítica. Otras características: megacristales de sanidina.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: plagioclasa, sanidina. Minerales primarios accesorios: hornblenda. Minerales secundarios: óxidos de Fe. Minerales accesorios: circón. Textura: traquítica, porfirítica.

OBSERVACIONES / DESCRIPCIÓN

Flujo lávico Traquiandesítico. Textura traquítica–porfirítica. Plagioclasas orientadas con macla polisintética en matriz criptocristalina. Megacristales de sanidina con inclusiones de circón. Hornblendas ideomórficas, algunas débilmente alteradas a óxidos de Fe.

Luz transmitida, nícoles paralelos.Luz transmitida, nícoles cruzados.Hornblenda (Hbn) hipidiomórfica. Sanidina (San) con bordes corroídos. Plagioclasas (Plg)macladas y orientadas. Matriz criptocristalina. Textura traquítica – porfirítica.

MUESTRA: 64150, Pichacani (371,220E – 8'227,380N), Grupo Barroso. **DENOMINACIÓN DE LA ROCA:** toba riodacítica.

DESCRIPCIÓN MACROSCÓPICA

Color: blanco. Tamaño de grano: fino a medio. Textura reconocible: laminar. Otras características: presencia de cuarzo granular.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: plagioclasa, sanidina, cuarzo. Minerales primarios accesorios: ausentes. Minerales secundarios: arcillas, cuarzo (Qz II). Minerales accesorios: circón. Textura: porfirítica.

OBSERVACIONES / DESCRIPCIÓN

Toba riodacítica. Textura porfirítica. Feldespato potásico (sanidina) maclada y con inclusiones de circón. Cuarzo primario con golfo de corrosión e intercrecido con plagioclasa con macla polisintética. Cuarzo secundario rellenando pseudomorfos de feldespatos y cavidades. Matriz constituida por cuarzo feldespatos y arcillas.

Luz transmitida, nícoles cruzados.

Luz transmitida, nícoles cruzados

Foto izquierda, cuarzo primario (Qz) con borde corroído e intercrecida con plagioclasa (Plg) con macla polisintética. Cuarzo secundario (Qz –II) en cavidades. **Foto derecha**, feldespato potásico (Fpt-k) con macla carsbalt. Cuarzo primario (Qz) redondeado. Cuarzo secundario (Qz – II) rellenando cavidades. Matriz constituida por cuarzo-feldespato. Textura porfirítica.

MUESTRA: 68245, Pichacani (369,430E – 8'228,643N), Grupo Barroso. DENOMINACIÓN DE LA ROCA: toba dacítica.

DESCRIPCIÓN MACROSCÓPICA

Color: blanco con tinte verdoso.
Tamaño de grano: fino a medio.
Textura reconocible: porfirítica.
Otras características: presencia de vidrio.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: sanidina, cuarzo. Minerales primarios accesorios: biotita. Minerales secundarios: muscovita. Minerales accesorios: rutilo. Textura: porfirítica.

OBSERVACIONES / DESCRIPCIÓN

Toba de cristales con composición dacítica. Textura porfirítica. Sanidina con extinsión ondulante con zoneamientos, algunas alteradas a muscovita. Cuarzo con golfos de corrosión. Biotita con inclusiones de rutilo. Matriz criptocristalina.

Luz transmitida, nícoles cruzados.Luz transmitida, nícoles cruzados.Foto izquierda, biotita (Bio) hipideomórfica. Cuarzo (Qz) con golfo de corrosión. Sanidina(San) ideomórfica. Matriz criptocristalina.Foto derecha, sanidina (San) zoneada yalterada a muscovita (Musc). Textura porfirítica.

ANEXO II: PETROMINERAGRAFÍA DE ROCAS ALTERADAS

MUESTRA: 68248, Pichacani (368,455E – 8'228,314N), Grupo Barroso. **DENOMINACIÓN DE LA ROCA**: Lava andesítica moderadamente alterada.

DESCRIPCIÓN MACROSCÓPICA

Color: blanco grisáceo.
Tamaño de grano: fino.
Textura reconocible: vestigios de textura porfirítica.
Otras características: feldespatos alterados a arcillas, máficos oxidados.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: plagioclasas.
Minerales primarios accesorios: hornblenda.
Minerales secundarios: cuarzo II (Qz II) granular fino, arcillas (haloisita) y muscovita.
Minerales accesorios: ausentes.
Textura: microgranular, porfirítica.

OBSERVACIONES / DESCRIPCIÓN

Flujo lávico, probable composición andesítica, presencia de pseudomorfos de plagioclasas alteradas a haloisita, hornblenda ideomórfica alterada a muscovita, cortada por venilla de cuarzo III (Qz III). Matriz fina con mezcla de cuarzo II (Qz II), óxidos de Fe y arcillas (haloisita?).

Tipo de alteración: propilítica.

Luz transmitida, nícoles paralelos Luz transmitida, nícoles cruzados

Hornblenda (Hbn) hipidiomórfica alterada a muscovita, cortada por venilla de cuarzo III (Qz III). Fenocristal de plagioclasa (Plg) reemplazado por haloisita. Matriz fina con mezcla de cuarzo II (Qz II) y arcillas.

MUESTRA: 67170, Pichacani (368,647E – 8'227,476N), Grupo Barroso. DENOMINACIÓN DE LA ROCA: Lava traquiandesítica alterada.

DESCRIPCIÓN MACROSCÓPICA

Color: blanco cremoso, beige.
Tamaño de grano: fino.
Textura reconocible: vestigios de textura porfirítica.
Otras características: feldespatos alterados a arcillas, opacos oxidados.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: cuarzo I. Minerales primarios accesorios: ausentes. Minerales secundarios: cuarzo II (Qz II) granular fino, arcillas. Minerales accesorios: opacos, rutilo. Textura: microgranular, porfirítica.

OBSERVACIONES / DESCRIPCIÓN

Flujo lávico, probable composición traquiandesítica, presencia de cuarzo I (Qz I) con golfos de corrosión. Moldes de feldespatos con kaolinita (kao). Cuarzo III (Qz III) con inclusiones de rutilo. Matriz con mezcla de cuarzo II y kaolinita. Inclusiones de óxidos asociados a opacos. Agregados de óxidos de Ti asociados a los óxidos de Fe y al cuarzo III.

Tipo de alteración: argílica.

Luz transmitida, nícoles cruzados. Luz transmitida, nícoles cruzados Foto izquierda, cuarzo I primario(Qz I) con golfos de corrosión, matriz con cuarzo II (Qz II) granular fino. Foto derecha, cuarzo III (Qz III), forman agregados que parecen parte de moldes de fenocristales. Matriz con mezcla de cuarzo II (Qz II) y kaolinita (Kao).

MUESTRA: 68241, Pichacani (369,488E – 8'228,257N), Grupo Barroso. **DENOMINACIÓN DE LA ROCA:** Traquiandesita alterada.

DESCRIPCIÓN MACROSCÓPICA

Color: blanco cremoso.

Tamaño de grano: fino a medio.

Textura reconocible: vestigios de textura porfirítica.

Otras características: feldespatos alterados a arcillas, abundante cuarzo grano fino con impregnaciones óxidos de Fe.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: cuarzo I. Minerales primarios accesorios: probables moldes de ferromagnesianos. Minerales secundarios: cuarzo II (Qz II) granular fino, arcillas. Minerales accesorios: opacos. Textura: microgranular, porfirítica.

OBSERVACIONES / DESCRIPCIÓN

Flujo lávico, probable composición traquiandesítica, pseudomorfos de feldespatos alterados a kaolinita. Moldes probablemente de ferromagnesianos con cuarzo II (Qz II). Matriz con agregado fino de cuarzo II y mezclada con kaolinita. Inclusiones de óxidos de Fe asociados a opacos.

Tipo de alteración: argílica.

Luz transmitida, nícoles paralelos Feldespato alterado a arcilla (kaolinita). Luz transmitida, nícoles cruzados

MUESTRA: 68027, Pichacani (367,825E – 8'227,405N), Grupo Barroso. **DENOMINACIÓN DE LA ROCA:** tufo lítico alterado.

DESCRIPCIÓN MACROSCÓPICA

Color: blanco rosáceo, beige.
Tamaño de grano: fino.
Textura reconocible: vestigios de textura tufácea.
Otras características: roca muy alterada con matriz de alunita, cuarzo y óxidos de Fe.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: cuarzo I. Minerales primarios accesorios: ausentes. Minerales secundarios: cuarzo II (Qz II) granular fino, cuarzo III (Qz III), alunita. Minerales accesorios: rutilo. Textura: microgranular, tufácea.

OBSERVACIONES / DESCRIPCIÓN

Probable tufo lítico. Fenocristales de cuarzo I (Qz I) con golfos de corrosión, sobrecrecidos por cuarzo II (Qz II). Moldes (pómez?) rellenos por cuarzo III, con presencia de inclusiones de rutilo. Matriz fina con mezcla de cuarzo II, óxidos de Fe y alunita. En la matriz moldes alargados y pequeños de probable vidrio con cuarzo II.

Qz I Qz II Aln 500 U Qz III QZ IIII QZ IIII QZ III QZ III QZ IIII QZ IIII QZ IIII QZ IIIII QZ IIIII QZ IIII QZ IIII QZ IIII QZ IIII QZ IIIII Q

Tipo de alteración: argílica avanzada.

Luz transmitida, nícoles cruzados Luz transmitida, nícoles cruzados

Foto izquierda, cuarzo I (Qz I) corroído y sobrecrecido por cuarzo II (Qz II), fractura rellena de alunita (Aln) con inclusiones de óxidos de Fe. Foto derecha, alunita (Aln) tabular, molde (pómez) con cuarzo III (Qz III).

MUESTRA: 68069, Pichacani (367,477E – 8'226,365N), Grupo Barroso. **DENOMINACIÓN DE LA ROCA:** tufo lítico alterado.

DESCRIPCIÓN MACROSCÓPICA

Color: blanco rosáceo, beige.
Tamaño de grano: medio.
Textura reconocible: vestigios de textura tufácea.
Otras características: roca muy alterada con matriz de alunita y cuarzo.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: cuarzo I. Minerales primarios accesorios: ausentes. Minerales secundarios: cuarzo II (Qz II) granular fino, cuarzo III (Qz III), alunita. Minerales accesorios: ausentes. Textura: microgranular, tufácea.

OBSERVACIONES / DESCRIPCIÓN

Toba lítica. Fenocristales de cuarzo I corroídos. Moldes de fragmentos líticos con cuarzo II y alunita. Matriz constituida por mezcla de cuarzo II, cuarzo III con textura en cresta y alunita fina. Fractura rellena de alunita plumosa gruesa.

Tipo de alteración: argílica avanzada.

Luz transmitida, nícoles cruzadosLuz transmitida, nícoles cruzadosFoto izquierda, alunita plumosa (Aln) brechando cuarzo III (Qz III) con textura en cresta.Foto derecha, alunita (Aln) tabular intercrecida con cuarzo III (Qz – III).

MUESTRA: 62556, Pichacani (368,418E – 8'228,221N), Grupo Barroso. **DENOMINACIÓN DE LA ROCA:** volcánico fuertemente silicificado.

DESCRIPCIÓN MACROSCÓPICA

Color: gris claro.
Tamaño de grano: fino.
Textura reconocible: vestigios de textura porfirítica.
Otras características: roca compuesta por sílice masiva con tinte gris y cuarzo fino.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: cuarzo I. Minerales primarios accesorios: ausentes. Minerales secundarios: cuarzo II (Qz II), cuarzo III (Qz III). Minerales accesorios: ausentes. Textura: microgranular, porfirítica.

OBSERVACIONES / DESCRIPCIÓN

Probable flujo lávico con silicificación fuerte, cuarzo I (Qz I) con golfos de corrosión dentro de matriz microgranular de cuarzo II. Moldes de fenocristales (feldespatos?) rellenos de cuarzo II y sobrecrecidos por cuarzo III (Qz III). Agregados de cuarzo III (Qz III) que parecen parte de moldes de fenocristales.

Tipo de alteración: silicificación fuerte.

Luz transmitida, nícoles cruzados

Luz transmitida, nícoles cruzados

Foto izquierda, cuarzo I (Qz I) con golfos de corrosión. Matriz conformada por cuarzo II (Qz II) y sobrecrecida por cuarzo III (Qz III). Agregados de cuarzo III en probable molde de fenocristal. Foto derecha, molde de fenocristal (feldespato?) con cuarzo II (Qz II).

MUESTRA: 67127, Pichacani (368,475E – 8'228,290N), Grupo Barroso. **DENOMINACIÓN DE LA ROCA:** volcánico fuertemente silicificado.

DESCRIPCIÓN MACROSCÓPICA

Color: gris claro. Tamaño de grano: fino. Textura reconocible: granular. Otras características: roca compuesta por cuarzo fino con tono gris.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: cuarzo I. Minerales primarios accesorios: ausentes. Minerales secundarios: cuarzo II (Qz II), cuarzo III (Qz III). Minerales accesorios: ausentes. Textura: microgranular.

OBSERVACIONES / DESCRIPCIÓN

Silicificación intensa penetrativa. Presencia de cuarzo I (Qz I) sub – redondeado con golfos de corrosión. Matriz microgranular de cuarzo II (Qz II), sobrecrecida por cuarzo III (Qz III). Tinción de óxidos de Fe.

Tipo de alteración: silicificación.

Luz transmitida, nícoles cruzados Luz transmitida, nícoles cruzados Foto izquierda, matriz de cuarzo II (Qz II), sobrecrecido por cuarzo III (Qz III). Foto derecha, cuarzo I (Qz I) sub – redondeado dentro de matriz de cuarzo II (Qz II).
MUESTRA: 67090, Pichacani (368,207E – 8'226,921N), Grupo Barroso. DENOMINACIÓN DE LA ROCA: volcánico fuertemente silicificado, textura "Vuggy Silica".

DESCRIPCIÓN MACROSCÓPICA

Color: gris claro.

Tamaño de grano: fino.

Textura reconocible: cavernosa.

Otras características: roca compuesta por sílice tono gris, poros mm irregulares con azufre nativo y cuarzo fino.

DESCRIPCIÓN MICROSCÓPICA

Minerales primarios: cuarzo I. Minerales primarios accesorios: ausentes. Minerales secundarios: cuarzo II (Qz II), cuarzo III (Qz III). Minerales accesorios: ausentes. Textura: microgranular, porfirítica.

