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ABSTRACT

The increased use of complex programmatic workflows and open data within the Earth 
sciences has led to an increase in the need to find and reuse code, whether as examples, tem-
plates, or code snippets that can be used across projects. The “Throughput Graph Data-
base” project offers a platform for discovery that links research objects by using structured 
annotations. Throughput was initially populated by scraping GitHub for code repositories 
that reference the names or URLs of data archives listed on the Registry of Research Data 
Repositories (https://re3data.org). Throughput annotations link the research data archives 
to public code repositories, which makes data-relevant code repositories easier to find.

Linking code repositories in a queryable, machine-readable way is only the first 
step to improving discoverability. A better understanding of the ways in which data 
is used and reused in code repositories is needed to better support code reuse. In this 
paper, we examine the data practices of Earth science data reusers through a classifi-
cation of GitHub repositories that reference geology and paleontology data archives. 
A typology of seven reuse classes was developed to describe how data were used with-
in a code repository, and it was applied to a subset of 129 public code repositories on 
GitHub. Code repositories could have multiple typology assignments. Data use for 
Software Development dominated (n = 44), followed by Miscellaneous Links to Data 
Archives (n = 41), Analysis (n = 22), and Educational (n = 20) uses. GitHub reposi-
tory features show some relationships to the assigned typologies, which indicates that 
these characteristics may be leveraged to systematically predict a code repository’s 
category or discover potentially useful code repositories for certain data archives.
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INTRODUCTION

Data in the Earth sciences have never been more open. Yet, 
this openness presents new obstacles for using data. The sheer 
scale and volume of open Earth science data often requires pro-
grammatic access to data archives (via an Application Program 
Interface [API]), complex computational pipelines, and new 
methods of making research reproducible (Belhajjame et al., 
2012a; Goble and De Roure, 2009; Hey, 2009). Code publica-
tion and open source software development have been proposed 
as ways to support Earth science data access and analysis, but 
while there are numerous repositories meant to facilitate code 
sharing, finding relevant code for a new research project is not 
always easy (Stall et al., 2018). Code is scattered through a wide 
range of platforms, including general purpose data archives such 
as Figshare, Dryad, or Pangaea; code-specific platforms such as 
BitBucket, GitLab, or GitHub; paper supplements and appendi-
ces; and personal webpages and blogs. Additionally, standards 
for software sharing and citation have lagged behind the need for 
software discovery (Barnes, 2010; Du et al., 2021; Howison and 
Bullard, 2016), which renders code harder to find and means that 
individuals who write and share code may not get the credit they 
deserve for their work.

The fragmentation of resources makes code reuse chal-
lenging, particularly for researchers without extensive program-
ming skills, students still developing programming skills, and 
researchers conducting work in a new discipline. Information 
organization has great power to shape scholarly communication 
and practices (Thomer and Wickett, 2020). Data reuse, includ-
ing the use of data archives, often requires significant first-hand, 
tacit knowledge of a data set and its context of production or 
provenance (Pasquetto et al., 2019; Zimmerman, 2007, 2008). 
Researchers who are not well versed in a particular discipline or 
specific data ecosystem are at a disadvantage when reusing data. 
This increases the risk of marginalized researchers and students 
being left behind as Earth scientists increasingly incorporate 
complex programmatic workflows, computation, and open data 
into their work. In other sciences that have become more compu-
tational, gender disparities tend to worsen. For instance, women 
comprise over 50% of those working in the field of biology but 
only 20% in computer science; computational biology is some-
where in between (Bonham and Stefan, 2017). Diversity across a 
number of metrics is low in the Earth sciences (Berhe and Ghez-
zehei, 2021), and proactive steps must be taken to ensure that 
structural shifts in the discipline do not result in greater inequity.

There is a clear need to improve the discoverability of 
code and data resources in the Earth sciences. We see particular 
potential in infrastructure to improve associations between code 
repositories and the data archives they query. Code repositories 
(like those on GitHub: https://github.com) are one of the primary 
ways that code is shared or published. However, GitHub’s search 
is not tailored to Earth science use cases, and it is largely a plain 
text search tool rather than semantic. By semantically “linking” 
code repositories to the data archives they query and augmenting 

those links with Earth science–specific metadata, we can greatly 
improve discoverability and usability.

Improving the discoverability of code is the primary goal of 
the Throughput database project. Throughput links existing, but 
scattered, resources via an annotation graph and thereby reduces 
the “time to science.” Throughput is a sort of meta-database with 
a focus on supporting interdisciplinary work and that of novice 
researchers. It stores information about other data sets and data-
bases and is populated by annotations that can be used to link 
data sets to other relevant material, provide contexts or correc-
tions, and otherwise help document the often tacit knowledge 
needed to reuse data.

