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ABSTRACT

Data science is receiving increased attention in a variety of geoscience disciplines 
and applications. Many successful data-driven geoscience discoveries have been 
reported recently, and the number of geoinformatics and data science sessions at 
many geoscience conferences has begun to increase. Across academia, industry, and 
government, there is strong interest in knowing more about current progress as well as 
the potential of data science for geoscience. To address that need, this paper provides 
a review from the perspective of a data life cycle. The key steps in the data life cycle 
include concept, collection, preprocessing, analysis, archive, distribution, discovery, 
and repurpose. Those subjects are intuitive and easy to follow even for geoscientists 
with very limited experience with cyberinfrastructure, statistics, and machine learn-
ing. The review includes two key parts. The first addresses the fundamental concepts 
and theoretical foundation of data science, and the second summarizes highlights and 
sharable experience from existing publications centered on each step in the data life 
cycle. At the end, a vision about the future trends of data science applications in geo-
science is provided that includes discussion of open science, smart data, and the sci-
ence of team science. We hope this review will be useful to data science practitioners 
in the geoscience community and will lead to more discussions on the best practices 
and future trends of data science for the geosciences.
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1. INTRODUCTION

Data-driven discovery has received a lot of attention in geo-
science research in the past decade, as reflected in the increas-
ing number of projects funded, facilities constructed, data sets 
shared, and scientific findings published. Cyberinfrastructure, 
data portals, databases, workflow platforms, statistical models, 
machine learning algorithms, data management, and data sharing 
are becoming the new normal in many geoscientists’ daily work. 
Various success stories of data-driven geoscience discovery in 

recent years have demonstrated the enormous potential of the 
data revolution. It is obvious that to scale up the innovation and 
accelerate new findings in geoscience, data science will play an 
important role in the coming decades. Nevertheless, as the theo-
retical foundation of data science is still under development, dis-
cussion and review of data science in the geosciences is limited. 
In contrast, data science methods and tools are currently in high 
demand among geoscientists. To address that need, this paper 
reviews progress in both data science and data-driven geoscience 
and discusses the future trends.
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Data science is the study of extracting value from data 
(Wing, 2019). A primary driving force of data science in geo-
science is the fast growing volume, velocity, and variety of data, 
i.e., big data. Hey et al. (2009) stated that data exploration is 
the key feature of “the fourth paradigm” in science for tackling 
the data deluge, as compared with the previous three scientific 
paradigms in which empirical, theoretical, and computational 
approaches were the key features. There are several factors in 
their vision of this new paradigm. Big data are captured by instru-
ments or generated by simulators. Advanced infrastructures are 
deployed to store and transmit data, along with data analysis soft-
ware and knowledge systems. Scientists, with the support and 
assistance of those resources, will focus more on scientific dis-
covery in the midstream to downstream of the data flow. Another 
point raised by Hey et al. (2009) is that data-intensive science 
in the fourth paradigm is not only computational science but 
should also incorporate theories and methods from many other 
disciplines. Many later publications (Drineas and Huo, 2016; 
Kelleher and Tierney, 2018; NASEM, 2018a) resonate with Hey 
et al.’s (2009) vision of the theoretical foundation of data sci-
ence. It is now commonly understood that data science will set 
its root in the basic research of computer science, mathematics, 
statistics, information science, and other disciplines. Successful 
data-driven scientific discovery also requires an open cyberinfra-
structure and innovative pathways to enable the synergy of data 
science methods and domain-specific research questions.

Researchers of geoinformatics and geomathematics have 
also reviewed and discussed the evolution of information tech-
nologies in their work. Merriam (2004) listed six stages for the 
history of quantitative geology: origins (1650–1833), formative 
(1833–1895), exploration (1895–1941), development (1941–
1958), automated (1958–1982), and integration (1982). Ma 
(2018) added that since the early 2010s, geoinformatics has been 
in the intelligent stage. Recently, there have been several review 
articles summarizing the latest trends of different aspects of data 
science in geoscience. Chan et al. (2016) and Shipley and Tikoff 
(2019) analyzed the changes that open data and cyberinfrastruc-
ture can bring to the workflow of geoscience, such as sedimen-
tary geology and structural geology. Gil et al. (2019) analyzed 
the characteristics of research challenges in geoscience and then 
proposed a roadmap for developing and deploying knowledge-
rich intelligent systems to address those challenges. In Karpatne 
et al. (2019), Bergen et al. (2019), and Reichstein et al. (2019), 
the challenges and opportunities of machine learning and deep 
learning for geoscience were thoroughly reviewed. Each of those 
three articles also has its own highlights. Karpatne et al. (2019) 
pointed out the synergistic advancement that such applications 
can bring to both machine learning and geoscience. Bergen et 
al. (2019) analyzed the larger function space and data-processing 
capability of machine learning in comparison to the conventional 
approaches in geoscience. Reichstein et al. (2019) asserted that 
data-driven machine learning should be coupled with the spatial 
and temporal context to obtain better understanding of Earth sys-
tem processes and thus to improve prediction.