OBSERVACIONES / DESCRIPCIÓN

Volcánico fuertemente silicificado. Textura tipo "Vuggy Silica", poros irregulares con relleno de cuarzo III (Qz III) a manera de microgeodas. Cuarzo I (Qz I) sub – redondeado. Molde de fenocristal (feldespato?) con cuarzo II (Qz II). Matriz microgranular de cuarzo II (Qz II).

Tipo de alteración: silicificación.

Luz transmitida, nícoles cruzados Luz transmitida, nícoles cruzados

Foto izquierda, textura "Vuggy Silica" con microgeodas de cuarzo III (Qz III), matriz de cuarzo II (Qz II). Foto derecha, cuarzo I (Qz I), molde de fenocristal con cuarzo II (Qz II).

ANEXO III: RELACIÓN DE TABLAS

Tabla No. 1: Edades radiométricas de rocas intrusivas

N°	Este	Norte	Hoja 1/100.000	Código	Tipo roca	Material datado (*)	Método	Edad	Sigma	Edad2	Referencia	Año
1	337000	8313800	Ocuviri	31U	Pórfido	WR	K/Ar	19.50	± 0.90	19.5 ± 0.90	Klinck et al.	1986
2	336974	8333720	Ocuviri	31U	Granodiorita	WR	K/Ar	23.50	± 0.90	23.5 ± 0.90	Bonhomme et al.	1985
3	325035	8340858	Ocuviri	31U	Granodiorita	WR	K/Ar	23.60	± 0.90	23.6 ± 0.90	Bonhomme et al.	1985
4	333521	8315254	Ocuviri	31U	Pórfido	WR	K/Ar	24.30	± 1.00	24.3 ± 1.00	Bonhomme et al.	1985
5	336974	8333720	Ocuviri	31U	Pórfido	Kf	K/Ar	26.10	± 0.70	26.1 ± 0.70	Bonhomme et al.	1985
6	336974	8333720	Ocuviri	31U	Pórfido	Bio	K/Ar	27.80	± 0.60	27.8 ± 0.60	Bonhomme et al.	1985
7	336974	8333720	Ocuviri	31U	Pórfido	Hbn	K/Ar	28.20	± 1.50	28.2 ± 1.50	Bonhomme et al.	1985
8	351923	8335938	Juliaca	31V	Pórfido	Bio	K/Ar	13.70	± 1.10	13.7 ± 1.10	Klinck et al.	1986
9	348951	8329005	Juliaca	31V	Granodioritadiorita	Bio	K/Ar	15.20	± 1.40	15.2 ± 1.40	Klinck et al.	1986
10	351919	8336584	Juliaca	31V	Intrusivo riolítico	Bio	K/Ar	15.40	± 0.40	15.4 ± 0.40	Clark et al.	1990
11	336987	8331876	Juliaca	31V	Granito	Bio	K/Ar	19.00	± 1.10	19 ± 1.10	Bonhomme et al.	1985
12	336987	8331876	Juliaca	31V	Granito	WR	K/Ar	22.00	± 0.90	22 ± 0.90	Bonhomme et al.	1985
13	336987	8331876	Juliaca	31V	Granito	Kf	K/Ar	23.10	± 1.10	23.1 ± 1.10	Bonhomme et al.	1985
14	340571	8331900	Juliaca	31V	Granodiorita	WR	K/Ar	28.10	± 1.00	28.1 ± 1.00	Bonhomme et al.	1985
15	340571	8331900	Juliaca	31V	Granodiorita	Plg	K/Ar	28.40	± 0.50	28.4 ± 0.50	Bonhomme et al.	1985
16	340571	8331900	Juliaca	31V	Granodiorita	Kf	K/Ar	28.70	± 1.50	28.7 ± 1.50	Bonhomme et al.	1985
17	378500	8331000	Juliaca	31V	Tonalita	Bio	K/Ar	236.00	± 6.00	236 ± 6.00	INGEMMET	1993
18	331246	8259297	Lagunillas	32U	Granito porfirítico	Bio	Integrated Ar/Ar	6.47	± 1.27	6.47 ± 1.27	Wasteneys	1990
19	331246	8259297	Lagunillas	32U	Granito porfirítico	Bio	Integrated Ar/Ar	6.97	± 0.50	6.97 ± 0.50	Wasteneys	1990
20	327017	8267257	Lagunillas	32U	Riolita	Kf	Integrated Ar/Ar	30.28	± 0.61	30.28 ± 0.61	Wasteneys	1990
21	334000	8272000	Lagunillas	32U	Dacita	Bio	K/Ar	104.00	± 4.00	104 ± 4.00	INGEMMET	1993
22	358891	8246609	Puno	32V	Dique dacítico	Msc	Integrated Ar/Ar	19.03	± 0.18	19.03 ± 0.18	Clark et al.	1990
23	370778	8248924	Puno	32V	Granito	WR	K/Ar	22.50	± 0.50	22.5 ± 0.50	Bellon	1986
24	370778	8248924	Puno	32V	Diorita	WR	K/Ar	26.60	± 1.00	26.6 ± 1.00	Bellon	1986
25	345000	8277000	Puno	32V	Monzogranito	Bio	K/Ar	270.00	± 0.00	270.0 ± 0.0	Kontak et al.	1985

Tabla No. 2: Relación de Minas y Prospectos

N٥	Mina	Este	Norte	Metalogenia	Estado	Тіро	Hoja	Código	o Referencia			
1	Cerro del Inca Nº 17	390540	8247492	Ag	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno			
2	Teresa	405857	8145103	Ag	Inactivo	Filoneano	Mazo Cruz	34-x	Boletín hoja de Huaitire, plano geológico, inventario de la región Puno			
3	La Minera	381690	8325688	Ag, Cu	Prospecto inactivo	Filoneano	Juliaca	31-v	Boletín hoja de Juliaca, plano geológico, inventario de la región Puno			
4	Berenguela	332822	8263612	Ag, Cu	Inactivo	Manto	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno			
5	Tacaza	315518	8271316	Ag, Cu, Pb	Inactivo	Cuerpo	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno			
6	Carmen	317608	8300842	Ag, Pb	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno			
7	Desamparados	319066	8301315	Ag, Pb	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno			
8	Esperanza	319297	8302239	Ag, Pb	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno			
9	Julia	320495	8301633	Ag, Pb	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno			
10	Patriarca	318384	8300787	Ag, Pb	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno			
11	Socavón	320797	8301082	Ag, Pb	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno			
12	Huascar № 3	326811	8255267	Ag, Pb	Inactivo	Filoneano	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno			
13	Huascar Dos	383458	8259319	Ag, Pb	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno			
14	La Virgen de La Candelaria	369986	8246891	Ag, Pb	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno			
15	Pomperia	391171	8239997	Ag, Pb	Inactivo	Filoneano, Manto	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno			
16	Elvira	333843	8152591	Ag, Pb	Prospecto inactivo	Filoneano	Omate	34-u	Boletín hoja de Omate, plano geológico, informe de rec.Tacna y Moquegua			
17	Natividad	411170	8148814	Ag, Pb	Inactivo	Filoneano	Mazo Cruz	34-x	Boletín hoja de Huaitire, plano geológico, inventario de la región Puno			
18	Aguila Blanca	313828	8274069	Ag, Pb, Cu	Inactivo	Filoneano	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno			
19	Quello Quello	336188	8251034	Ag, Pb, Cu	Inactivo	Filoneano	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno			
20	Urano Uno	360866	8235218	Ag, Pb, Cu	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno			
21	Copilaca	312566	8159854	Ag, Pb, Cu	Inactivo	Filoneano	Omate	34-u	Boletín hoja de Omate, plano geológico, informe de rec.Tacna y Moquegua			
22	Natividad Nº 17	406733	8147873	Ag, Pb, Cu	Inactivo	Manto	Mazo Cruz	34-x	Boletín hoja de Huaitire, plano geológico, inventario de la región Puno			
23	Ultima Hora	397814	8155208	Ag, Pb, Cu	Inactivo	Manto	Mazo Cruz	34-x	Boletín hoja de Huaitire, plano geológico, inventario de la región Puno			
24	Mina Cerro Colpanto	306536	8148181	Ag, Pb, Cu, Zn	Inactivo	Filoneano	Omate	34-u	Estudio de los recursos minerales del Perú - Franja N°1, INGEMMET, 2000.			
25	Jefecito 1	320945	8320694	Ag, Pb, Zn	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno			
26	Jefecito 2	320945	8320694	Ag, Pb, Zn	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno			
27	Marias de Puno	337109	8314357	Ag, Pb, Zn	Inactivo	Manto	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno			
28	Copacabana Uno	330407	8252067	Ag, Pb, Zn	Inactivo	Filoneano	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno			
29	Cristo Rey	327724	8252692	Ag, Pb, Zn	Prospecto inactivo	Filoneano	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno			
30	Don Jorge	334807	8260860	Ag, Pb, Zn	Inactivo	Filoneano	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno			
31	El Corregidor	333907	8261776	Ag, Pb, Zn	Inactivo	Filoneano	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno			
32	Huascar	330386	8254926	Ag, Pb, Zn	Prospecto inactivo	Filoneano	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno			
33	Jupiter	336673	8274705	Ag, Pb, Zn	Inactivo	Manto	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno			
34	Chupica	366202	8238017	Ag, Pb, Zn	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno			
35	Enrique Y Jessica	366640	8239311	Ag, Pb, Zn	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno			
36	Santa Mestres	358202	8247373	Ag, Pb, Zn	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno			
37	6 de Agosto	312424	8182941	Ag, Pb, Zn	Prospecto inactivo	Filoneano	Ichuña	33-u	Boletín hoja de Ichuña, plano geológico			
38	Navidad	298040	8179030	Ag, Pb, Zn	Prospecto inactivo	Filoneano	Ichuña	33-u	Boletín hoja de Ichuña, plano geológico			
39	Navidad 1955	312886	8177534	Ag, Pb, Zn	Prospecto inactivo	Filoneano	Ichuña	33-u	Boletín hoja de Ichuña, plano geológico			
40	Cacachara	386064	8157511	Ag, Pb, Zn, Cu	Inactivo	Filoneano	Huaitire	34-v	Boletín hoja de Huaitire, plano geológico, inventario de la región Puno			
41	Mina Cinco	339217	8268730	Ag, Pb, Zn, Cu Au	Prospecto inactivo	Manto	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno			
42	Copacabana	329223	8251259	Ag, Zn, Cu	Inactivo	Filoneano	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno			
43	Los Apostoles	396915	8169648	Ag, Zn, Pb, Cu Au	Inactivo	Filoneano	Mazo Cruz	34-x	Boletín hoja de Huaitire, plano geológico, inventario de la región Puno			
44	Pavico	383454	8161255	Ag, Zn, Pb, Cu, Au	Inactivo	Filoneano, Manto	Huaitire	34-v	Estudio de los recursos minerales del Perú - Franja N°1, INGEMMET, 2000.			
45	Proyecto La Rescatada	304000	8313000	Au	Desarrollado	Diseminado	Ocuviri	31-u	Minas y Petróleo, 2002.			
46	Aruntani (Santa Rosa)	388000	8159000	Au	Desarrollo	Diseminado	Huaitire	34-v	Ministerio de Energía y Minas, 2003.			

Tabla No. 2: Relación de Minas y Prospectos

N٥	Mina	Este	Norte	Metalogenia	Estado	Tipo	Hoja	Código	Referencia		
47	Aruntani (Tucari)	372600	8167800	Au	Desarrollo	Diseminado	Huaitire	34-v	Ministerio de Energía y Minas, 2003.		
48	Mazo Cruz (Sector Japo)	439000	8130000	Au, Ag, As, Sb, Pb	Prospecto Inactivo	Diseminado	Mazo Cruz	34-x	Estudio de los recursos minerales del Perú - Franja N°1, INGEMMET, 2000.		
49	Mazo Cruz (Sector Yulaca)	440000	8134500	Au, Ag, As, Sb, Pb	Prospecto Inactivo	Diseminado	Mazo Cruz	34-x	Estudio de los recursos minerales del Perú - Franja N°1, INGEMMET, 2000.		
50	Mina Blanca	303039	8177432	Au, Pb, Zn, Cu	Inactivo	Filoneano	Ichuña	33-u	Estudio de los recursos minerales del Perú - Franja N°1, INGEMMET, 2000.		
51	Tacaza	303332	8285509	Cu	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno		
52	Jesus Maria	348956	8215777	Cu	Prospecto inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno		
53	Los Calatos	286222	8130000	Cu	Prospecto inactivo	Porfido	Omate	34-u	Boletín hoja de Omate, plano geológico, informe de rec.Tacna y Moquegua		
54	Tonalita Nahuira	372652	8297061	Cu Au	Prospecto inactivo	Filoneano	Juliaca	31-v	Boletín hoja de Juliaca, plano geológico, inventario de la región Puno		
55	Luz de Oro	355685	8245635	Cu Au	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
56	Luz de La Breña	297475	8331755	Cu, Ag	Prospecto inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno		
57	Napoleon Bonaparte II	328778	8290692	Cu, Ag	Prospecto inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno		
58	Puno N° 2	294079	8320474	Cu, Ag	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno		
59	Urano	391184	8331634	Cu, Ag	Prospecto inactivo	Filoneano	Juliaca	31-v	Boletín hoja de Juliaca, plano geológico, inventario de la región Puno		
60	Abdulia Seis	327084	8266335	Cu, Ag	Inactivo	Filoneano	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno		
61	Peru 3	337886	8246682	Cu, Ag	Prospecto inactivo	Manto	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno		
62	Adelante Ena Nº 2	375087	8244522	Cu, Ag	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
63	Aladino Seis	357844	8247555	Cu, Ag	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
64	Cancharani	355132	8266900	Cu, Ag	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
65	Pucacancha	355378	8265611	Cu, Ag	Prospecto inactivo	Cuerpo	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
66	Santa Rosa de Morgado	353176	8251674	Cu, Ag	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
67	Ajoyani	378066	8221950	Cu, Ag	Inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno		
68	Gavilan del Sur	438544	8206622	Cu, Ag	Inactivo	Filoneano	llave	33-x	Boletín hoja de llave, plano geológico, inventario de la región Puno		
69	La Victoria	411192	8143744	Cu, Ag	Prospecto inactivo	Filoneano	Mazo Cruz	34-x	Boletín hoja de Huaitire, plano geológico, inventario de la región Puno		
70	La Perla	328540	8262842	Cu, Ag, Au	Inactivo	Filoneano	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno		
71	Los Rosales	362670	8251550	Cu, Ag, Au	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
72	Lulita	358202	8247373	Cu, Ag, Au	Inactivo	Cuerpo	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
73	Santiaguito	356318	8249020	Cu, Ag, Au	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
74	Santiaguito	362188	8252376	Cu, Ag, Au	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
75	Region Berengela	303332	8285509	Cu, Ag, Mn	Prospecto inactivo	Manto	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno		
76	Rocio	393179	8193909	Cu, As	Prospecto inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno		
77	Aladino	356867	8246872	Cu, Au, Ag	Inactivo	Filoneano, Diseminado	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
78	Concebida	370074	8247260	Cu, Au, Ag	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
79	Cristobal Cinnabar	375062	8249040	Cu, Hg	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
80	Cerro Azoguine	391108	8252903	Cu, Hg	Prospecto inactivo	Diseminado, Filoneano	Acora	32-x	Boletín hoja de Acora, plano geológico, inventario de la región Puno		
81	Colquerani-Sallani	303747	8237556	Cu, Pb	Prospecto inactivo	Porfido	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno		
82	Minsur 31	354793	8268650	Cu, Pb	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
83	Santa Rosa	311429	8174601	Cu, Pb	Prospecto inactivo	Filoneano	Ichuña	33-u	Boletín hoja de Ichuña, plano geológico		
84	Ricardo	391162	8241840	Cu, Pb, Ag	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno		
85	Porvenir de Cobre	330978	8208362	Cu, Pb, Ag	Prospecto inactivo	Filoneano	Ichuña	33-u	Boletín hoja de Ichuña, plano geológico		
86	Soaque	383401	8224499	Cu, Pb, Ag	Inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno		
87	Santa Rosa Nº 1	441298	8176576	Cu, Pb, Ag	Inactivo	Filoneano	llave	33-x	Boletín hoja de llave, plano geológico, inventario de la región Puno		
88	Santa Rosa Nº 2	440854	8176114	Cu, Pb, Ag	Inactivo	Filoneano	llave	33-x	Boletín hoja de llave, plano geológico, inventario de la región Puno		
89	Monica 42	409390	8149729	Cu, Pb, Ag	Inactivo	Filoneano	Mazo Cruz	34-x	Boletín hoja de Huaitire, plano geológico, inventario de la región Puno		
90	Yancume	303332	8285509	Cu, Pb, Zn, Ag	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno		
91	Esmeralda Nº 6	378799	8218359	Cu, Sb	Inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno		
92	Santa Lucia Fierro	321103	8300101	Fe	Inactivo	Manto	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno		