This chapter begins with a brief overview of the obstacles 
to effectively reusing code in the sciences. We then describe our 
efforts to make code more discoverable via (1) the Throughput 
database and (2) the development of use-based metadata (as 
coined by Lynnes et al., 2020) to make code repositories easier 
to find within Throughput. Here, we define use-based metadata 
as keywords that describe the purpose of a code repository with 
respect to a data archive or data from a data archive. We develop 
a typology of the ways that GitHub developers use Earth science 
data archives. As one may expect, code repositories referencing 
Earth science data archives are most commonly used for soft-
ware development or data analysis. However, we also find that 
a significant number of code repositories use data archives for 
educational purposes or simply include links to Earth science 
data archives. We conclude by describing our plans to apply these 
categories as metadata within the Throughput database: first, by 
manual annotation, and eventually, by automatic classification 
via machine learning approaches. Making data and code archives 
easier to find and use is an important next step for geoinformat-
ics, and this paper is intended to facilitate that work. The use 
of Throughput as a tool to discover and thematically organize 
links between data and code repositories also serves a secondary 
purpose: to provide support for better software citation practices 
and to help data managers share emerging use cases for their 
data resources, and thereby increase their impact through links to 
existing code repositories.

CODE SHARING AND REUSE

Code publication is critical to supporting scientific repro-
ducibility (Barnes, 2010; Davison, 2012; Ince et al., 2012; Peng, 
2011; Stodden et al., 2013, 2016), particularly for complex com-
putational pipelines that are challenging to reproduce indepen-
dently (Belhajjame et al., 2012a; Goble and De Roure, 2009). 
Software citation guidelines (Fox et al., 2021; Katz and Chue 
Hong, 2018; Smith et al., 2016) and platforms such as Zenodo 
and the Open Science Framework are meant to make it easier to 
create a persistent reference to a codebase and therefore facilitate 
code reuse. Within the Earth sciences, there have been several 
efforts to facilitate code sharing and reuse, such as the NASA 
Earth Science Data Systems (ESDS) Software Reuse Portal 
(Downs et al., 2006; Gerard et al., 2007; Marshall et al., 2010).
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Despite these efforts, the widespread reuse of code is still 
nascent, and challenges remain in making code findable, citable, 
and reusable. Even those at large centers such as NASA have 
found themselves re-developing similar software pipelines rather 
than using existing software (Mattmann et al., 2011); similar 
trends have been observed in highly computational fields such 
as bioinformatics (Duck et al., 2016). Despite the development 
of citation guidelines, software citations in papers remain diverse 
and unstandardized. They are variously cited within references, 
the main text of a paper, acknowledgments, or linked in supple-
mental materials (Du et al., 2021; Howison and Bullard, 2016). 
Additionally, code itself can be shared in a variety of ways. Plat-
forms like GitHub, Bitbucket, and GitLab are used for collab-
orative development and sharing, though none of these platforms 
guarantees long-term archiving. Software journals, such as the 
Journal of Open Source Software (https://joss.theoj.org/), pro-
vide developers with a peer-reviewed space in which to docu-
ment their contributions more fully and link to persistent code 
repositories. Some computational workflows can be captured and 
then shared in a re-executable manner via technologies such as 
Taverna and Kepler, which essentially record the transformations 
and computations performed on a data set so that they can be re-
executed (Ludäscher et al., 2006), albeit with known limitations 
(Belhajjame et al., 2012b; Thomer et al., 2018).

Despite these challenges, code reuse is critical for the Earth 
sciences. Over the past several decades, significant time, fund-
ing, and labor have been invested in the development of Earth 
science data infrastructure. This includes data archives such as 
EarthChem, Pangaea, the Paleobiology Database, and more. Pub-
lication archives tailored for text mining were developed, such as 
GeoDeepDive (Peters et al., 2017). Data compilations emerged, 
such as COHMAP (COHMAP MEMBERS, 1988; Wright and 
Bartlein, 1993), MIOMAP (Carrasco et al., 2007), FAUNMAP 
(Graham and Lundelius, 1994), and eventually the Neotoma 
Paleoecology Database (Williams et al., 2018). Other develop-
ments include the creation of persistent identifier minting services 
such as IGSN (http://www.igsn.org/); the emergence of commu-
nities developing software, cyberinfrastructure, and interoperable 
data standards, such as LinkedEarth (http://linked.earth); and the 

iterative creation and refinement of best practices for data collec-
tion, analysis, and curation (Gil et al., 2016). Over the past decade 
in particular, initiatives such as EarthCube (https://earthcube.org) 
have resulted in considerable efforts to create data sharing infra-
structures in the Earth sciences. Not only do these infrastructures 
represent incalculable hours of labor, but the data they contain 
represent an incomparable source of longitudinal observations 
about our planet and even beyond. Use and reuse of these data is 
simply not optional for those working in many fields.