The quick progress of big data and data science has inspired 
plans and schemes for data-driven geoscience research at a larger 
scale. In 2018, the Carnegie Institution for Science started the 
Deep-time Data Driven Discovery (4D) Initiative (4D Initiative, 
2018). In 2019, the International Union of Geological Sciences 
initiated the Deep-Time Digital Earth (DDE) big science program 
(Cheng et al., 2020). In the vision (NASEM, 2020) for the next 
decade of Earth science priorities within the U.S. National Science 
Foundation (NSF), key recommendations were made regarding 
open data and community practices for cyberinfrastructure needs 
and advances. We are now at a dramatic tipping point in science—
a time when the open data resources, cyberinfrastructure facilities, 
and new data science methods for analysis and visualization will 
change the way geoscientists conduct their research. Keys to dis-
covery lie in the continued development, integration, and exploi-
tation of facilities, data, and expertise to build and explore path-
ways for a deeper understanding of the evolving Earth (Hazen et 
al., 2019). The review and analysis presented in this paper aim to 
answer questions such as, “What changes can data science bring 
to geoscience?” “What are the fundamental data science skills 
that a geoscientist should learn?” “What will be the patterns of 
data science applications in the next five or ten years?” and “As 
a student of geoscience, how can I quickly learn the data science 
methods and use them in my work?”

The perspective of this paper is from the point of view of a 
data life cycle. The data life cycle includes key steps such as con-
cept, data collection, preprocessing, archive, distribution, discov-
ery, analysis, and repurposing. The theme of each step is intuitive 
and easy to follow. Through this structure, this article summarizes 
sharable experience from existing studies with regards to data 
science workflows in geoscience. In the writing, the author has 
tried to present a comprehensive list and review of existing publi-
cations; however, the analysis presented may not cover all of the 
highlights of the cited publications. The remainder of the paper is 
organized as follows. Section 2 summarizes key concepts in data 
science. Section 3 reviews a number of recent publications on 
each step of a data life cycle. Section 4 analyzes the trends of data 
science in geoscience, and Section 5 offers a conclusion.

2. THE SCIENCE OF DATA SCIENCE

To better understand the workflows in data science, it is 
necessary to know a few fundamental concepts. The author has 
taught database and data science classes for senior undergraduate 
and graduate students in recent years. The experience has shown 
that even students majoring in computer science may confuse the 
meanings of data, metadata, information, and knowledge. Data are 
the recorded representation of facts. In the current digital era, the 
records are normally presented in a digital form, such as plain text, 
spreadsheet, relational database, and graph database. In addition 
to a hard disk, data can also be recorded on other types of media, 
such as paper and tape. Archived records from the old days, such 
as literature printed on hardcopies, can be digitized. Metadata are 
data about data. Metadata are  important in data  sharing and reuse 
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because they give an overview of the background of the data. An 
end user can get a quick summary and understanding of a piece 
of data just by reading the metadata. Structured metadata can 
improve the performance of search engines and enable them to 
accurately index records and find the best match for a request. 
Information is the meaning or message extracted from data. The 
information extraction process often depends on the purpose of 
data analysis, the methods and tools used, and the interpretation 
of data analysis results. It is not strange to see the same piece of 
data used in studies of different topics to generate varied infor-
mation. Knowledge is the expertise and familiarity with a topic. 
In traditional understanding, a human can attain knowledge by 
learning, practice, and experience. In data science, there are now 
knowledge bases that can save knowledge in quantitative and 
qualitative formats, which can in turn be used in the data analysis 
process. The three concepts of data, information, and knowledge 
are also used in combination with other concepts, such as wisdom 
and action, to form a pyramid or flowchart and depict the ability 
of using knowledge and insight gained from data to think and act 
in real-world practices (Fig. 1A).