Tabla No. 2: Relación de Minas y Prospectos

N٥	Mina	Este	Norte	Metalogenia	Estado	Тіро	Ноја	Código	Referencia
93	Sultan	309907	8247754	Fe	Inactivo	Manto	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno
94	Compensacion	382163	8256546	Fe	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
95	Umayo	374990	8262039	Fe	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
96	Meca Grande Y Meca Chico Sur	310671	8133152	Fe	Prospecto inactivo	Filoneano	Omate	34-u	Boletín hoja de Omate, plano geológico, informe de rec.Tacna y Moquegua
97	Señor de Los Milagros	343285	8287937	Pb, Ag	Prospecto inactivo	Filoneano	Juliaca	31-v	Boletín hoja de Juliaca, plano geológico, inventario de la región Puno
98	Inmaculada Concepción Nº 2	332818	8264165	Pb, Ag	Inactivo	Cuerpo	Lagunillas	32-u	Boletín hoja de Lagunillas, plano geológico, inventario de la región Puno
99	La Virgen de La Candelaria	360161	8252917	Pb, Ag	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
100	Progreso II	383004	8232211	Pb, Ag	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
101	Tio Juanito	353495	8271315	Pb, Ag	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
102	El Libertador Nø 7	378620	8218450	Pb, Ag	Prospecto inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno
103	Guadalupe 7	377374	8218166	Pb, Ag	Prospecto inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno
104	Rio Blanco	382185	8218469	Pb, Ag	Prospecto inactivo	Manto	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno
105	Carmen	347740	8331578	Pb, Ag, Cu	Inactivo	Filoneano	Juliaca	31-v	Boletín hoja de Juliaca, plano geológico, inventario de la región Puno
106	Navidad 1952	303431	8173453	Pb, Ag, Cu	Prospecto inactivo	Filoneano	Ichuña	33-u	Boletín hoja de Ichuña, plano geológico
107	El Cofre	350643	8297851	Pb, Ag, Zn	Inactivo	Filoneano	Juliaca	31-v	Boletín hoja de Juliaca, plano geológico, inventario de la región Puno
108	La Union	352777	8244387	Pb, Ag, Zn	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
109	Puno	389073	8243244	Pb, Ag, Zn	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
110	Santa Mestres	359030	8243505	Pb, Ag, Zn	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
111	Santa Lucia	305126	8182784	Pb, Ag, Zn	Inactivo	Filoneano	Ichuña	33-u	Boletín hoja de Ichuña, plano geológico
112	Esperanza Nueva	398038	8145620	Pb, Ag, Zn	Inactivo	Filoneano	Mazo Cruz	34-x	Boletín hoja de Huaitire, plano geológico, inventario de la región Puno
113	Santa Barbara	323200	8266900	Pb, Ag, Cu	Activa	Filoneano	Lagunillas	32-u	Compendio de Yacimientos Minerales del Peru, INGEMMET 2003
114	Mi Viejito	302117	8177592	Pb, Ag, Zn, Cu	Inactivo	Filoneano	Ichuña	33-u	Boletín hoja de Ichuña, plano geológico
115	Pedro Nolasco	364418	8238006	Pb, Cu	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
116	Don Alvaro	366349	8213584	Pb, Cu Zn	Inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno
117	Silvia Primera	386551	8253864	Pb, Cu, Ag	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
118	Giovana 3	366419	8202059	Pb, Cu, Zn	Inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno
119	Maria del Pilar	408507	8148342	Pb, Cu, Zn	Inactivo	Filoneano	Mazo Cruz	34-x	Boletín hoja de Huaitire, plano geológico, inventario de la región Puno
120	San Francisco	301871	8176731	Pb, Cu, Zn, Ag	Inactivo	Filoneano	Ichuña	33-u	Estudio de los recursos minerales del Perú - Franja N°1, INGEMMET, 2000.
121	Santa Rosa	304150	8173710	Pb, Cu, Zn, Au	Inactivo	Filoneano	Omate	34-u	Estudio de los recursos minerales del Perú - Franja N°1, INGEMMET, 2000.
122	Victoria-union	321072	8304097	Pb, Zn, Ag	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno
123	San Antonio de Esquilache	362398	8218447	Pb, Zn, Ag	Inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno
124	San Antonio de Esquilache	362036	8219305	Pb, Zn, Ag	Inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno
125	Palca 1	317152	8301945	Pb, Zn, Ag, Cu	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno
126	Palca 2	315964	8301291	Pb, Zn, Ag, Cu	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno
127	Palca	313151	8309814	Pb, Zn, Cu, Ag	Inactivo	Filoneano	Ocuviri	31-u	Boletín hoja de Ocuviri, plano geológico, inventario de la región Puno
128	Ahi Nomas	389601	8306459	Pb, Zn, Cu, Ag	Inactivo	Filoneano	Juliaca	31-v	Boletín hoja de Juliaca, plano geológico, inventario de la región Puno
129	Elssa Y La Urviola	368310	8337602	Sb	Inactivo	Filoneano	Juliaca	31-v	Boletín hoja de Juliaca, plano geológico, inventario de la región Puno
130	Paloma Azul	369513	8336072	Sb Ag, Pb	Inactivo	Filoneano	Juliaca	31-v	Boletín hoja de Juliaca, plano geológico, inventario de la región Puno
131	Paloma Blanca	366925	8266604	Sb Ag, Pb	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
132	Santa Sofia	387216	8337239	Sb, Pb	Inactivo	Filoneano	Juliaca	31-v	Boletín hoja de Juliaca, plano geológico, inventario de la región Puno
133	Talisman	373487	8243407	Sb, Pb, Ag	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
134	Caro 4	353303	8218849	Sb, Pb, Ag	Prospecto inactivo	Filoneano	Pichacani	33-v	Boletín hoja de Pichacani, plano geológico, inventario de la región Puno
135	Rosa Carela I	351418	8274744	W	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
136	Tungsteno	351686	8274808	W	Prospecto inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
137	Huacanani	319549	8147310	W, Ag, Cu, Pb	Inactivo	Filoneano	Omate	34-u	Boletín hoja de Omate, plano geológico, informe de rec.Tacna y Moquegua
138	Milagro de San Judas Tadeo Nº 1	355333	8277443	W, Mo	Inactivo	Filoneano	Puno	32-v	Boletín hoja de Puno, plano geológico, inventario de la región Puno
139	Elba	353754	8300975	Zn	Inactivo	Filoneano	Juliaca	31-v	Boletín hoja de Juliaca, plano geológico, inventario de la región Puno

N°	Este	Norte	Hoja 1/100,000	Código	Unidad litológica	Tipo roca	Material datado (*)	Método	Edad	Sigma	Edad2	Referencia	Año
1	322988	8311089	Ocuviri	31U	Palca	Ignimbrita	Bio	K/Ar	11.20	± 1.00	11.2 ± 1.00	Klinck et al.	1986
2	339054	8291996	Ocuviri	31U	Palca	Ignimbrita	WR	K/Ar	18.60	± 0.70	18.6 ± 0.70	Klinck et al.	1986
3	325035	8340858	Ocuviri	31U	Tacaza	Fonotefrita	WR	K/Ar	26.90	± 1.00	26.9 ± 1.00	Bonhomme et al.	1985
4	325035	8340858	Ocuviri	31U	Tacaza	Fonotefrita	San	K/Ar	29.30	± 0.60	29.3 ± 0.60	Bonhomme et al.	1985
5	292000	8339000	Ocuviri	31U	Tacaza	Toba riolítica	Bio	Ar/Ar	18.74	± 0.19	18.74 ± 0.19	Boudesseul et al.	2000
6	305240	8271446	Lagunillas	32U	Sillapaca	Lava dacítica	WR	K/Ar	13.60	± 0.60	13.6 ± 0.60	Klinck et al.	1986
7	311231	8278198	Lagunillas	32U	Sillapaca	Lava dacítica	WR	K/Ar	14.00	± 0.60	14 ± 0.60	Klinck et al.	1990
8	324673	8262321	Lagunillas	32U	Palca	Toba riolítica	Bio	Integrated Ar/Ar	14.67	± 0.66	14.67 ± 0.66	Wasteneys	1990
9	311332	8276785	Lagunillas	32U	Sillapaca	Lava dacítica	Bio	K/Ar	14.72	± 0.34	14.72 ± 0.34	Wasteneys	1990
10	313450	8272867	Lagunillas	32U	Sillapaca	Lava dacítica	Bio	K/Ar	16.24	± 0.40	16.24 ± 0.40	Wasteneys	1990
11	315199	8277585	Lagunillas	32U	Sillapaca	Toba riolítica	Bio	K/Ar	16.55	± 0.60	16.55 ± 0.60	Wasteneys	1990
12	330046	8260517	Lagunillas	32U	Palca	Toba riolítica	Bio	Integrated Ar/Ar	16.69	± 0.17	16.69 ± 0.17	Wasteneys	1990
13	315199	8277585	Lagunillas	32U	Sillapaca	Toba riolítica	Bio	K/Ar	17.39	± 0.91	17.39 ± 0.91	Wasteneys	1986
14	315156	8271897	Lagunillas	32U	Palca	Ignimbrita	WR	K/Ar	17.50	± 0.80	17.5 ± 0.80	Klinck et al.	1990
15	331223	8262371	Lagunillas	32U	Palca	Lava dacítica	WR	K/Ar	17.64	± 0.38	17.64 ± 0.38	Wasteneys	1990
16	330046	8260517	Lagunillas	32U	Palca	Toba riolítica	Bio	Integrated Ar/Ar	19.09	± 0.12	19.09 ± 0.12	Wasteneys	1986
17	306010	8233886	Lagunillas	32U	Tacaza	Toba	Bio	K/Ar	20.00	± 1.00	20 ± 1.00	Klinck et al.	1990
18	331223	8262371	Lagunillas	32U	Tacaza	Lava dacítica	Plg	K/Ar	20.85	± 0.62	20.85 ± 0.62	Wasteneys	1986
19	323172	8263877	Lagunillas	32U	Tacaza	Andesita	WR	K/Ar	21.10	± 0.80	21.1 ± 0.80	Klinck et al.	1990
20	329918	8277668	Lagunillas	32U	Tacaza	Toba riolítica	Bio	Integrated Ar/Ar	21.53	± 0.68	21.53 ± 0.68	Wasteneys	1990
21	329918	8277668	Lagunillas	32U	Tacaza	Toba riolítica	Bio	Integrated Ar/Ar	21.59	± 0.88	21.59 ± 0.88	Wasteneys	1976
22	317954	8246283	Lagunillas	32U	Tacaza	Andesita	WR	K/Ar	21.70	± 0.50	21.7 ± 0.50	Bellon & Lefèvre	1990
23	330046	8260517	Lagunillas	32U	Tacaza	Toba riolítica	Bio	K/Ar	30.53	± 1.28	30.53 ± 1.28	Wasteneys	1976
24	302467	8264843	Lagunillas	32U	Tacaza	Riolita	WR	K/Ar	25.23	± 0.54	25.23 ± 0.54	Wasteneys	1990
25	324015	8270461	Lagunillas	32U	Tacaza	Riolita	Hbn	Integrated Ar/Ar	23.30	± 3.40	23.3 ± 3.40	Wasteneys	1990
26	324059	8264775	Lagunillas	32U	Tacaza	Riolita	Hbn	Integrated Ar/Ar	25.50	± 2.50	25.5 ± 2.50	Wasteneys	1990
27	317995	8263313	Lagunillas	32U	Tacaza	Riolita	WR	K/Ar	26.21	± 0.60	26.21 ± 0.60	Wasteneys	1990
28	317815	8263496	Lagunillas	32U	Tacaza	Riolita	San	Integrated Ar/Ar	26.60	± 0.40	26.6 ± 0.40	Wasteneys	1990
29	331920	8268831	Lagunillas	32U	Tacaza	Riolita	Hbn	Integrated Ar/Ar	26.80	± 1.30	26.8 ± 1.30	Wasteneys	1990