Many of these infrastructures are best accessed through com-
putational methods, such as calls to an online API, queries to a 
database, or through custom packages in R or Python. However, 
computational access isn’t always straightforward, and the modes 
of accessing and integrating data vary wildly across data resources. 
The technical skill needed to access each of these resources pres-
ents a real barrier to participation in our field. Facilitating code 
reuse (and therefore facilitating access to other resources) is criti-
cal to increasing participation in the Earth sciences by those with 
less access to community support (Goring et al., 2020). Beyond 
technical skill, individuals close to a particular project, repository, 
or data set often have the most complete understanding of that 
resource and are in the best position to reuse content (Pasquetto et 
al., 2019). Reuse becomes more challenging with distance, which 
is measured in time or “social distance,” between the originator 
and subsequent users. Distance creates a barrier to using and reus-
ing data and resources for those outside of a project, institution, 
or cultural clique. We can improve the use of resources by those 
marginalized by existing “invisible colleges” (De Solla Price and 
Beaver, 1966) if we make the connections between data and ana-
lytic resources explicit, which effectively reduces the social dis-
tance between individuals and data creators.

Throughput: A New Approach to Facilitating Code and 
Data Reuse

With the Throughput database, we seek to ease the chal-
lenge of resource access by using a graph database to link 
research objects in the geosciences using structured annotations 
(a guiding use case for this project is described in Box 1). A key 

Box 1. A Use Case for the Throughput Code Cookbook.

An early-career researcher is interested in understanding how extreme events in regional hydrology have affected soil 
development and ecosystem structure at multiple temporal scales. This interdisciplinary research project may require data 
from a paleoecological database, a hydrology resource, modern weather sensor networks, and a regional soils database. 
To ensure the analysis is FAIR (sensu Wilkinson et al., 2016), she may wish to directly download the data using an  
R script, transform spatial projections, and perform statistical analysis to understand how features are related over time. 

The Throughput Database would let this researcher search for code repositories that link soils databases and hydrol-
ogy data archives. The researcher can then use these repositories as a resource for accessing and transforming the 
data rather than reinventing each step in the workflow. This would allow her to make progress on her project more 
quickly—and could lead to a citation for the researcher who originally developed the code.
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goal for Throughput is to link publicly available analytic code 
to data sets (and data archives), publications, websites, grants, 
and other user-contributed information. Throughput is designed 
to engage and support FAIR principles (Wilkinson et al., 2016). 
The database leverages the use of findable resources through 
web standards that make resources accessible by machine or 
human through an interoperable platform and web framework 
that supports a federated approach to provide a set of resources, 
including open source software and documentation, which sup-
port the reuse of project elements and concepts and support 
the reuse of data across the web by capturing richer metadata 
through annotations.

Throughput aims to address particular challenges in 
managing scientific workflows that often fall on early-career 
researchers, researchers at institutions that are not primary 
research facilities, and disciplinary groups with long-term 
funding that are managing data that lay outside core data 
archives. Challenges faced by these groups include (1) a lack 
of credit for data (or script) generation and reuse, (2) lack of 
technical knowledge around interdisciplinary workflows or 
new technical tools, (3) an inability to access contextual infor-
mation for records with missing or incomplete metadata, and 
(4) lack of access to secondary data or analytic results associ-
ated with publications beyond an individual’s core discipline 
or personal network.

Capturing relationships between distributed research 
products and data about these relationships is fundamental to 
resolving code and data reuse challenges. Throughput offers 
a means to connect and augment data objects and to manage 
relationships among objects, which supports the activities of 
data users and data generators. Users can access complete 
metadata around a particular data product by viewing textual 
annotations and examining related resources. Data generators, 
who may be managing complex, long-term projects, will be 
better able to manage data spread across various repositories 
(e.g., a project may include museum specimens, secondary 
fossil data, geochemical data, and ancient DNA records). One 
key demonstration case has been the annotation and linking of 
tephra data from the same volcanic event samples in SESAR 
(www.geosamples.org) with geochemistry data in Earth-
Chem, field data in StraboSpot, or sediment core context in 
OpenCore, and with code used for laboratory data process-
ing or computational models of volcanic eruptions or statisti-
cal matching of geochemistry (Kuehn et al., 2021). However, 
Throughput has broad capacity to create and surface links 
between research products.

The Throughput database has multiple potential user groups. 
In particular, the links between code repositories and data 
archives described here are intended to be of use to early-career 
researchers and interdisciplinary researchers working on data-
intensive projects. The Code Cookbook (https://throughputdb 
.com) provides a searchable interface that allows individuals to 
discover data-leveraging code repositories by subject, keyword, 
or database name. By enriching repositories with rich annota-

tions, we aim to transform them into easily reused “recipes” for 
working with Earth science data.