Many researchers and communities have depicted the data 
life cycle and the data science process. Figure 1 presents a num-

ber of diagrams from the existing publications (Chapman et al., 
2000; Schutt and O’Neil, 2013; Berman et al., 2018; Wing, 2019; 
DDI Alliance, 2021). Most are easy to read and understand, and 
we will omit the detailed description for each of them. Neverthe-
less, some shared topics in those diagrams are worthy of high-
lighting. For instance, the data life cycles presented in Figures 
1B and 1E both include the steps of data sharing, publication, and 
reuse. The step of data processing in Figures 1B and 1C actually 
means data cleansing, wrangling, and munging, which is simi-
lar to the step of data preprocessing in Figure 1F. In Figures 1D 
and 1F, the steps of visualization and interpretation address the 
needs of meaningful data science, i.e., to appropriately interpret 
the results of data analysis. This includes not only the precision 
and efficiency of algorithms but also the domain-specific mean-
ing in the outputs of those algorithms. Also, the issues of data 
privacy and ethics have received more attention and discussion 
in recent publications to highlight data science as an ecosystem 
(Figs. 1D–1E).

Interdisciplinary collaboration led to the emergence and 
evolution of data science. Donoho (2017) offered a thorough 
review of data science’s evolution over the past decades. In par-
ticular, he summarized the perspectives of several statisticians on 
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Figure 1. Different depictions of the data life cycle and the data science process are shown. (A) The DIKW model; (B) the Data Documentation 
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the need to expand the boundaries of classical statistics to cover 
topics of data preparation, presentation, and prediction. In the 
review it was mentioned that the term “Data Science” had been 
used two decades ago by Cleveland (2001) for the envisioned 
new field. Recent discussions have made clear that the field of 
data science should be interdisciplinary, including computer sci-
ence, statistics, mathematics, information science, and progress 
in subject matter applications (Drineas and Huo, 2016; Kelle-
her and Tierney, 2018). Those discussions were reflected in the 
list of data science courses and the curricula of those courses. A 
recent National Academies of Sciences, Engineering, and Medi-
cine report (NASEM, 2018a) stated that a critical task of data 
science education is to establish data acumen, which includes 
these key concepts: mathematical foundations, computational 
foundations, statistical foundations, data management and 
curation, data description and visualization, data modeling and 
assessment, workflow and reproducibility, communication and 
teamwork, domain-specific considerations, and ethical problem 
solving. Those topics of data acumen are reflected in the data life 
cycle and data science process (Fig. 1) to address the real-world 
needs of data science applications. Several universities already 
offer data science courses. For example, the University of Cali-
fornia at Berkeley offers Data 8: Foundation of Data Science to 
entry-level undergraduates in any major (Adhikari and DeNero, 
2017). Its curriculum covers most of the subjects in the above 
data acumen list.

Many geoscience and geoinformatics researchers have ana-
lyzed the science of data science from the perspective of their 
experiences with real-world practices. Mattmann (2013) dis-
cussed four advancements that are necessary to tackle the chal-
lenges of big data: algorithm integration, software development 
and stewardship, automated data format identification and read-
ing, and the training of data scientists. Fox and Hendler (2014) 
addressed that the field of data science includes not only the 
disciplinary foundations but also strategies for real-world chal-
lenges. They provided details about four cross-cutting data sci-
ence challenges: understanding scale in systems, sparse systems 
with incomplete and heterogeneous data, abductive reasoning, 
and next-generation semantic data infrastructure. Here, abduction 
reasoning is similar to the “Exploratory Data Analysis” proposed 
by Tukey (1977, p. v), “It regards whatever appearances we have 
recognized as partial descriptions, and tries to look beneath them 
for new insights.” Ho (1994) summarized that abduction creates, 
deduction explicates, and induction verifies. This means that 
abduction is a good way of finding clues to scientific questions 
through the activities of data exploration. Hazen (2014), based on 
his experience of data-driven studies in mineralogy, further sum-
marized that deduction and induction are to discover what we 
know we do not know while abduction is to discover what we do 
not know we do not know. Recognition of the data science myths 
pointed out by Kitchin (2014) and Kelleher and Tierney (2018) 
is important for avoiding unrealistic expectations. The myths are:  
(1) data science is an autonomous process without human over-
sight; (2) every data science project needs big data and machine 

learning; (3) data science software is easy to use, and data science 
is an easy job; and (4) data science pays for itself quickly. Aware-
ness of those myths will help geoscientists understand the limita-
tions of data science and be better prepared to problem solve in 
the real world.