Tabla No. 3: Edades radiométricas de rocas volcánicas Cenozoicas

N°	Este	Norte	Hoja 1/100,000	Código	Unidad litológica	Tipo roca	Material datado (*)	Método	Edad	Sigma	Edad2	Referencia	Año
30	317821	8262759	Lagunillas	32U	Tacaza	Riolita	WR	K/Ar	27.20	± 0.59	27.2 ± 0.59	Wasteneys	1990
31	324059	8264775	Lagunillas	32U	Tacaza	Riolita	Hbn	Integrated Ar/Ar	27.40	± 2.50	27.4 ± 2.50	Wasteneys	1990
32	324015	8270461	Lagunillas	32U	Tacaza	Riolita	Hbn	Integrated Ar/Ar	28.13	± 3.40	28.13 ± 3.40	Wasteneys	1990
33	320943	8263337	Lagunillas	32U	Tacaza	Riolita	Plg	K/Ar	28.66	± 0.70	28.66 ± 0.70	Wasteneys	1990
34	320943	8263337	Lagunillas	32U	Tacaza	Riolita	WR	K/Ar	30.21	± 0.73	30.21 ± 0.73	Wasteneys	1990
35	366081	8258301	Puno	32V	Barroso	Andesita	WR	K/Ar	5.70	± 0.30	5.7 ± 0.30	Bellon & Lefèvre	1986
36	380212	8253954	Puno	32V	Barroso	Andesita	WR	K/Ar	5.05	± 0.17	5.05 ± 0.17	Kaneoka & Guevara	1984
37	384334	8251026	Puno	32V	Barroso	Andesita	WR	K/Ar	5.82	± 0.20	5.82 ± 0.20	Kaneoka & Guevara	1984
38	385411	8249802	Puno	32V	Barroso	Andesita	WR	K/Ar	5.91	± 0.16	5.91 ± 0.16	Kaneoka & Guevara	1984
39	389868	8251054	Puno	32V	Barroso	Andesita	WR	K/Ar	5.92	± 0.33	5.92 ± 0.33	Kaneoka & Guevara	1984
40	382723	8251755	Puno	32V	Barroso	Andesita	WR	K/Ar	5.94	± 0.32	5.94 ± 0.32	Kaneoka & Guevara	1984
41	384871	8250660	Puno	32V	Barroso	Andesita	WR	K/Ar	5.97	± 0.20	5.97 ± 0.20	Kaneoka & Guevara	1984
42	397943	8241872	Acora	32X	Tacaza	Toba	WR	K/Ar	23.70	± 1.20	23.7 ± 1.20	Klinck et al.	1986
43	365176	8191909	Pichacani	33V	Maure	Toba	WR	K/Ar	8.00	± 0.40	8 ± 0.40	Klinck et al.	1986
44	365176	8191909	Pichacani	33V	Maure	Toba	WR	K/Ar	8.80	± 0.40	8.8 ± 0.40	Klinck et al.	1986
45	366259	8194344	Pichacani	33V	Maure	Toba	WR	K/Ar	10.20	± 0.90	10.2 ± 0.90	Klinck et al.	1986
46	383026	8211221	Pichacani	33V	Tacaza	Andesita	WR	K/Ar	17.30	± 0.70	17.3 ± 0.70	Klinck et al.	1981
47	334656	8124562	Omate	34U	Barroso	Andesita	WR	K/Ar	3.30	± 0.10	3.3 ± 0.10	Tosdal et al.	1981
48	337063	8123198	Omate	34U	Barroso	Andesita	Plg	K/Ar	5.30	± 0.30	5.3 ± 0.30	Tosdal et al.	1984
49	369670	8136244	Omate	34U	Barroso	Andesita	WR	K/Ar	6.43	± 0.20	6.43 ± 0.20	Kaneoka & Guevara	1981
50	330836	8121335	Omate	34U	Maure	Ignimbrita	Bio	K/Ar	6.50	± 0.30	6.5 ± 0.30	Tosdal et al.	1981
51	334656	8124562	Omate	34U	Maure	Andesita	Plg	K/Ar	7.00	± 0.40	7 ± 0.40	Tosdal et al.	1981
52	372033	8024159	Huaitire	34V	Barroso	Dacita	Bio	K/Ar	1.60	± 0.20	1.6 ± 0.20	Tosdal et al.	1990
53	384382	8157567	Huaitire	34V	Barroso	Toba dacítica de cristales	Bio	K/Ar	6.48	± 0.18	6.476 ± 0.18	Clark et al.	1990
54	387246	8159457	Huaitire	34V	Barroso	Ignimbrita dacítica	Bio	K/Ar	6.62	± 0.15	6.617 ± 0.15	Clark et al.	1990
55	385820	8160157	Huaitire	34V	Barroso	Dacita	Bio	K/Ar	7.04	± 0.43	7.035 ± 0.43	Clark et al.	1990
56	430539	8148149	Mazo Cruz	34X	Barroso	Andesita	WR	K/Ar	3.20	± 0.11	3.2 ± 0.11	Kaneoka & Guevara	1984
57	425651	8123609	Mazo Cruz	34X	Barroso	Dacita	WR	K/Ar	5.59	± 0.11	5.59 ± 0.11	Kaneoka & Guevara	1985

Muestra	Este	Norte	Unidad estratigráfica	Seccion delgada	Ensaye químico	Clasificación petrográfica	Clasificación química	Alteración hidrotermal
Oc - 74	325300	8336900	Tacaza		х	x	Traquiandesita	
Oc - 82	320200	8278900	Tacaza		х	x	Traquibasalto	
Oc - 300	289700	8288700	Tacaza		х	x	Traquiandesita	
Oc - 301	289700	8288700	Tacaza		х	x	Traquiandesita	
Oc - 304	289700	8288700	Tacaza		х	x	Traquiandesita	
Oc - 305	289700	8288700	Tacaza		х	x	Traquiandesita	
La - 504	317300	8272300	Tacaza		x	x	Traquiandesita	
62436	334508	8207896	Tacaza	x		riodacita		
62483	339354	8203371	Tacaza	x		andesita		
CT 65	315320	8346990	Palca		х		Riolita	
970823-3	292485	8339579	Palca		X		Riolita	
970823-5	292480	8339579	Palca		x		Riolita	
990729-9	290320	8345075	Palca		X		riolita	
990729-6	290658	8344520	Palca		×		Riolita	
990727-3	324100	8328000	Palca		Ŷ		dacita	
990614-2	330850	8328550	Palca		×		riolita	
Palc 1	318000	8274000	Palca	×	~	riolita	Y	
l a - 367	305200	8271500	Sillanaca	^	¥	Tionta	Traquiandesita	
Lg - 401	311200	8276400	Sillapaca		×		dacita	
Lg - 402	311/00	8276400	Sillanaca		×		andesita	
Lg - 403	311/00	8276400	Sillanaca		^ V		dacita	1
Lg - 403	311400	8276400	Sillapaca		×		dacita	
Lg 404	211900	8276200	Sillapaca		^ 		daoita	
Lg - 405	311000	8276200	Sillapaca		X		troquito	
Lg - 400	311900	8275900	Sillapaca		X		traquita	
Lg - 407	312100	0275700	Sillapaca		X		decito	
Lg - 400	312400	8275700	Sillapaca		X		dacita	
Lg - 409	312000	8275700	Sillapaca		X	de site	dacita	
5111 1	312000	8274500	Siliapaca	X		dacita		
HU010600	302048	0103033	Maure		X			
DIM139	328218	8164364	Maure		X			
PI3112	365500	8191100	Maure		X			
PI1/102	304200	8218100	Maure		X			
PI2112	351410	8192300	Maure		X	ale de altre		
64199	403835	8138575	Maure	X		riodacita		
64207	404980	8140150	Maure	X		riodacita		
64323	3/58/4	8225938	Maure	X		traquita		
SOR 1	369096	8227593	Barroso		X		traquiandesita	
CON-5	352872	8197872	Barroso		X	ter	traquita	
APACH - 1	349600	8139525	Barroso		X	traquita		
APACH - 2	345530	8138100	Barroso		X	traquita		
APACH - 3	344855	8136215	Barroso		X	traquita		
04191	403185	8140084	Darroso Darroso	x	х			
04190	403/10	813/3/5	Darroso	X				
62505	41/5/2	8132093	Barroso	X	х	traquita		
68028	367840	8227510	Barroso	X				
68068	367591	8226372	Barroso	X		an da alta		
62541	410053	8135592	Barroso	X	х	andesità		
62540	410134	8135615	Barroso	X		andesita		
67062	403555	8124712	Barroso	x		dacita		
67173	371355	8226012	Barroso	X		traquiandesita		
64150	371220	8227380	Barroso	X		riodacita		
68245	369430	8228643	Barroso	Х		dacita		
68248	368455	8228314	Barroso	Х		andesita		propilitica
67170	368647	8227476	Barroso	х		traquiandesita		argílica
68241	369488	8228257	Barroso	х		traquiandesita	[argílica
68027	367825	8227405	Barroso	х		tufo lítico		argílica avanzada
68069	367477	8226365	Barroso	х		tufo lítico	[argílica avanzada
62556	368418	8228221	Barroso	x		volcánico		silicificación
67127	368475	8228290	Barroso	х		volcánico		silicificación
67090	368207	8226961	Barroso	x		volcánico		silicificación

Tabla No. 4: Relación de muestras empleadas para estudios petromineragráficos y ensayes químicos

			Elem	entos Mayo	res				
Muestra	Oc - 74	Oc - 82	Oc - 300	Oc - 301	Oc - 304	Oc - 305	Lg - 504	Referencia	Año
SiO[2] (% en peso)	51.89	50.85	54.73	61.21	58.58	60.21	53.45	INGEMMET	1993
TiO[2] (% en peso)	1.17	1.43	1.01	0.96	0.98	0.93	0.93	INGEMMET	1993
Al[2]O[3] (% en peso)	13.68	15.71	16.04	16.74	15.60	15.74	16.14	INGEMMET	1993
Fe[3]O[4] (% en peso)	10.16	9.93	8.58	5.24	6.81	6.18	9.70	INGEMMET	1993
MnO (% en peso)	0.22	0.18	0.14	0.11	0.10	0.12	0.13	INGEMMET	1993
MgO (% en peso)	6.21	8.14	4.53	2.12	3.61	3.38	5.82	INGEMMET	1993
CaO (% en peso)	9.18	8.00	7.16	4.46	6.45	4.93	7.59	INGEMMET	1993
Na[2]O (% en peso)	3.11	3.53	4.01	4.69	3.87	3.89	2.86	INGEMMET	1993
K[2]O (% en peso)	3.68	1.64	3.18	4.12	3.64	4.26	2.96	INGEMMET	1993
P[2]O[5] (% en peso)	0.70	0.59	0.62	0.35	0.36	0.36	0.42	INGEMMET	1993
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00		
	•		Rela	ción de rati	os				
A / CNK	0.53	0.71	0.70	0.92	0.71	0.79	0.74		
K / N	0.78	0.31	0.52	0.58	0.62	0.72	0.68		
		E	Elementos n	nenores co	mpatibles				
Muestra	$\Omega_{\rm C}$ - 74	Oc - 82	Oc - 300	Oc - 301	Oc - 304	Oc - 305	l a - 504	Referencia	Αño
	/3.00	45.00	35.00	27.00	37.00	37.00	45.00	INGEMMET	1003
Ni (ppm)	36.00	1/12 00	46.00	8.00	29.00	27.00	24.00	INGEMMET	1003
Cr (ppm)	113.00	312.00	91.00	40.00	75.00	70.00	50.00	INGEMMET	1003
V (ppm)	262.00	202.00	227.00	114.00	172.00	152.00	222.00	INGEMMET	1993
	65.00	45.00	38.00	40.00	47.00	37.00	89.00	INGEMMET	1003
	05.00		lementos m	enores inc	omnatibles	57.00	03.00		1335
		-	iementos n		ompatibles				
Muestra	Oc - 74	Oc - 82	Oc - 300	Oc - 301	Oc - 304	Oc - 305	Lg - 504	Referencia	Año
Th (ppm)	5.00	1.00	8.00	21.00	15.00	19.00	4.00	INGEMMET	1993
Zr (ppm)	165.00	177.00	149.00	306.00	213.00	228.00	112.00	INGEMMET	1993
Nb (ppm)	12.00	15.00	10.00	29.00	15.00	17.00	6.00	INGEMMET	1993
U (ppm)	2.00	4.00	0.00	4.00	5.00	5.00	2.00	INGEMMET	1993
Ba (ppm)	1190.00	663.00	776.00	991.00	869.00	973.00	1034.00	INGEMMET	1993
Sr (ppm)	1010.00	816.00	956.00	715.00	652.00	683.00	701.00	INGEMMET	1993
Rb (ppm)	70.00	46.00	78.00	151.00	126.00	137.00	97.00	INGEMMET	1993
Pb (ppm)	7.00	17.00	10.00	13.00	17.00	19.00	15.00	INGEMMET	1993
Y (ppm)	28.00	22.00	34.00	24.00	23.00	21.00	22.00	INGEMMET	1993
Zn (ppm)	71.00	75.00	58.00	50.00	44.00	48.00	81.00	INGEMMET	1993
Ti (ppm)	7014.39	8573.14	6055.16	5755.40	5875.30	5575.54	5575.54	INGEMMET	1993
			Elemento	os de tierra	s raras				
Musstra	00 74	00 00	0.0.200	00 204	0.0.204	00 205	La 504	Deferencia	٨ño
	20.00	44.00	22.00	45.00	27.00	20.00	16.00		1002
Ce (ppm)	80.00	72.00	73.00	80.00	59.00	55.00	48.00	INGEMMET	1993
Ce (ppm)	80.00	72.00	73.00	80.00	59.00	55.00	48.00	INGEMMET	1993