Populating Throughput

Throughput uses a Python script to access data archives 
(also referred to as data catalogs or data repositories) registered 
within the Registry of Research Data Repositories (re3data; 
Witt et al., 2019). The data archives were connected to code 
repositories in GitHub, BitBucket, and GitLab using each plat-
form’s API via a Python script via the requests package (https://
github.com/psf/requests). Data in the Throughput Annotation 
Database is managed using a Neo4j graph database with a 
data model based on the W3C Annotation model (https://www 
.w3.org/TR/annotation-model/). Each individual code reposi-
tory is linked to one or more data archives by virtue of either 
mentioning or including code elements from the data archive. 
The link between a code repository and a data archive creates 
an “annotation” element within the database that is searchable 
and contains provenance information about how the annotation 
was added (Fig. 1). As of 17 May 2021, Throughput contains 
information about more than 74,000 code repositories linked to 
more than 2400 data archives.

Figure 1. A representation of an annotation within Throughput is 
shown, which connects a code repository to a data archive. The cen-
tral Annotation node has two targets, the Code Repository and the 
data archive (labeled here as “Data Catalog” because of the use of the 
https://schema.org/DataCatalog object type within the database). The 
Body relationship provides a connection to a plain text Description. 
The Agent is the individual who is the Creator of the Annotation. Any 
node within the graph can be a Target for another Annotation and can 
ultimately generate a large graph of objects within the database.
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Developing a Use-Based Metadata Typology  
Using Throughput

Developing and applying a metadata typology (a classifica-
tion system) that indicates how research data is used within a code 
repository will make code repositories easier to find and reuse 
within Throughput. This typology is not meant to pass judgement 
on the utility or quality of the code within the repositories but 
rather to add descriptive metadata that qualify the relationship 
between the code and the data archive referenced.

We reviewed a subset of GitHub repositories linked in 
Throughput to develop this typology, first looking over code 
repositories generally to identify particular use types, then 
applying and refining the classes of data use/reuse on a sub-
set of Earth science–related code repositories. We selected 
code repositories that referenced data archives using the 

re3data subject heading “Geology and Paleontology.” We used 
Neo4j’s Cypher language to query the Throughput Database 
in February 2021 and retrieved 1144 GitHub repositories in 
total. We removed 288 GitHub repositories from the sampling 
frame due to missing metadata, leaving 856 GitHub reposito-
ries as our sample.

Within re3data, only 38 of the 75 data archives with the 
subject heading “Geology and Paleontology” were referenced 
by code repositories indexed by Throughput. The distribution of 
linked code repositories with respect to data archives shows a 
Pareto distribution (linked code repositories: x– = 40; x~ = 14; Fig. 
2). Linked code repositories disproportionately use data from, or 
otherwise reference, the U.S. Geological Survey (USGS) Earth-
quake Hazards Program, the Paleobiology Database, Dryad, 
and Pangaea, with a “long tail,” in which the remaining 34 data 
archives are referenced.

Figure 2. Bar graph shows the number of code repositories associated with individual data archives listed in the Research Resource Registry 
(https://re3data.org) as having “Geology and Paleontology” subject matter. The majority of data archives are referenced by fewer than 30 code 
repositories each. Almost half (37 of 75) of data archives with “Geology and Paleontology” as a subject were not referenced by code repositories 
and are not shown in this figure.
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TABLE 1. DATA USE-TYPE TYPOLOGY EMPLOYED FOR THE CONTENT ANALYSIS OF CODE REPOSITORIES WITHIN THROUGHPUT, 
LINKED TO DATA ARCHIVES REPORTED THROUGH THE REGISTRY OF RESEARCH REPOSITORIES (https://re3data.org)

Use type Description

Original Analysis The code repository pulls data from an archive as a primary source for analysis or  
data transformation within a code repository.

Educational The repository includes educational and instructional materials that make use of a  
data archive.

Software Development The repository uses data and/or code from data archives to build freestanding tools of 
any sort, including libraries, plugins, frameworks, etc.

Storage The code repository stores copies of data from data archives.

Miscellaneous Links in Articles The repository contains articles that link to data archives, rather than any specific link  
to the archive itself, and does not show any other use of the data archive.

Miscellaneous Links to Data Archive Websites The repository links to a data archive’s homepage or another informational page but 
does not show any other use of the data archive.

Can’t Categorize/Not Enough Information 404 errors (URL exists in publication or DOI but fails to link to a current public code 
repository) or lacks sufficient information to categorize.
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Types of Data Archive Use in GitHub Repositories

We assigned one or more of the data-use categories (Table 
1) to each code repository by examining the ways data archives 
or their data were used or referenced within the files of that code 
repository. For instance, a repository may store data (category: 
Storage) in addition to analyzing them (category: Original Anal-
ysis). We determined a repository’s type(s) by reading README 
files (a text file that appears when an individual first examines 
the code repository online) and other documentation (when avail-
able), as well as reviewing the code itself to understand how and 
why it used data from a data archive. These categories were ini-
tially derived from prior research that described different types 
of data reuse (Coady et al., 2017; Federer, 2019; Gregory et al., 
2020; Kalliamvakou et al., 2016, 2014; Pasquetto et al., 2017), 
but they were refined through iterative content analysis (May-
ring, 2000; Pickering, 2004) of 5% of the 856 repositories that 
were found. We then classified an additional 10% of repositories. 
In total, we classified 129 repositories.