3. A REFLECTION ON THE KEY STEPS OF A DATA 
LIFE CYCLE

Focusing on the theme of data science for geoscience, the 
following sub-sections review a list of recent publications for 
each key step in the data life cycle and summarize the shareable 
experiences from them.

3.1. Business Understanding and Concept

The steps labeled “concept” in Figure 1B and “business 
understanding” in Figure 1C are intended to determine the objec-
tives of a data science project and estimate the data needs (Chap-
man et al., 2000; DDI Alliance, 2021). They are about turning 
business goals into data science plans. If the planned activities 
include database construction, this step will also include the 
work of developing data structures, such as a conceptual model, 
logical model, physical model, as well as controlled vocabular-
ies for data standardization. Cyberinfrastructure researchers rec-
ognize that consideration and action regarding data semantics in 
the early stage will help improve data interoperability when data 
are generated, collected, integrated, and shared in a later stage 
(Reitsma et al., 2009; Narock and Shepherd, 2017).

The Semantic Web extends the World Wide Web by add-
ing structures and meaning to terms in documents on the web 
(Berners-Lee et al., 2001). The key technical approach to enable 
the Semantic Web is the use of ontologies, which are formal 
specifications of a shared conceptualization of a domain (Gru-
ber, 1995). Researchers have suggested a semantic spectrum that 
consists of a sequence of items such as catalog, glossary, tax-
onomy thesaurus, conceptual schema, and formal logical models, 
for constructing and implementing ontology in practice (Welty, 
2002; McGuinness, 2003; Obrst, 2003; Uschold and Gruninger, 
2004). The items in this spectrum provide a roadmap for increas-
ing the semantic precision and interoperability of data in a variety 
of applications.

Data interoperability has received tremendous attention 
in recent years. The widely accepted FAIR (Findable, Acces-
sible, Interoperable, and Reusable) data principles (Wilkinson 
et al., 2016; Stall et al., 2019) are closely related to the discus-
sion of data interoperability in the past decades (Fig. 2). Sev-
eral researchers presented the layered structure of data interop-
erability, including systems, syntax, schematics, semantics, and 
pragmatics (Bishr, 1998; Sheth, 1999; Ludäscher et al., 2003; 
Brodaric, 2007, 2018). A few other researchers explained those 
layers in layman’s terms, including discoverable, accessible, 
decodable, understandable, and usable (Wood et al., 2010; Ma 
et al., 2011). The layered structures of data interoperability and 
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the FAIR  principles can also be compared with the technical 
architecture of the Semantic Web (Berners-Lee, 2000). Many 
best practices of data interoperability can be seen in the domain 
of geoscience. The U.S. National Geologic Map Database of the 
U.S. Geological Survey (USGS) has adopted the North Ameri-
can Geologic Map Data Model (NADM) (NADM Steering Com-
mittee, 2004) as a common schema for coordinating state-level 
geologic map databases. Such efforts to determine standards are 
continuously active at USGS, such as the recently released Geo-
logic Map Schema (GeMS) (USGS NCGMP, 2020). Similarly, 
NASA has implemented the Global Change Master Directory 
(GCMD) Keywords as a hierarchical set of controlled vocabular-
ies to ensure the interoperability of its data and services (GCMD, 
2020). In Europe, the INSPIRE Directive aims to create a Euro-
pean Union spatial data infrastructure (Bartha and Kocsis, 2011; 
Ma and Fox, 2014). Its data and metadata specifications cover 34 
data themes in Earth and environmental sciences, with full imple-
mentation required by 2021 across all of the participating Euro-
pean nations. Scientific communities such as the World Wide 
Web Consortium and the Open Geospatial Consortium have also 
summarized best practices for publishing and serving data on the 
web (Loscio et al., 2017; Tandy et al., 2017).