 Tabla No. 5: Resultados de ensayes químicos del Grupo Tacaza

				Elemento	s Mayores				
Muestra	CT 65	9708 23-3	9708 23-5	990729-9	990729-6	990727-3	990614-2	Referencia	Año
SiO[2] (% en peso)	70.52	69.21	69.11	68.84	70.06	63.77	69.96	Mamani, M & Ibarra, I.	2000
TiO[2] (% en peso)	0.35	0.38	0.40	0.44	0.41	0.62	0.42	Mamani, M & Ibarra, I.	2000
AI[2]O[3] (% en peso)	14.54	14.61	15.35	15.42	15.17	17.96	14.55	Mamani, M & Ibarra, I.	2000
Fe[3]O[4] (% en peso)	2.51	2.63	2.86	2.81	2.64	3.87	2.52	Mamani, M & Ibarra, I.	2000
MnO (% en peso)	0.04	0.02	0.07	0.05	0.03	0.08	0.03	Mamani, M & Ibarra, I.	2000
MgO (% en peso)	0.57	0.45	0.58	0.66	0.58	0.91	0.65	Mamani, M & Ibarra, I.	2000
CaO (% en peso)	1.52	1.48	1.67	1.80	1.69	1.66	1.74	Mamani, M & Ibarra, I.	2000
Na[2]O (% en peso)	3.28	3.34	3.37	3.60	3.63	3.88	3.39	Mamani, M & Ibarra, I.	2000
K[2]O (% en peso)	4.81	4.52	4.54	4.49	4.76	4.68	4.54	Mamani, M & Ibarra, I.	2000
P[2]O[5] (% en peso)	0.13	0.94	0.20	0.09	0.11	0.17	0.11	Mamani, M & Ibarra, I.	2000
Total	98.27	97.58	98.15	98.20	99.08	97.60	97.91		
				Relación	de ratios				
A / CNK	1.08	1.12	1.14	1.10	1.07	1.24	1.07		
K/N	0.96	0.89	0.89	0.82	0.86	0.79	0.88		
			Elei	mentos meno	ores compati	bles			
Muestra	CT 65	9708 23-3	9708 23-5	990729-9	990729-6	990727-3	990614-2	Referencia	Año
Co (ppm)	4.00	4.00	5.00	6.00	5.00	6.00	4.00	Mamani, M & Ibarra, I.	2000
Ni (ppm)	4.00	5.00	6.00	13.00	6.00	5.00	4.00	Mamani, M & Ibarra, I.	2000
Cr (ppm)	10.00	8.00	10.00	33.00	8.00	10.00	9.00	Mamani, M & Ibarra, I.	2000
V (ppm)	37.00	42.00	38.00	50.00	41.00	58.00	38.00	Mamani, M & Ibarra, I.	2000
			Elen	nentos meno	res incompa	tibles			
Muestra	CT 65	9708 23-3	9708 23-5	990729-9	990729-6	990727-3	990614-2	Referencia	Año
Th (ppm)	20.10	19.77	21.18	21.40	19.70	18.30	21.00	Mamani, M & Ibarra, I.	2000
Zr (ppm)	155.00	173.95	194.97	205.00	189.00	248.00	191.00	Mamani, M & Ibarra, I.	2000
Nb (ppm)	22.00	22.77	23.94	25.00	25.00	24.00	24.00	Mamani, M & Ibarra, I.	2000
U (ppm)	2.90	2.71	2.93	4.20	3.20	4.40	5.70	Mamani, M & Ibarra, I.	2000
Ba (ppm)	701.00	701.50	703.00	677.00	663.00	1031.00	746.00	Mamani, M & Ibarra, I.	2000
Sr (ppm)	352.00	392.65	410.41	390.00	379.00	465.00	353.00	Mamani, M & Ibarra, I.	2000
Rb (ppm)	189.00	165.90	174.36	168.00	179.00	170.00	174.00	Mamani, M & Ibarra, I.	2000
Pb (ppm)	19.00	32.38	19.60	19.00	20.00	23.00	22.00	Mamani, M & Ibarra, I.	2000
Y (ppm)	14.00	17.33	18.98	18.00	16.00	13.00	19.00	Mamani, M & Ibarra, I.	2000
Ti (ppm)	2098.32	2278.18	2398.08	2637.89	2458.03	3717.03	2517.99	Mamani, M & Ibarra, I.	2000
				Elementos de	tierras rara	S			
Muestra	CT 65	9708 23-3	9708 23-5	990729-9	990729-6	990727-3	990614-2	Referencia	Año
La (ppm)	36.00	42.24	42.28	43.00	43.00	50.00	52.00	Mamani, M & Ibarra, I.	2000
Ce (ppm)	69.00	82.50	85.20	85.00	83.00	94.00	91.00	Mamani, M & Ibarra, I.	2000

Tabla No. 6: Resultados de ensayes químicos del Grupo Palca

					Element	os Mayores	5					
Muestra	Lg - 367	Lg - 401	Lg - 402	Lg - 403	Lg - 404	Lg - 405	Lg - 406	Lg - 407	Lg - 408	Lg - 409	Referencia	Año
SiO[2] (% en peso)	62.59	64.19	62.36	63.65	63.71	64.47	64.47	64.56	64.93	63.12	INGEMMET	1993
TiO[2] (% en peso)	0.97	0.82	0.90	0.83	0.83	0.78	0.81	0.81	0.83	0.94	INGEMMET	1993
Al[2]O[3] (% en peso)	15.74	15.59	16.49	15.50	16.06	15.88	15.97	15.88	16.01	16.19	INGEMMET	1993
Fe[3]O[4] (% en peso)	5.51	5.18	5.54	5.31	5.02	5.00	5.12	4.96	5.05	5.50	INGEMMET	1993
MnO (% en peso)	0.12	0.07	0.10	0.15	0.11	0.08	0.08	0.06	0.07	0.11	INGEMMET	1993
MgO (% en peso)	2.45	2.15	2.53	2.46	2.09	1.60	1.20	1.40	0.92	1.58	INGEMMET	1993
CaO (% en peso)	4.34	4.06	4.43	4.35	3.92	3.76	3.72	3.85	3.65	4.39	INGEMMET	1993
Na[2]O (% en peso)	4.22	3.92	3.59	3.68	4.11	4.16	4.28	4.20	4.21	4.09	INGEMMET	1993
K[2]O (% en peso)	3.66	3.73	3.72	3.76	3.82	3.94	4.01	3.95	4.00	3.67	INGEMMET	1993
P[2]O[5] (% en peso)	0.40	0.29	0.34	0.31	0.33	0.33	0.34	0.33	0.33	0.41	INGEMMET	1993
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00		-
				•	Relació	n de ratios			•			
A / CNK	0.84	0.87	0.92	0.86	0.89	0.88	0.88	0.87	0.89	0.87		
K/N	0.57	0.63	0.68	0.67	0.61	0.62	0.62	0.62	0.63	0.59		
				Elei	mentos mer	nores comp	atibles					
Muestra	Lg - 367	Lg - 401	Lg - 402	Lg - 403	Lg - 404	Lg - 405	Lg - 406	Lg - 407	Lg - 408	Lg - 409	Referencia	Año
Co (ppm)	17.00	33.00	28.00	29.00	22.00	22.00	22.00	17.00	24.00	25.00	INGEMMET	1993
Ni (ppm)	16.00	19.00	19.00	18.00	17.00	14.00	19.00	13.00	16.00	20.00	INGEMMET	1993
Cr (ppm)	44.00	43.00	43.00	42.00	40.00	37.00	203.00	47.00	87.00	54.00	INGEMMET	1993
V (ppm)	106.00	80.00	107.00	94.00	81.00	91.00	91.00	88.00	97.00	125.00	INGEMMET	1993
Cu (ppm)	24.00	26.00	31.00	20.00	22.00	34.00	31.00	22.00	35.00	36.00	INGEMMET	1993
				Elen	nentos men	ores incom	patibles					
Muestra	Lg - 367	Lg - 401	Lg - 402	Lg - 403	Lg - 404	Lg - 405	Lg - 406	Lg - 407	Lg - 408	Lg - 409	Referencia	Año
Th (ppm)	12.00	13.00	15.00	16.00	14.00	16.00	13.00	16.00	15.00	11.00	INGEMMET	1993
Zr (ppm)	238.00	196.00	203.00	190.00	268.00	266.00	266.00	268.00	277.00	247.00	INGEMMET	1993
Nb (ppm)	22.00	17.00	18.00	17.00	18.00	18.00	18.00	19.00	18.00	19.00	INGEMMET	1993
U (ppm)	3.00	3.00	3.00	3.00	3.00	3.00	3.00	3.00	4.00	3.00	INGEMMET	1993
Ba (ppm)	1122.00	1032.00	1040.00	964.00	1299.00	1246.00	1300.00	1293.00	1146.00	802.00	INGEMMET	1993
Sr (ppm)	743.00	627.00	657.00	639.00	682.00	673.00	690.00	691.00	713.00	765.00	INGEMMET	1993
Rb (ppm)	108.00	125.00	110.00	127.00	120.00	126.00	126.00	131.00	133.00	115.00	INGEMMET	1993
Pb (ppm)	17.00	20.00	28.00	19.00	18.00	23.00	22.00	21.00	20.00	13.00	INGEMMET	1993
Y (ppm)	20.00	18.00	18.00	17.00	18.00	18.00	20.00	21.00	21.00	20.00	INGEMMET	1993
Zn (ppm)	69.00	74.00	70.00	72.00	64.00	75.00	70.00	63.00	77.00	75.00	INGEMMET	1993
Ti (ppm)	5815.35	4916.07	5395.68	4976.02	4976.02	4676.26	4856.12	4856.12	4976.02	5635.49	INGEMMET	1993
				I	Elementos	de tierras ra	iras					
Muestra	Lg - 367	Lg - 401	Lg - 402	Lg - 403	Lg - 404	Lg - 405	Lg - 406	Lg - 407	Lg - 408	Lg - 409	Referencia	Año
La (ppm)	66.00	57.00	62.00	66.00	76.00	78.00	72.00	76.00	83.00	65.00	INGEMMET	1993
Ce (ppm)	119.00	104.00	116.00	102.00	141.00	140.00	123.00	125.00	119.00	135.00	INGEMMET	1993

Tabla No. 7: Resultados de ensayes químicos del Grupo Sillapaca

		E	Elementos Ma	yores			
Muestra	HU010600	OMT39	PI3112	PI17102	PI2112	Referencia	Año
SiO[2] (% en peso)	69.98	73.07	72.83	73.61	69.58	INGEMMET	2003
TiO[2] (% en peso)	0.20	0.28	0.19	0.15	0.17	INGEMMET	2003
Al[2]O[3] (% en peso)	13.62	13.61	13.37	13.61	11.95	INGEMMET	2003
Fe[3]O[4] (% en peso)	1.45	2.45	1.22	0.97	0.93	INGEMMET	2003
MnO (% en peso)	0.08	0.05	0.02	0.05	0.01	INGEMMET	2003
MgO (% en peso)	0.39	0.54	0.13	0.09	0.55	INGEMMET	2003
CaO (% en peso)	0.96	1.66	0.43	0.60	2.01	INGEMMET	2003
Na[2]O (% en peso)	3.06	3.39	2.98	3.50	0.78	INGEMMET	2003
K[2]O (% en peso)	4.59	3.88	6.77	5.29	5.00	INGEMMET	2003
P[2]O[5] (% en peso)	0.04	0.06	0.02	0.02	0.04	INGEMMET	2003
Total	94.37	98.99	97.96	97.89	91.02		
		F	Relaciones de	ratios	•		
A / CNK	1.16	1.06	1.03	1.08	1.15		
K/N	0.99	0.75	1.49	0.99	4.21		
		Elemen	tos menores	compatibles			
Muestra	HU010600	OMT39	PI3112	PI17102	PI2112	Referencia	Año
Co (ppm)	8.00	9.00	6.50	14.00	9.50	INGEMMET	2003
Ni (ppm)	15.00	0.50	0.50	0.50	0.50	INGEMMET	2003
V (ppm)	10.00	35.00	5.00	5.00	5.00	INGEMMET	2003
Cu (ppm)	0.50	5.00	0.50	0.50	0.50	INGEMMET	2003
		Element	os menores i	ncompatibles			
Muestra	HU010600	OMT39	PI3112	PI17102	PI2112	Referencia	Año
Th (ppm)	13.00	14.00	13.00	16.00	12.00	INGEMMET	2003
Zr (ppm)	131.00	103.50	133.00	112.00	127.00	INGEMMET	2003
Nb (ppm)	11.00	11.00	12.00	18.00	11.00	INGEMMET	2003
U (ppm)	4.00	4.00	3.50	5.00	3.50	INGEMMET	2003
Ba (ppm)	992.00	613.00	976.00	605.00	660.00	INGEMMET	2003
Sr (ppm)	152.50	238.00	68.20	101.00	258.00	INGEMMET	2003
Rb (ppm)	174.50	147.50	173.00	250.00	150.50	INGEMMET	2003
Pb (ppm)	20.00	5.00	20.00	25.00	5.00	INGEMMET	2003
Y (ppm)	15.50	14.50	16.00	18.00	13.00	INGEMMET	2003
Zn (ppm)	50.00	50.00	40.00	30.00	15.00	INGEMMET	2003
Ti (ppm)	1197.60	1676.65	1137.72	898.20	1017.96	INGEMMET	2003
		Elen	nentos de tier	ras raras			
Muestra	HU010600	OMT39	PI3112	PI17102	PI2112	Referencia	Año
La (ppm)	28.50	26.50	28.00	31.00	24.50	INGEMMET	2003
Ce (ppm)	58.50	56.00	50.50	59.50	43.50	INGEMMET	2003