The final typology of use includes five major categories: 
Original Analysis, Educational, Software Development, Storage, 
and Miscellaneous Links. Categories are summarized in Table 1 
and described in detail in the following subsections. The category 
Miscellaneous Links includes two subtypes. We also include a 
separate category for repositories that could not be categorized, 
either due to a lack of documentation or because the repository 
was no longer accessible. Miscellaneous Links uses were only 
applied when no other significant use for a specific data archive 
was found (i.e., software development).

After classifying our subsample of 129 code repositories, 
we found that repositories most commonly use data archives in 
support of Software Development (Fig. 3). Because we allow for 
multiple data-use classifications to be applied to a single reposi-
tory, we identified 148 use types for the 129 code repositories 
examined. In the following subsections, we describe the kinds of 
data archive use we observed in greater detail and comment on 
how these code repositories may be useful for researchers.

Software Development
The most common category of data archive use is Software 

Development (n = 44). The Software Development category 
refers to the use of data and code from data archives to cre-
ate freestanding tools and plugins. The 44 Software Develop-
ment repositories in our sample might use the research data 
to pilot software tools, develop APIs for the database, or per-
form other application-oriented tasks. Not all software projects 
in this category were directly related to academic Earth sci-
ence research. One GitHub creator used tidal data from the 
Center for Operational Oceanographic Products and Services 
to design an application that presents worldwide tidal fore-
casts (https://github.com/just6979/tide-catcher). However, the 
majority of the tools in the sample were created for researchers 
in the fields of geology and paleontology. Examples include an 
application that matches data from the Paleobiology Database 
to data from the GeoDeepDive Database (https://github.com 
/ItoErika/ePANDDA_app); the dggridR application, which 
uses earthquake data from the USGS Earthquake Hazards Pro-
gram and creates discrete global grids that partition the surface 
of the Earth for R to compute spatial statistics (https://github 
.com/cran/dggridR); and the CoordinateCleaner Application, 
a tool for automated flagging of spatial and temporal errors 
common to paleontological collection data including data 
from the Paleobiology Database (https://github.com/ropensci 
/CoordinateCleaner).

Reuse potential: In many ways, the software and tools repre-
sented in these types of repositories are precisely what we hoped 
to find and link within the Throughput database. The tools are 
directly useful for novice researchers hoping to work with data, 
and software developers working on similar problems could use 
the repository as a template for working with the data sources.

Miscellaneous Links to Data Archive Websites
The second most common (n = 41) type of code reposi-

tory is those that do not use any data from an archive directly; 
instead, they include a data archive’s URL as an example of a 
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place to find open data (e.g., https://github.com/biol355/biol355 
.github.io) or as an example of a public API (https://github.com 
/apibird/public-apis). Many of the repositories tagged with this 
category include links that appear to be directly scraped from 
other online registries, which cause them to be indexed by 
Throughput. These scraped links include lists of data archives 
(the Paleobiology Database, Dryad, etc.) as well as their meta-
data (URL, subject, content type purpose, number of data sets, 
etc.), but otherwise, these repositories provide little context for 
data use or reuse.

Reuse potential: The code in these repositories is likely less 
useful to Earth science researchers. However, data archive man-
agers may be interested in these references as evidence of the 
broader impact of their archives. They also could serve as evi-
dence of where data archives are gaining traction and in what 
communities. Some repositories in this category could also allow 
Throughput users to discover similar data archives and tools 
that are potentially useful for their goals. This category presents 
a challenge to the automated scraping of repositories; however, 
since scraping may detect these repositories, they are likely of lit-

tle use to researchers who intend to use Throughput, for example, 
as a source of information.

Original Analysis
Original Analysis repositories (n = 22) include custom data 

analysis pipelines that were not designed to be generically reus-
able (but nevertheless, they are often valuable for people looking 
for code to reuse). These repositories include code meant to sup-
plement published journal articles. For instance, one repository 
contains R code to examine what influences the presence and 
abundance of fossils in a geologic unit using data from the Paleo
biology Database. The repository’s README indicates that the 
code is a compendium to an article published in The American 
Statistician (https://github.com/psmits/notfossil). Original Anal-
ysis repositories also include code created by students for theses 
or class projects. For example, the repository https://github.com 
/psmits/dissertation includes analysis files that use Paleobiology 
Database data of North American and European occurrences 
of marine genera and sedimentary cover to reveal differences 
between fossil range-duration relationships.

Figure 3. Distribution of data archive use types based on the sample of 129 code repositories selected for manual analy-
sis is shown. While a small subset of code repositories could not be categorized because of a lack of information, the 
majority of code repositories used information from data archives either in the course of Software Development or had 
Miscellaneous Informational links to the data archives. Repositories meant primarily for Educational uses and Original 
Analysis showed lower counts but were still well represented.
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Reuse potential: Repositories in this category likely have 
high reuse potential. While Original Analysis repositories are 
typically created to support a single study’s reproducibility rather 
than to create generically reusable code, these scripts are never-
theless important points of reference for similar analysis, and the 
initial stages of obtaining and cleaning data for statistical analysis 
are likely to be similar across studies.