Tabla No. 8: Resultados de ensayes químicos del Grupo Maure

Elementos Mayores													
Muestra	SOR - 1	CON - 5	64191	62505	APACH - 1	APACH - 2	APACH - 3	Referencia	Año				
SiO[2] (% en peso)	64.10	64.60	63.50	73.40	66.70	65.00	63.30	Buenaventura	2003				
TiO[2] (% en peso)	0.52	0.72	0.54	0.38	0.58	0.59	0.71	Buenaventura	2003				
Al[2]O[3] (% en peso)	14.00	13.20	15.80	9.93	12.80	11.00	13.40	Buenaventura	2003				
Fe[3]O[4] (% en peso)	5.43	6.56	5.78	3.75	7.35	6.86	8.23	Buenaventura	2003				
MnO (% en peso)	0.08	0.07	0.06	0.01	0.06	0.07	0.06	Buenaventura	2003				
MgO (% en peso)	1.41	1.29	1.52	0.41	1.83	1.82	2.26	Buenaventura	2003				
CaO (% en peso)	5.63	6.13	5.30	1.47	5.33	5.28	6.62	Buenaventura	2003				
Na[2]O (% en peso)	3.22	4.23	3.58	2.82	3.72	3.37	3.88	Buenaventura	2003				
K[2]O (% en peso)	3.27	2.91	3.47	4.35	2.81	3.15	2.48	Buenaventura	2003				
P[2]O[5] (% en peso)	0.50	0.60	0.30	0.10	0.50	0.50	0.50	Buenaventura	2003				
Total	98.16	100.31	99.85	96.62	101.68	97.64	101.44						
				Relació	n de ratios		•						
A / CNK	0.73	0.62	0.82	0.83	0.68	0.59	0.63						
K / N	0.67	0.45	0.64	1.01	0.50	0.62	0.42						
		-	Eleme	ntos mer	ores compati	bles	-						
Muestra	APACH - 3	Referencia	Año										
Co (ppm)	13.00	11.00	11.80	2.00	16.50	14.50	19.50	Buenaventura	2003				
Ni (ppm)	14.30	9.50	9.40	9.60	20.50	15.00	33.60	Buenaventura	2003				
Cr (ppm)	20.00	18.00	35.00	43.00	20.00	11.00	37.00	Buenaventura	2003				
V (ppm)	99.00	79.00	115.00	70.00	108.00	100.00	158.00	Buenaventura	2003				
Cu (ppm)	18.80	29.50	30.50	7.50	70.40	45.40	94.80	Buenaventura	2003				
			Elemer	ntos men	ores incompa	tibles							
Muestra	SOR - 1	CON - 5	64191	62505	APACH - 1	APACH - 2	APACH - 3	Referencia	Año				
Th (ppm)	18.00	16.00	21.50	17.40	16.70	13.00	10.00	Buenaventura	2003				
Zr (ppm)	80.00	221.00	53.30	81.30	121.00	148.50	149.00	Buenaventura	2003				
Nb (ppm)	9.60	8.90	5.20	9.60	8.20	7.20	6.70	Buenaventura	2003				
U (ppm)	3.60	3.60	5.00	2.40	2.90	2.20	1.60	Buenaventura	2003				
Ba (ppm)	720.00	840.00	1020.00	1220.00	870.00	870.00	930.00	Buenaventura	2003				
Sr (ppm)	514.00	571.00	623.00	372.00	613.00	654.00	823.00	Buenaventura	2003				
Rb (ppm)	128.00	115.00	134.50	152.50	111.00	74.90	74.90	Buenaventura	2003				
Pb (ppm)	17.60	18.00	22.80	27.90	21.90	17.50	15.20	Buenaventura	2003				
Y (ppm)	13.00	20.10	13.60	12.20	10.60	10.60	10.20	Buenaventura	2003				
Zn (ppm)	59.00	75.00	74.00	11.00	96.00	74.00	100.00	Buenaventura	2003				
Ti (ppm)	3500.00	4900.00	4000.00	3000.00	4200.00	3700.00	5300.00	Buenaventura	2003				
	•	•	Ele	mentos o	de tierras rara	S							
Muestra	SOR - 1	CON - 5	64191	62505	APACH - 1	APACH - 2	APACH - 3	Referencia	Año				
La (ppm)	38.90	38.10	41.20	40.30	36.30	32.10	30.90	Buenaventura	2003				
Ce (ppm)	73.60	78.10	79.60	75.70	70.60	63.00	59.30	Buenaventura	2003				

Tabla No. 9: Resultados de ensayes químicos del Grupo Barroso

Sample	SiO[2]	TiO[2]	AI[2]0[3]	Fe[3]O[4]	MnO	MgO	CaO	Na[2]O	K[2]O	P[2]O[5]	Referencia	Año
Oc - 74	51.89	1.17	13.68	10.16	0.22	6.21	9.18	3.11	3.68	0.70	INGEMMET	1993
Oc - 82	50.85	1.43	15.71	9.93	0.18	8.14	8.00	3.53	1.64	0.59	INGEMMET	1993
Oc - 300	54.73	1.01	16.04	8.58	0.14	4.53	7.16	4.01	3.18	0.62	INGEMMET	1993
Oc - 301	61.21	0.96	16.74	5.24	0.11	2.12	4.46	4.69	4.12	0.35	INGEMMET	1993
Oc - 304	58.58	0.98	15.60	6.81	0.10	3.61	6.45	3.87	3.64	0.36	INGEMMET	1993
Oc - 305	60.21	0.93	15.74	6.18	0.12	3.38	4.93	3.89	4.26	0.36	INGEMMET	1993
Lg - 504	53.45	0.93	16.14	9.70	0.13	5.82	7.59	2.86	2.96	0.42	INGEMMET	1993
CT 65	70.52	0.35	14.54	2.51	0.04	0.57	1.52	3.28	4.81	0.13	Mamani & Ibarra	2000
9708 23-2	69.79	0.38	14.79	2.87	0.02	0.62	1.53	3.23	4.58	0.16	Mamani & Ibarra	2000
9708 23-5	69.11	0.40	15.35	2.86	0.07	0.58	1.67	3.37	4.54	0.20	Mamani & Ibarra	2000
990729-9	68.84	0.44	15.42	2.81	0.05	0.66	1.80	3.60	4.49	0.09	Mamani & Ibarra	2000
990729-6	70.06	0.41	15.17	2.64	0.03	0.58	1.69	3.63	4.76	0.11	Mamani & Ibarra	2000
990727-3	63.77	0.62	17.96	3.87	0.08	0.91	1.66	3.88	4.68	0.17	Mamani & Ibarra	2000
990614-2	69.96	0.42	14.55	2.52	0.03	0.65	1.74	3.39	4.54	0.11	Mamani & Ibarra	2000
Lg - 367	62.59	0.97	15.74	5.51	0.12	2.45	4.34	4.22	3.66	0.40	INGEMMET	1993
Lg - 401	64.19	0.82	15.59	5.18	0.07	2.15	4.06	3.92	3.73	0.29	INGEMMET	1993
Lg - 402	62.36	0.90	16.49	5.54	0.10	2.53	4.43	3.59	3.72	0.34	INGEMMET	1993
Lg - 403	63.65	0.83	15.50	5.31	0.10	2.46	4.35	3.68	3.76	0.31	INGEMMET	1993
Lg - 404	63.71	0.83	16.06	5.02	0.11	2.09	3.92	4.11	3.82	0.33	INGEMMET	1993
Lg - 405	64.47	0.78	15.88	5.00	0.08	1.60	3.76	4.16	3.94	0.33	INGEMMET	1993
Lg - 406	64.47	0.81	15.97	5.12	0.08	1.20	3.72	4.28	4.01	0.34	INGEMMET	1993
Lg - 407	64.56	0.81	15.88	4.96	0.06	1.40	3.85	4.20	3.95	0.33	INGEMMET	1993
Lg - 408	64.93	0.83	16.01	5.05	0.07	0.92	3.65	4.21	4.00	0.33	INGEMMET	1993
Lg - 409	63.12	0.94	16.19	5.50	0.11	1.58	4.39	4.09	3.67	0.41	INGEMMET	1993
HU010600	69.98	0.20	13.62	1.45	0.08	0.39	0.96	3.06	4.59	0.04	INGEMMET	2004
OMT39	73.07	0.28	13.61	2.45	0.05	0.54	1.66	3.39	3.88	0.06	INGEMMET	2004
PI3112	72.83	0.19	13.37	1.22	0.02	0.13	0.43	2.98	6.77	0.02	INGEMMET	2004
PI17102	73.61	0.15	13.61	0.97	0.05	0.09	0.60	3.50	5.29	0.02	INGEMMET	2004
PI2112	69.58	0.17	11.95	0.93	0.01	0.55	2.01	0.78	5.00	0.04	INGEMMET	2004
SOR - 1	64.10	0.52	14.00	5.43	0.08	1.41	5.63	3.22	3.27	0.50	Buenaventura	2003
CON - 5	64.60	0.72	13.20	6.56	0.07	1.29	6.13	4.23	2.91	0.60	Buenaventura	2003
64191	63.50	0.54	15.80	5.78	0.06	1.52	5.30	3.58	3.47	0.30	Buenaventura	2003
62505	73.40	0.38	9.93	3.75	0.01	0.41	1.47	2.82	4.35	0.10	Buenaventura	2003
APACH - 1	66.70	0.58	12.80	7.35	0.06	1.83	5.33	3.72	2.81	0.50	Buenaventura	2003
APACH - 2	65.00	0.59	11.00	6.86	0.07	1.82	5.28	3.37	3.15	0.50	Buenaventura	2003
APACH - 3	63.30	0.71	13.40	8.23	0.06	2.26	6.62	3.88	2.48	0.50	Buenaventura	2003

Tabla No. 10: Correlación Pearson de elementos mayores de los volcánicos Cenozoicos.

		TiO[2]	AI[2]O[3]	Fe[3]O[4]	MnO	MgO	CaO	Na[2]O	K[2]O	P[2]O[5]	
		-0.91	-0.44	-0.90	-0.89	-0.93	-0.90	-0.27	0.68	-0.82	SiO[2]
			0.51	0.85	0.85	0.83	0.82	0.51	-0.68	0.80	TiO[2]
				0.18	0.41	0.26	0.15	0.56	-0.08	0.13	AI[2]O[3]
					0.77	0.86	0.97	0.32	-0.84	0.93	Fe[3]O[4]
						0.86	0.77	0.32	-0.55	0.73	MnO
							0.85	0.10	-0.66	0.72	MgO
								0.24	-0.82	0.94	CaO
									-0.30	0.39	Na[2]O
Buena c	orrelación (-)		Buena correlació	on (+)		Diagramas tria	angulares			-0.81	K[2]O
Ti Si	P Si	Fe Ti	Mn Fe	Ca Mn	Fe Si Ti	Mn Si Fe	Mn Si Ca	Fe K Ca			
Fe Si	K Fe	Mn Ti	Mg Fe	P Mn	Ti Si Mn	Fe Si Mg	Mn Si P	P K Fe			
Mn Si	K Ca	Mg Ti	Ca Fe	Ca Mg	Ti Si Mg	Fe Si Ca	Ca Si Mg	P K Ca			
Mg Si	ΡK	Ca Ti	P Fe	P Mg	Ti Si Ca	Fe Si P	P Si Mg				

Mn Si Mg

P Si Ca

Ti Si P

P Ca

Ca Si

P Ti

Mg Mn

Tabla No. 11: Resultados PIMA Zona Aconcahua

Muestra	Localidad	Este	Norte	Descripción de muestra de mano	aln	dck	kao	hlo	mont	anh	nont	Alteración
P-15	Aconcahua	404610	8139205	Tobas riodaciticas blancas, flujo laminar, textura cristaloclástica					40	30	30	Propilítica
P-16	Aconcahua	404145	8139270	Brecha piroclástica con fragmentos subangulosos, matríz rosada, textura de flujo				15	35	50		Propilítica
P-17	Aconcahua	403910	8139510	Flujos de lava andesitica violacea, cristales de biotita y hornblenda, y plagioclasas				10	55	35		Propilítica
P-18	Aconcahua	403845	8139350	Toba blanca riodacitica con cristales de biotita					75	25		Propilítica
P-19	Aconcahua	403755	8139175	Tobas rosadas con textura de flujo, cristales de plagioclasa, cuarzo y biotita					30	50	20	Propilítica
P-20	Aconcahua	403730	8139070	Toba blanca dacitica, textura cristaloclástica, cristales de biotita, plagioclasa con leve propilitización				40	60			Propilítica
P-21	Aconcahua	403695	8138935	Flujos laminares blanco con cristales de plagioclasas, biotitas					100			Propilítica
P-22	Aconcahua	403245	8138540	Flujos laminares con presencia de amigdalas rellenas de cuarzo cristalizado, trazas de alunita supérgena	100							Argílica avanzada
P-23	Aconcahua	403090	8138600	Devitrificación y oquedades con relleno de cuarzo, limonitas en trazas				30	70			Propilítica
P-24	Aconcahua	402770	8138765	Flujos laminares ácidos blanquesinos			5	40	55			Argílica
P-25	Aconcahua	402900	8138940	Lavas andesíticas gris clara, textura de flujo, pirita diseminada(1%), venillas mm de sílice, leve propilitización				50		*50		Propilítica
P-26	Aconcahua	403015	8138920	Lavas andesíticas gris clara, textura de flujo, pirita diseminada(1%), venillas mm de sílice, leve propilitización				20	30	*50		Propilítica
P-27	Aconcahua	403100	8138945	Lavas andesíticas, concentraciones de sílice con alunita supérgena	20	10	70					Argílica avanzada
P-28	Aconcahua	403930	8138585	Flujos laminares blancos con cristales de plagioclasas, hornblendas				40		60		Propilítica
P-29	Aconcahua	403665	8138640	Flujos laminares blancos				100				Propilítica
P-30	Aconcahua	403300	8138705	Flujos de lavas andesitica-basálticas, cristales de hornblenda, plagioclasas, pirita diseminada (2%)				15		70	15	Propilítica
P-31	Aconcahua	403240	8138890	Lavas andesitica-basálticas con leve argilización, concentraciones de sílice blanca		10	90					Argílica
P-32	Aconcahua	403150	8138965	Lavas andesitica-basaltica con venillas milimétricas de sílice, pirita en trazas, leve propilitización				45		*55		Propilítica
P-33	Aconcahua	403235	8138990	Lavas andesitica-basálticas, leve propilitización, pirita en trazas, cristales de plagioclasas, hornblenda				40		60		Propilítica
P-34	Aconcahua	403320	8138955	Estructura de silice blanca a gris, longitud de afloramiento 8m, potencia 4m, fractutamiento S 60º E/60º SW	40	5	25			*30		Argílica avanzada
P-35	Aconcahua	403765	8138270	Flujos laminares siliceos blanco con presencia de amigdalas				100				Propilítica
P-36	Aconcahua	402720	8138485	Brecha priroclástica con fragmentos de andesitas-basálticas en una matriz rosada, leve propilitización				40		60		Propilítica
P-37	Aconcahua	401880	8138535	Lavas andesítica propilitizada con venillas milimétricas de sílice a manera de stockwork, trazas de pirita				40	30	*30		Propilítica
P-38	Aconcahua	402050	8138750	Lavas andesíticas verdosas leve argilización, textura porfirítica			25	35		40		Argílica
P-39	Aconcahua	402825	8139125	Lavas andesíticas moderadamente propilitizadas, venillas milimétricas de sílice, textura porfirítica					60	*40		Propilítica
P-40	Aconcahua	402165	8139060	Lavas andesíticas, textura porfirítica, leve argilización, limonitas (2%) en fracturas			10	25	65			Argílica