Educational
Educational repositories include tutorials, manuals, assign-

ment instructions, lecture slides, and other pedagogical materials. 
Repositories (n = 20 in our sample) were classified as Educa-
tional if they actively used a data archive’s code or data. Instruc-
tional resources that solely link to a data archive’s homepage 
were coded as Miscellaneous Links to Data Archive Websites 
rather than educational.

A typical Educational repository contains class materials 
using a data archive’s resources. For instance, one GitHub repos-
itory contains instructional materials for a graduate course in 
advanced paleoecology that uses data from the Neotoma Paleo-
ecology Database in R (https://github.com/WilliamsPaleoLab 
/Geography52). Educational uses also include non-class-related 
tutorials, such as the Arctic Data Center’s tutorials on cleaning 
data from the Knowledge Network for Biocomplexity (KNB) 
Data Repository (https://github.com/jenniferschmidt/arctic-training 
-repo). We note that some educational resources that draw on 
Earth science data archives were not necessarily in support of 
Earth science classes but rather generic data science courses in 
need of large amounts of data.

Certain data archives have high repository counts as a 
result of education/outreach materials that involve copying 
(cloning or forking) the original repository to a new personal 
repository for each workshop or course participant. These cop-
ied repositories do not add significantly to information hetero-
geneity for the data archive since they are effectively a subset 
of the original repository. For instance, the USGS Earthquake 
Hazards Program website is linked by a large number of similar 
repositories based on the original educational materials (e.g., 
https://github.com/felzek/leaftlet).

Reuse potential: Educational repositories could include use-
ful code for a variety of contexts and could be directly reusable 
by instructors who are building their own curricula or simply 
learning on their own. Again, these repositories could be used as 
evidence of impact by data archive managers and curators.

Miscellaneous Links in Articles
The repositories in this subcategory do not use data from an 

archive but instead include collections of articles that reference 
particular data archives (n = 13 in our sample). For example, a 
GitHub creator developed a web/Android application for opti-
cal character recognition that recognizes text in a digital image 
(https://github.com/maximz/Photon). Data used to train this 
software tool included Wikipedia articles that link to the USGS 
Earthquake Hazards Program.

Reuse potential: Like the repositories that contain Links to 
Data Archive Websites, the code in these repositories is likely 
less useful to Earth science researchers but could be helpful as a 
broader indicator of data archive impact.

Data Storage
Data storage repositories (n = 5) include copies of data from data 
archives; this often is in tandem with Software Development or 
Original Analysis uses. For example, one repository aggregates 
several Earth science and biology datasets (https://github.com 
/hurwitzlab/planet-microbe-datapackages) as part of a pipeline 
that transforms data sets into data packages that conform to the 
Frictionless Data Standard. The resulting data are used in a larger 
project that integrates oceanographic, environmental, and physi-
cochemical data layers. Still, the specific repository is used only 
to store the data in an online code repository.

Reuse potential: When Data Storage coincides with Origi-
nal Analysis, Throughput users could utilize the repository for 
reproducibility tests or as a codebase. When storage accompanies 
Software Development, users may utilize the tools for their own 
data analysis or as a codebase.

FUTURE DIRECTIONS

Steps toward Automatic Classification of  
Code Repositories

While the use-based annotations described above can cer-
tainly be added by hand to Throughput (as we did with the 129 
repositories we reviewed), a more scalable approach would use 
machine learning or other computational methods to automati-
cally categorize a code repository. As a final step of our analysis, 
we explored whether there were statistically significant differ-
ences in code repository features across the data archive use types. 
For instance, do Original Analysis code repositories have longer 
READMEs? Are Educational repositories bookmarked more 
with “stars” (GitHub’s method of bookmarking a repository)?

GitHub repository features can be divided into two groups: 
user activity metrics and documentation metrics. User activity 
metrics count how often GitHub users edit, contribute to, and 
interact with the repositories, including the number of “forks” 
(copies made for reuse, separate from the original repository 
owner), number of stars (bookmarks of the repository created 
by users), number of branches (internal copies of the repository 
that are owned by the original creator, generally used for fea-
ture development), and total commits (total number of aggregate 
changes to the repository codebase). Documentation metrics 
represent how much metadata and explanatory content are made 
available; documentation is important in making a repository 
reusable, regardless of type. We selected the following features to 
compare: the number of badges (graphic figures added by a cre-
ator to summarize repository stats, language, or content), num-
ber of characters used in the repository’s description, number of 
README headings, and README character count. Secondary 
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TABLE 2. MEANS OF GITHUB REPOSITORY FEATURES BY DATA ARCHIVE USE TYPE

User Activity Documentation by Creator(s)