Tabla No. 11: Resultados PIMA Zona Aconcahua

Muestra	Localidad	Este	Norte	Descripción de muestra de mano	aln	dck	kao	hlo	mont	anh	nont	Alteración
P-41	Aconcahua	401740	8138890	Tobas verdosas, cristales de biotitas, concentraciones de silice, pirita (2%)					30	*50	20	Propilítica
P-42	Aconcahua	405030	8138320	Flujos laminares ácidos violaceos con presencia de amigdalas, cristales de biotita				65		35		Propilítica
P-43	Aconcahua	405100	8138065	Flujos piroclástico gris oscuro con abundantes cristales de plagioclasas					40	45	15	Propilítica
P-44	Aconcahua	404665	8137955	Flujos piroclásticos daciticos blancas, textura cristaloclástica, cristales de biotita					35	35	30	Propilítica
P-45	Aconcahua	404205	8137660	Flujos piroclásticos laminares dacíticos, textura cristaloclástica				20	35	45		Propilítica
P-46	Aconcahua	403710	8137375	Aglomerados volcánicos violaceos con cristales de plagioclasas, biotitas, limonitas en fracturas			15	40	35		10	Argílica
P-47	Aconcahua	401755	8139645	Lavas debilmente argilizadas, pirita (2%), limonita (3%) - muestra eluvial			55		45			Argílica
P-48	Aconcahua	401735	8139980	Lavas alteradas con alteración argílica avanzada, venillas mm de sílice, pirita diseminada	70					*30		Argílica avanzada
P-49	Aconcahua	401800	8139910	Alteración argílica avanzada, pirita (2%), limonitas (5%)	30		70					Argílica avanzada
P-50	Aconcahua	402015	8139975	Lavas andesítica- basálticas argilizadas con algunas venillas mm de sílice blanca			35		35	*30		Argílica
P-51	Aconcahua	402213	8139998	Alteración supérgena de lavas andesitico- basaltica, cristales de plagioclasas, biotita no alteradas					60	40		Propilítica
P-52	Aconcahua	405210	8138275	Flujos laminares con lapillis y devitrificación, escasa ceniza					35	50	15	Propilítica
P-53	Aconcahua	405415	8138330	Ignimbrita con sanidina				30		70		Propilítica
P-54	Aconcahua	405850	8138610	Ignimbrita con sanidina gris y pirolusita, fracturamiento N-S/70º E						45	55	Propilítica
P-55	Aconcahua	404585	8139810	Devitrificación, en partes microbrechamiento					40	35		Propilítica
P-56	Aconcahua	404615	8139815	Niveles tobáceos blancos con cristales de biotita			5	45		45	5	Propilítica
P-57	Aconcahua	404710	8139900	Tobas con cristales de biotita sobre flujos laminares				20		55	25	Propilítica
P-58	Aconcahua	404980	8140150	Roca tobáceas con niveles lavico(?) blancas						100		Propilítica
P-59	Aconcahua	405240	8140295	Flujo laminar con grietas desecación				10		90		Propilítica
P-60	Aconcahua	405645	8140305	Ignimbritas con cristales de sanidina				10		70	20	Propilítica
P-61	Aconcahua	405950	8138625	Ignimbritas con cristales de sadinina					40	50	10	Propilítica
P-62	Aconcahua	404070	8138605	Obsidiana negra				15	55	20	15	Propilítica
P-70	Aconcahua	401380	8137300	Lavas andesitica-basáltica negras textura fluidal, cristales de hornblenda					35	30	35	Propilítica
P-71	Aconcahua	402585	8136985	Ignimbritas rosadas				60			40	Propilítica
P-72	Aconcahua	404756	8136785	Ignimbritadas levemente propilitizadas				20	45		35	Propilítica
64119	Aconcahua	402860	8138680	Brecha piroclástica, fragmentos subangulosos de lavas andesíticas, matríz silicificada, alunita supergéna	60			40				Argílica avanzada
64191	Aconcahua	403185	8140085	Lavas andesíticas, textura fluidal, violácea a negra					35	55	10	Propilítica
64208	Aconcahua	406460	8138880	Flujo piroclástico grisáceo con fenocristales de sanidina					10	75	15	Propilítica
64209	Aconcahua	406200	8139105	Ignimbritas con fenocristales de sanidina, hornblendas, ligeramente cloritizadas					40	60		Propilítica

Tabla No. 12: Resultados PIMA Zona Peñón

Muestra	Zona	Este I	Norte	Descripción de muestra de mano	aln	kao	hlo	mont	anh	nont	Tipo de alteración
62534	Peñón	409159 81	135935	Brecha piroclástica, control estructural, levemente propilitizada			60			40	Propilítica
62535	Peñón	409629 81	135987	Roca piroclástica, control estratigráfico, presencia puntual de alunita	30		40			30	Argílica avanzada
62536	Peñón	409670 81	135943	Roca piroclástica, alunita entrecrecida con arcillas	70		30				Argílica avanzada
62537	Peñón	409374 81	135528	Roca piroclástica, porosa, levemente propilitizada			60	20		20	Propilítica
62538	Peñón	410481 81	135572	Flujo lávico andesítico, alteración propilitica				30		70	Propilítica
62539	Peñón	410301 81	135628	Roca piroclástica, puntos de alunita	30		20	30		20	Argílica avanzada
62540	Peñón	410134 81	135615	Roca piroclástica, levemente propilitizada			20	60	20		Propilítica
62541	Peñón	410053 81	135592	Brecha piroclástica con impregnación de calcedonia y arcillas en vesiculas			40	30	30		Propilítica
62542	Peñón	409837 81	135421	Roca piroclástica, propilítica			40	30	30		Propilítica
62543	Peñón	409946 81	135526	Roca piroclástica, puntos de alunita	60	20				20	Argílica avanzada
62545	Peñón	409946 81	135526	Roca piroclástica, propililítica			50	30	10	10	Propilítica
62546	Peñón	410211 81	135068	Brecha de craquelamiento, propilítica				30	30	40	Propilítica
64102	Peñón	409090 81	134855	Cuello de chimenea, sílice porosa, impregnación de óxidos y cuarzo, craquelado, sopecha de alunita	30	20		15	*25	10	Argílica avanzada
64103	Peñón	409320 81	135110	Brecha piroclástica andesítica, fragmentos andesíticos con plagioclasas de 3cm de largo	60			40			Argílica avanzada
64104	Peñón	409745 81	135245	Piroclástico, fragmentos angulosos andesíticos, pomez, algunos fragmentos argilizados de hasta 2cm				50	30	20	Propilítica
64105	Peñón	410035 81	135150	Flujos piroclásticos, con leve propilitización con impregación de óxidos			30	40	30		Propilítica
64106	Peñón	410220 81	135050	Area propílitica, craquelada, con concentraciones de arcillas, pirita, limonitas entre los fragmentos			50		30	20	Propilítica
64107	Peñón	410385 81	134945	Estructura tipo brecha silicificada, limonita en fracturas			30		*40	30	Silicificación
64108	Peñón	410380 81	134940	Estructura, clastos silicificados brechados cortados por sílice - limonita (2%)			40	30	*30		Silicificación
64109	Peñón	410375 81	134935	Estructura brechada, limonita en fracturas				50	50		Silicificación
64110	Peñón	410365 81	134920	Caja de la brecha - sílice, craquelada con impregnación de limonitas, puntos de alunita	30	20		50			Argílica avanzada
64111	Peñón	409770 81	134905	Piroclasto en zona de falla, puntos de alunita, venillas milimétricas de sílice, óxidos	20			55	*25		Argílica avanzada
64112	Peñón	410545 81	134750	Piroclasto, fragmentos lávicos angulosos de hasta 3cm, matriz rojiza, limonita en fracturas	20		60			20	Argílica avanzada
64113	Peñón	410460 81	134786	Dique brecha, sílice calcedónica, arcillas en concentraciones, clastos andesiticos, limonitas		40		60			Argílica
64114	Peñón	410360 81	134940	Brecha de óxidos, fragmentos menor a 1cm silicificados, limonitas, presencia puntual de alunita	60					40	Argílica avanzada
P-11	Peñón	409770 81	134905	Piroclásto en zona de falla, poroso, venillas milimétrica de sílice hialina, puntos de alunita	20		40	40			Argílica avanzada
P-12	Peñón	410460 81	134780	Dique brecha, impregnación de sílice calcedónica, puntos de alunita	20			40	*40		Argílica avanzada

*) Lecturas de PIMA con porcentajes mayores al 20% de anhidrita, se interpreta como sílice (evidencia macroscópica).

Tabla No. 13: Resultados PIMA Zona Orcorara

Muestra	Zona	Este	Norte	Descripción muestra de mano	aln	kao	hlo	mont	anh	jar	nont	Tipo de alteración
62498	Orcorara	417222	8132132	Flujo piroclàstico brechado con arcillas, impregnación de óxidos y limonitas.			40	60		-		Propilítica
62499	Orcorara	417218	8132094	Estructura irregular, impregnación calcedónica, óxidos ± limonitas, pirita diseminada.	70	30						Argílica avanzada
62500	Orcorara	417243	8131960	Piroclasto intensamente alterado, presecia de alunita y venillas de silice calcedónica.	20		50		*30			Argílica avanzada
62501	Orcorara	417514	8131859	Crestón con silicificación intensa, tendencia brechada, presencia de arcillas.				60			40	Silicificación
62502	Orcorara	417554	8131888	Alteración argílica avanzada, mega stock work de sílice calcedónia y pirita diseminada.	20		30		*40		10	Argílica avanzada
62503	Orcorara	417578	8131967	Estructura irregular, brechada, silicificada, arcillas con impregnación de óxidos y limonitas.				30	*40		30	Silicificación
62504	Orcorara	417539	8131985	Estrucrura, fuertemente silicificado con sílice calcedónica, impregnación de óxidos ± limonitas.	60	20						Argílica avanzada
62505	Orcorara	417572	8132093	Flujo lávico andesítico con presencia de pirita diseminada y arcillas.			60				40	Propilítica
62506	Orcorara	417614	8132184	Afloramiento con aspecto brechado, debilmente silicificado, pseudo vuggy silica.	70				*30			Argílica avanzada
62507	Orcorara	417646	8132157	Estrucrura irregular con puntos de alunita y sílice calcedónica en venillas.	30		30		*40			Argílica avanzada
62508	Orcorara	417545	8132302	Net work con silicificación débil y arcillas.			30		*70			Propilítica+silicificación
62509	Orcorara	417560	8132357	Afloramiento con aspecto brechado, debilmente silicificado, impregnación de ox + lim	50				*50			Argílica avanzada
62510	Orcorara	417417	8132387	Gossan intensamente silicificado, aspecto pseudo vuggy silica					*80		20	Silicificación
62511	Orcorara	417703	8132398	Agregado cuarzo - alunita fino, muy poroso	50					50		Argílica avanzada
62512	Orcorara	417701	8132793	Estructura irregular con silicificación calcedónica, aspecto brechado, alunita, pirita diseminada.	80	20						Argílica avanzada
62513	Orcorara	417291	8132679	Estructura con aspecto brechado, silicificación débil a moderada, óxidos ± limonitas			10	40	*40		10	Silicificación
62514	Orcorara	417152	8132765	Estructura con silicificación débil a fuerte, aspecto brechado, impregnación de óxidos ± limonita			30	30	*40			Silicificación
62517	Orcorara	417097	8132751	Estructura con silicificación calcedónica, aspecto brechado, presencia de alunita.	60				*40			Argílica avanzada
62518	Orcorara	417097	8132751	Estructura con silicificación calcedónica, aspecto brechado, alunita, pirita diseminada.	50				*50			Argílica avanzada
62519	Orcorara	417097	8132751	Estructura con silicificación calcedónica, alunita, pirita diseminada.	20		30		*50			Argílica avanzada
62520	Orcorara	417148	8132944	Afloramiento brechado, con silicificación calcedónica débil a moderada ± arcillas.				80	*20			Propilítica+silicificación
62521	Orcorara	417500	8132634	Roca fuertemente silicificada, impregnación de óxidos ± limonitas.			40		*60			Silicificación
62522	Orcorara	417803	8132536	Estructura irregular, fuertemente silicificada, aspecto brechado, impregnación de óxidos ± limonita.			50		*50			Silicificación
62523	Orcorara	417861	8132419	Estructura, moderadamente silicificada, aspecto brechado, alunita, impregnación de óxidos ± limonita	50				*50			Argílica avanzada
62524	Orcorara	417929	8132658	Estructura, moderadamente silicificada, aspecto brechado, alunita, impregnación de óxidos ± limonita	80		20					Argílica avanzada
62525	Orcorara	418140	8132675	Estructura con silicificación débil, alunita, impregnación de óxidos ± alunita.	100							Argílica avanzada
62526	Orcorara	418404	8132644	Afloramiento brechado con impregnación de óxidos ± limonitas, arcillas.			10		*90			Propilítica
62527	Orcorara	418568	8132417	Estructura, moderadamente silicificada, aspecto brechado, alunita, impregnación de óxidos ± limonita	60				*40			Argílica avanzada
62528	Orcorara	418993	8132475	Estructura, moderadamente silicificada, aspecto brechado, alunita, impregnación de óxidos ± limonita	30			40	*30			Argílica avanzada
62529	Orcorara	418336	8132394	Estructura, moderadamente silicificada, alunita, aspecto brechado, impregnación de óxido ± limonita.	100							Argílica avanzada
62530	Orcorara	417546	8132964	Afloramiento brechado con impregnación calcedónica, alunita.	80	20						Argílica avanzada
62531	Orcorara	417934	8133059	Alteración argílica avanzada, silicificación calcedónica débil a moderada, impregnación de óxidos.	100							Argílica avanzada
62532	Orcorara	417897	8132917	Tufo con alteración argílica avanzada, venillas irregulares de sílice amorfa, aspecto calcedónica.	80				*20			Argílica avanzada
62533	Orcorara	418098	8132874	Estructura con silicificación débil, alunita, impregnación de óxidos ± limonitas.	60		20	20				Argílica avanzada
64073	Orcorara	416355	8132025	Piroclasto con cuarzo ± arcillas.				80	*20			Propilitica
64084	Orcorara	417310	8131575	Piroclasto con leve presencia de arcillas, alteración propilitica.			100					Propilitica
64087	Orcorara	417700	8131850	Estructura silicificada, venillas de silice amorta, alunita.	50				*50			Argilica avanzada
64088	Orcorara	417710	8131825	Estructura de cuarzo - alunita.	100				*100			Argilica avanzada
64089	Orcorara	41/815	8131770	Ex piroclastica, clastos silicificados dentro de una matriz de arcillas (lectura en clasto).					*100			Silicificacion
64091	Orcorara	41/8/0	8131670	Lavas andesiticas basalticas, levemente propilitizadas.	45		10	60	*30			Propilitica
64092	Orcorara	416873	8132056	Bx piroclastica, alunita, venillas mm de silice amorta.	45				^55			Argilica avanzada
64095	Orcorara	418262	8131650	Bx piroclastica, alunita en matriz.	40	00		60				Argilica avanzada
64096	Orcorara	418445	8131600	Bx piroclastica, alunita en matriz.	80	20						Argilica avanzada
64098	Orcorara	418150	8132300	Creston con silicificación intensa, tendencia brechada, presencia de alunita.	100							Argilica avanzada
64099	Orcorara	418065	8132120	Silice bianquesina a gris, craquelada, presencia de alunita.	100				*00			Argilica avanzada
A-4	Orcorara	417233	832026	i uio con aneración arginica avanzada, venillas irregulares de silice amorra.	70	FF		45	<i>"</i> 30			Argilica avanzada
P-4	Orcorara	41/430	0131/40	Lavas anuesnicas, aneración arginica, mezcia de arcillas con oxidos.	20	25 70		45				Argilica Argílica avenzada
P-3	Orcorara	410015	013192U	Lavas con reluespalos alterados a alumita, impregnación de silice calcedonica.	30	10		50				Argílica avanzada
P-/	Orcorara	417190	9131093	Lava von antiavivi digiliva avalizava. Lava sen feldeenates alterados e alunita, sileificesión dóbil sílice tono aris selecciónics.	20	30		50	*40			Argílica avanzada
I P-10	Ulcolara	410000	0131990	ILAVAS CONTRIVESDATOS AITERADOS A AIUNITA. SIICIIICACIÓN GEDIL SILICE TONO GUS CAICEGONICA.	00				40	1		Arunica avanzada