Code Repository Data-Use Types Branches Forks Issues Stars Total 
Commits

Badges Description 
Character 

Count

README 
Character 

Count

Number of 
README 
Headings

Software Development (44) 6.5 4.1 3.2 4.0 390 0.93 85 3700 6.9

Miscellaneous Informational Link (41) 2.9 2.9 4.5 2.7 400 0.29 51 10000 6.9

Original Analysis (22) 1.4 0.8 0.5 0.8 64 0.50 61 4500 4.8

Educational (20) 6.0 5.6 1.6 4.4 200 0.50 57 1300 1.8

Miscellaneous - Article (13) 1.4 1.6 2.1 1.3 54 0.0 42 1800 2.2

Storage (5) 1.0 0.0 1.4 0.2 130 0.0 25 2900 29
Can’t Categorize (2) 1.0 1.0 3.5 1.5 8.5 0.0 50 2300 0.0

Note: For each column, the highest value is presented in bold font and the lowest value is presented in italics. Features of individual 
repositories are divided into features that represent User Activity and Creator Documentation. As described in the text, features under 
Documentation by Creator(s) represent changes to the repository that clarify what the repository itself does or its contents. User Activity does 
not explicitly change the content of the repository but represents engagement with the repository. Standardized values for each class are 
represented graphically in Figure 4.
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documentation may exist on external websites, including project 
homepages, external documentation wikis, or hosted documen-
tation sites such as ReadTheDocs (https://readthedocs.org). Dis-
covering links to external documentation within a code reposi-
tory is of high value, but complex, and therefore is excluded from 
this analysis.

For each use category, we determined basic descriptive sta-
tistics for all repository features. If a repository had multiple data-
use types, its metadata metrics were included in each category. 
We removed one code repository from the Links to data archive 
websites category in our analysis because it was an extreme out-
lier in the metadata fields of user activity (more than 25× IQR 
above the third quartile for total commits; 1875 × IQR above the 
third quartile for the number of stars). We used means rather than 
medians for reporting because of the prevalence of zeros within 
many variables. We then performed ANOVA on each metadata 
field to test for any statistically significant difference between 
data archive use types with more than 10 repositories to conform 
to ANOVA’s assumptions. If the ANOVA showed significant 
results, we planned to use the Tukey Test to determine where 
the differences lie. Table 2 presents the means of the numerical 
GitHub user activity and documentation metadata fields sepa-
rated by data archive use type; Figure 4 presents these means as 
a rose diagram.

While we did not find statistically significant differences 
among our categories, we found that Original Analysis reposito-
ries tend to have lower user activity metrics than the often similar 
Software development category (Fig. 4). The Original Analysis 
category has the lowest number of issues, the second lowest num-
ber of stars and forks, and the third lowest number of branches 
and total commits. Software development repositories, mean-
while, show the highest number of branches, the second highest 
number of total commits and stars, and the third highest number 
of forks and issues. Some of these differences likely result from 
the work arrangements inherent in these projects; software devel-

opment projects are highly collaborative, whereas repositories 
for one-time analyses are more likely to be written by one person.

The lack of statistical significance was not an unexpected 
result due to the small sample size of coded GitHub repositories. 
We need to expand our coded GitHub repositories and measured 
features to understand what, potentially, makes a given use type 
distinct. In the future, the relatively simple user activity and doc-
umentation metrics we used to assess repositories here (length of 
README and number of stars) can be significantly expanded. 
Factors to examine include the programming languages used 
within a repository, the number of files, directory structure, 
breadth of contributor networks, and other elements. A broader 
suite of repository features may make automated data-use typol-
ogy classification possible. We plan to explore this going for-
ward. A broader suite of metadata would support the identifica-
tion of elements in the content metadata that appear to be more 
important in classifying and, ultimately, discovering these code 
resources. The practice of scraping various code repositories has 
already helped to identify some key features—for example, the 
presence of grant numbers and properly formatted references to 
particular databases. A broader scale metadata analysis would 
help support the clarification of best practices, in particular for 
educational and analytic code repositories.

Implementation and Further Development in Throughput

Until automatic classification approaches are refined, we 
have added a widget in the Throughput database so that users 
can annotate a code repository with their use type via a data 
entry form (Fig. 5). A user can link an existing code repository 
to a database and then classify it by type. In this way, machine 
learning approaches to solving the classification problem for this 
typology can implement a human-in-the-loop approach, where 
database end-users provide both a base set of classifications and 
can also validate classifications once implemented.
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We imagine that a typical end-user for Throughput would 
be interested in discovering repositories with a specific typology. 
For instance, a graduate student would be more interested in find-
ing a repository with analysis applied to a data set from the Neo-
toma Paleoecology Database than he or she would a repository 
that mentions that database in an XML document.