Tabla No. 14: Resultados PIMA Zona Antajave

Muestra	Localidad	Este	Norte	Descripción muestra de mano	aln	pirof	kao	hlo	mont	mus ¹	anh	jar	non	t Alteración
62558	Antajave	405856	8127756	Piroclasto, argílica avanzada moderada, silificación débil, cuarzo granular fino.	80						*20			Argilica avanzada
62558(caja)	Antajave	405846	8127766	Piroclasto, argilización moderada.			20	40	40					Argilica
62559	Antajave	405730	8127762	Estructura, tendencia N 65º E, aspecto brechada, presencia de alunita ± arcillas.	30		10	30	30					Argilica avanzada
62560	Antajave	405598	8127801	Estructura irregular, tendencia N 60º E, silicificación calcedónica.							*100			Silicificación
62561	Antajave	405484	8127803	Brecha clastos alterados y frescos, matriz con arcillas, impregnación de óxidos.				100						Propilítica
62562	Antajave	405247	8127796	Brecha hidrotermal, matriz con cuarzo granular fino, clastos silicificados.							*100			Silicificación
62563	Antajave	405109	8127906	Alt fílica intensa, pseudomorfos de biotita reemplazados por sericita.				60		40				Filica
62564	Antajave	405103	8127946	Estructura irregular, tendencia NS, sílice calcedónica y cuarzo grano fino.							*100			Silicificación
62565	Antajave	405103	8127946	Extensión de la estructura anterior, silicificación fuerte, cuarzo granular fino ± arcillas.							*60		40	Silicificación
62566	Antajave	405014	8128049	Brecha con alteración argílica avanzada. Matriz cuarzo - alunita - óxidos.	80							20		Argilica avanzada
62567	Antajave	404951	8127921	Estructura irregular, argílica avanzada intensa, matriz cuarzo - alunita, brechada.	100									Argilica avanzada
62568	Antajave	404898	8128027	Argílica avanzada intensa, silicificación calcedónica, aspecto poroso.	90			10						Argilica avanzada
62569	Antajave	404470	8127818	Estructura N 15º W, brechada, silicificacion calcedónica, presencia de alunita.	80						*20			Argilica avanzada
62570	Antajave	404406	8127755	Afloramiento con alteración argílica avanzada, silicificación moderada.	60						*40			Argilica avanzada
62571	Antajave	404391	8127689	Estructura N 60º W, alunita ± sílice masiva y venillas de silice gris con pirita.	50				50					Argilica avanzada
62572	Antajave	404630	8127602	Material coluvial con alteración argílica avanzada mod, silicificación débil, azufre en poros.	90						10			Argilica avanzada
62573	Antajave	404767	8127469	Argílica avanzada moderada, cuarzo granular fino ± alunita, venillas de alunita.	80						*20			Argilica avanzada
62574	Antajave	405622	8127367	Estructura N 60º E, argilización moderada, presencia de arcillas.			40	60						Argilica avanzada
62575	Antajave	405577	8127359	Estructura N 40° E, silicificación débil, alunita ± cuarzo granular fino, pseudomorfos de biotita.	10		10	80						Argilica avanzada
62576 (caja)	Antajave	405587	8127349	Estructura N 40º E, argílica moderada, pseudomorfos de biotita reemplazados por sericita?.			10	40	50					Argilica avanzada
62577	Antajave	405535	8127353	Estructuras irregulares (N 80° E), feldespatos alterados a arcillas, silicificación débil.			60		40					Argílica
62578	Antajave	405240	8127258	Andesitas con alteración propilítica, arcillas en fracturas.				70	30					Propilítica
62579	Antajave	405166	8127202	Piroclasto con ligera alteración de biotita a muscovita, impregnación de óxidos.				30		70				Filica
62580	Antajave	405049	8127165	Argílica avanzada fuerte, silicificación calcedónica, azufre en poros.	80				20					Argilica avanzada
62581	Antajave	404755	8127101	Muestra de trinchera, argílica avanzada, alunita en venillas, cuarzo granular fino.	40	20		20	20					Argilica avanzada
62582	Antajave	404468	8127106	Argílica avanzada fuerte a intensa, tendencia porosa, abundante alunita				60	20				20	Propilítica
62583	Antajave	404443	8127173	Bx hidrotermal de 14.5 m de ancho, control estructural EW, matriz con cuarzo - alunita.	40	20			40					Argilica avanzada
62584	Antajave	404368	8127381	Brecha con cemento denso de óxidos, presencia de sílice masiva.							*100			Propilítica
62585	Antajave	404374	8127354	Alteración argilica avanzada intensa, cuarzo fino - alunita granular.	80						*20			argilica avanzada
62586	Antajave	404374	8127372	Argílica avanzada, aspecto poroso, sulfuros diseminados.	100									argilica avanzada
62587	Antajave	404363	8127504	Silicificación moderada e irregular, biotita alerada a muscovita, arcillas.					20	10			70	Filica
62588	Antajave	404370	8127593	Argílca avanzada, alunina granular intercrecida con cuarzo fino.	100									Argilica avanzada
62589	Antajave	404424	8126811	Propilitización moderada acompañada de arcillas.					50				50	Propilítica
62590	Antajave	404417	8126740	Argílica avanzada, aspecto brechada, porosa. Sílice masiva.	40						*60			Argilica avanzada
62591	Antajave	404392	8126626	Brecha con matriz de arcillas, impregnación de óxidos.			60	20					20	Argílica
62592	Antajave	404392	8126626	Brecha debilmente alterada, matriz con arcillas, silicificación moderada, sílice masiva.				20			*60		20	Silicificación
62593	Antajave	404392	8126626	Prolongación de la brecha anterior, silicificación fuerte, sílice masiva.							*100			Silicificación
62594	Antajave	404673	8126310	Estructura N 40º W, aspecto brechado, arcillas, silicificación calcedónica débil.				40	60					Propilítica
62595	Antajave	404820	8126339	Alteración propilítica moderada, sílice calcedónica con arcillas.				90	10					Propilítica
62596	Antajave	405088	8126260	Brecha con alteración argílica avanzada moderada, silicificación calcedónica débil.	60		10				*30			Argilica avanzada
62597	Antajave	405223	8126331	Material coluvial con alteración argílica avanzada intensa, cuarzo-alunita-arcillas.	50				50	1				Argilica avanzada
62598	Antajave	404463	8127173	Estructura (N 75º E/85º SE), aspecto brechado, argílica avanzada, óxidos.	30	20	30		20	1				Argilica avanzada
62599	Antajave	404175	8127305	Argilica fuerte, silicificación débil calcedónica y cuarzo granular fino.			80	20						Argílica
62600	Antajave	403991	8127265	Argílización moderada, silicificación calcedónica moderada.	20		10	50	20	1				Argilica avanzada
67001	Antajave	403915	8127239	propilitización moderada.				50	50	1				Propilítica
67002	Antajave	404061	8127001	Sub-afloramiento con alteración argílica avanzada, silicificación moderada.	100					l				Argilica avanzada

Tabla No. 14: Resultados PIMA Zona Antajave

Muestra	Localidad	Este	Norte	Descripción muestra de mano	aln	pirof	kao	hlo	mont	mus ¹	anh	jar	nont	Alteración
67003	Antajave	404076	8127011	Estructura (N 55º E), aspecto brechado, argílica avanzada, cemento de óxidos.	90			10						Argilica avanzada
67004	Antajave	404200	8127013	Sub-afloramiento con alteración argílica avanzada fuerte, sílice calcedónica.	80	10					10			Argilica avanzada
67005	Antajave	404194	8126994	Estructura (N 50° E/80° SE), argílica avanzada intensa, silicificación moderada.	100									Argilica avanzada
67006	Antajave	404122	8126805	Sub-afloramiento con alteración argílica avanzada intensa, venillas de alunita.	100									Argilica avanzada
67007	Antajave	403944	8126383	Piroclasto con alt argilica mod a propilitica				60	10				30	Propilítica
67008	Antajave	404625	8125908	Piroclasto con alteración propilítica.				50	20				30	Propilítica
67009	Antajave	405036	8125829	Piroclasto con argilización débil hasta propilítica.			10	90						Argílica
67010	Antajave	404622	8126790	Alteración argilica avanzada fuerte, silicificación moderada.	90						10			Argilica avanzada
67011	Antajave	404621	8126817	Alteración argilica avanzada fuerte.	70	30								Argilica avanzada
67012	Antajave	404340	8126666	Alteración argilica avanzada fuerte.	80							20		Argilica avanzada
67013	Antajave	403824	8126304	Alteración argilica avanzada moderada.	10			50	40					Argilica avanzada
67014	Antajave	403506	8126301	Alteración argilica avanzada fuerte, silicificación fuerte.	60		20				*20			Argilica avanzada
67015	Antajave	404082	8126248	Alteración argilica avanzada fuerte, silicificación fuerte.	70		10	10			10			Argilica avanzada
67016	Antajave	404134	8126193	Alteración argilica avanzada intensa.	50				30		*20			Argilica avanzada
67017	Antajave	404217	8126199	Alteración argilica, kaolinita en fracturas.			10	80	10					Argílica
67018	Antajave	404626	8126519	Alteración propilítica, craquelamiento.				10	40		10	30	10	Propilítica
67019	Antajave	404813	8126625	Silicificación fuerte, sílice calcedónica y venillas mm de cuarzo criptico, óxidos en fracturas.							*100			Silicificación
67020	Antajave	404840	8126576	Argílica avanzada, silicificación moderada, óxidos en fracturas.	10		20	60	10					Argilica avanzada
67021	Antajave	404930	8126518	Argílica avanzada, silicificación moderada, craquelamiento, óxidos en fracturas.	20			40	20		10		10	Argilica avanzada
67022	Antajave	404983	8126463	Alteración argílica moderada, biotita alteradas a sericita?, pirita diseminada.			10	70	20					Argílica
67023	Antajave	405040	8126449	Alteración argílica avanzada con halo argilizado.	10		10	70	10					Argilica avanzada
67024	Antajave	404661	8128210	Argílica avanzada, cuarzo - alunita - arcillas, silicificación moderada e irregular.	60		30		20					Argilica avanzada
67025	Antajave	404128	8128316	Ignimbrita riodacitica debilmente propilitizada				60					40	Propilítica
67026	Antajave	404270	8128296	Trinchera, piroclastos con alteración propilítica.				90	10					Propilítica
67027	Antajave	404300	8128320	Craquelamiento, argílica avanzada, cemento de óxidos.	20				40				40	Argilica avanzada
67028	Antajave- Norte	404001	8129214	Flujo ignimbritico con clastos propilitizados y matriz debilmente.				30				30	40	Propilítica
67029	Antajave- Norte	404139	8129146	Lahar con matriz debilmente propilitizada, clastos frescos a propilíticos.					10			30	60	Propilítica
67030	Antajave- Norte	405896	8128484	Subafloramiento, puntual alteración argílica avanzada, silicificación débil.	30		10	20	40					Argilica avanzada
67031	Antajave- Norte	405841	8128311	Alteración propilítica a argílica débil. Control estructural N 60º E.			10	90						Argílica
67032	Antajave- Norte	406004	8128150	Alteración argílica avanzada, puntos de alunita.	20		50	30						Argilica avanzada
67033	Antajave- Norte	406209	8128400	Ignimbrita con venillas irregulares y manchas de alunita.	20			80						Argilica avanzada
67034	Antajave- Norte	405588	8128475	Ignimbritas con alteraciónargílica avanzada, cuarzo - alunita - óxidos - arcillas.	10		10	20	40				20	Argilica avanzada
67051	Antajave- Sur	404955	8125350	Piroclasto con propilitización moderada a débil.				80					20	Propilítica
67052	Antajave- Sur	404551	8125536	Argílica avanzada debil, silicificación calcedónica, aspecto brechado.	20			20	60					Argilica avanzada
67053	Antajave- Sur	404576	8125652	Piroclasto con propilitización moderada.					50				50	Propilítica
67054	Antajave- Sur	404602	8125797	Ignimbrita con alteracion argilica avanzada, silicificación débil.	10			60	20				10	Argilica avanzada
67055	Antajave- Sur	404237	8124751	Ignimbrita con alteracion argilica avanzada, silicificación débil.	30				70					Argilica avanzada
67056	Antajave- Sur	404096	8124749	Piroclasto con alteración prpilítica moderada.				70	20					Propilítica
67057	Antajave- Sur	404049	8124750	Piroclasto con alteración prpilítica moderada.				60	40					Propilítica
67058	Antajave- Sur	403917	8124757	Piroclasto con alteración argilica avanzada débil, alunita en matriz y fracturas.	40				60					Argilica avanzada
67059	Antajave- Sur	404391	8124263	Sub-aflor con alteración argílica, control estructural N 80º E.			30	70						Argílica
67060	Antajave- Sur	404400	8124378	Craquelamiento con control estruc N 20º W, propilitización débil.				50	50					Propilítica
67061	Antajave- Sur	404041	8124119	Piroclasto, aspecto brechado, propilitización débil.				30	50				20	Propilítica
67062	Antajave- Sur	403555	8124712	Piroclasto debilmente propilitizado.				70	30					Propilítica
P - 1	Antajave	405100	8126450	Material coluvial (C ^o milluma), sospecha de pirofilita.		20		50		30				Argílica avanzada
P - 2	Antajave- Sur	403600	8124525	Sub-atloramiento debilmente propilitizado.		l		60	40					Propilítica