In our future work, we are interested in exploring how 
Throughput can be leveraged to not only make code easier to 
find, but also to help spread best practices in writing code or 
documenting methods. The Methods section of a paper does 
not always allow article authors to explain or express all of the 
decisions made in the data cleaning and alignment stages; how-
ever, being able to see examples of code, discovered through 
a portal like Throughput, makes this process more straightfor-
ward. Additionally, it provides the opportunity for community 
members to discover emerging standards in analysis and define 
or revise best practices for working with the data (for instance, 

Figure 4. A wind rose diagram compares means of user activity and description metrics across repository types. User 
Activity metrics are indicated by text labels in bold and italics (e.g., “Stars”) that represent dynamic engagement with a 
repository over time. Description metrics represent static properties of a repository at the time of sampling. Metrics are 
ordered around the wind rose based on their correlation to one another.

Figure 5. Screenshot from the Throughput Database Code Cookbook 
interface shows how a logged-in user (the author, using ORCID au-
thorization) can add a new record into the database and classify the 
repository type using the classes discussed above.
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the recommendations on working with Tephra data; Abbott et 
al., 2020). In this way, code repositories can be leveraged as 
tools for knowledge transmission that transcend institutional or 
disciplinary boundaries imposed by social barriers. Examples 
of best practices already can be found in some of the Educa-
tional repositories we reviewed and sometimes are published 
by the data archives. For example, the Neotoma Paleoecology 
Database provides these in the form of vignettes associated 
with R packages (https://github.com/NeotomaDB/neotoma), 
or worked code examples are shared as part of online work-
shops and stored within code repositories (https://github.com 
/NeotomaDB/Workshops) (Goring et al., 2018).

New Ways of Understanding Data Practices and  
Data Archive Impact

Our work has underscored the varied ways that the Earth 
science community makes use of GitHub. Prior studies have 
estimated that only 63.4% of GitHub repositories are used for 
software development (Kalliamvakou et al., 2016). Our study 
similarly showed that GitHub is used by the Earth science com-
munity for more than just software development (though we note 
that our study is not directly comparable to that of Kalliamvakou, 
as we categorized repositories based on the way they use data 
archives and not by their primary purpose). We found that many 
repositories referencing Earth science data archives are used for 
ad hoc data storage, as sandboxes for analysis, or for the drafting 
of papers. Future studies of code and data practices must take this 
broader range of use cases into account.

Additionally, our work provides a greater understanding of 
the impact and use of Earth science data archives even beyond 
Earth science communities. Much of the research on data reuse 
has focused on reuse for research: the “direct reuse” of a data 
set for a new project or the “integrative reuse” of many data 
sets for synthesis (Pasquetto et al., 2017). However, we found 
that data was reused by GitHub developers for a much wider 
range of purposes, including in tutorials and class assignments, 
or as a testbed to support software development. The use-based 
typology we developed for Throughput reveals a much broader 
universe of data reuse than previously discussed. Future work 
might consider the ways in which these different forms of use 
may prove to be important to data archive managers—both in 
providing new use cases to support and in showing new ways in 
which Earth science data have impact. For instance, we found 
that several data science classes had built lessons around data 
from archives such as the USGS Earthquake Hazards Pro-
gram, including Google’s “Android Basics” course on Udacity 
(https://www.udacity.com/course/android-basics-nanodegree-
by-google–nd803). Though this is not an example of “direct 
reuse” of data, this would certainly be important for showing the 
broader utility and impact of the USGS data archive. Similarly, 
repositories in the Link to Data Archive Websites category do 
not show clear evidence of reuse per se, but they do show an 
archive’s reach and broader impact.

CONCLUSION

In this chapter, we described the Throughput database and 
our efforts to make reusable code more findable, thereby making 
it easier to access and process data from large Earth science data 
archives. We also described our approach to enriching the code 
repositories with use-based metadata. We took a unique approach 
to categorizing code repositories: they are classified according 
to their mode of data use and reuse. Our hope is that by adding 
this use-based metadata to Throughput, we will make it easier for 
novice users, in particular, to find relevant resources. We believe 
that this metadata will help to identify highly useful or reusable 
code repositories, such as those containing code for Original 
Analysis and Software Development. We also believe this work 
will make it easier for data archives to show their impact in and 
beyond their disciplines.

The work undertaken by Throughput—to link code reposi-
tories to particular data resources—has highlighted the Earth sci-
ence community’s evolving use of GitHub. We see that reposi-
tories are used for a broad range of purposes and that different 
types of repositories may have particular signatures related to 
user interaction and the descriptive elements of the repositories 
themselves. The evolution of software and service citation prac-
tices, and the increasing use of DOIs within code repositories 
(ESIP Software and Services Citation Cluster, 2019), will also 
help introduce a secondary framework for understanding patterns 
of code and data use. Ultimately, code repositories represent an 
important resource for education and knowledge dissemination; 
however, their relative lack of structured metadata and the lack 
of an existing typology have limited our ability to discover and 
reuse these resources. This publication represents a first step 
toward leveraging existing code repositories to reduce “time to 
science” for the next generation of Earth science researchers.
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