3.2. Data Understanding, Generation, and Collection

Along with the quick development of hardware and soft-
ware in the cyberinfrastructure, data are now generated at an ever 
increasing speed. Sensor networks (Martinez et al., 2004; Hart 
and Martinez, 2006) greatly facilitate the generation, transmis-
sion, and integration of Earth and environmental data. NASA 
organizes ~100 missions and thousands of platforms, instru-
ments, and sensors around the Earth and nearby space and is 
one of the biggest geoscience data producers worldwide. It was 
reported (Shannon, 2019) that in 2016, NASA was already gen-
erating 12.1 TB of data every day. The same article also reported 

that NASA is deploying new sensors that alone will be able to 
generate 24 TB of data daily. Similar advances in instruments 
and facilities for data generation, transmission, and management 
were also seen in field-based geological surveys (Mookerjee et 
al., 2015). Wing (2019) made a distinction between data genera-
tion and collection and pointed out that not all data generated are 
collected (Fig. 1D). That may be because we only want to collect 
a certain part of the data or because the velocity of data streams 
is too high to be processed with existing tools.

Crowd-sourcing platforms, such as social media and com-
munity portals, are generating massive data. Many of our daily 
activities, such as posting on Twitter or Facebook, watching and 
commenting on a video on YouTube, and searching on Google, 
all generate digital records in a way in which many of us are 
even not aware. A great deal of social media data are used for 
scientific studies. For example, Twitter data were used for wild-
fire disaster management (Wang et al., 2016). Google search 
data were used to predict seasonal influenza trends (Carneiro 
and Mylonakis, 2009). The community collaboration on Open-
StreetMap greatly helped the rescue work after the 2010 Haitian 
earthquake (Ahmouda et al., 2018). Images on Flickr were used 
for ecosystem assessment in remote areas (Rossi et al., 2020). 
Besides the public social media, another type of crowd-sourcing 
platform focuses on a certain subject and is normally maintained 
by a community of enthusiasts. For example, Mindat.org is such 
a community platform focused on mineral species. It has a small 
team of database administrators and data reviewers and is open 
to thousands of data contributors and users across the world. 
Researchers have used Mindat data in many recent studies on 
mineral evolution and mineral ecology (Hazen et al., 2011; Mor-
rison et al., 2020).

The massive collection of geoscience literature is another 
good source of data. For example, GeoDeepDive (Zhang et al., 
2013; Peters et al., 2014) is a machine learning package for dis-
covering data and knowledge from published documents. By 
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Figure 2. Comparison shows the layered structure of data interoperability with the Semantic Web architecture and  
the FAIR data principles (from Ma et al., 2020; CC BY 4.0 license). For sources of sub-diagrams, see description in text.
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January 2021 it had preprocessed more than 13 million docu-
ments. Peters et al. (2014) successfully used the fossil records 
extracted from GeoDeepDive to enhance the Paleobiology Data-
base. GeoDeepDive also allows other researchers to use the data 
resource to explore their own scientific topics. Recently, there 
have also been many studies on using text mining technologies to 
extract knowledge graphs from the geoscience literature (Wang 
et al., 2018; Qiu et al., 2019; Fan et al., 2020b).

3.3. Data Preprocessing and Preparation

Data preprocessing is an increasingly important step in data 
science. It is also referred to by several alternative names such 
as data cleansing, data wrangling, and data munging. The gen-
eral purpose of data preprocessing is to ensure the quality of data 
before any data analysis is conducted. In real-world practice, it 
may involve tasks such as removing noisy and unreliable records, 
reducing data dimensionality, transforming data formats, select-
ing records of interest, enriching the existing data with additional 
attributes, and combing data from different sources to build a new 
piece of data (Wang et al., 2018). Many researchers (Press, 2016; 
Mons, 2018), including geoscientists (Fox, 2019), spend 80% of 
their time cleansing and preparing data before analyzing the data 
(i.e., the 80/20 rule). Good data preprocessing can significantly 
increase the efficiency of data analysis and lead to remarkable 
scientific discoveries. For example, the above-mentioned Min-
dat data portal was used as a source for the Mineral Evolution 
Database (Golden et al., 2019). Nevertheless, a limitation of the 
original Mindat is that it does not include an age attribution for a 
mineral species’ first occurrence on Earth. Golden et al. (2019) 
searched over 1600 publications and several existing databases 
to extract such age data and then used them to enrich the Mineral 
Evolution Database. The updated database underpinned many 
new research discoveries, including mineral evolution and ecol-
ogy (Morrison et al., 2019, 2020) and the co-evolution between 
the geosphere and the biosphere (Spielman and Moore, 2020). 
The database also led to new designs of mineral species data-
bases and discussions on better methods for data curation and 
sharing (Prabhu et al., 2021).

Applying data standards to transform existing data or medi-
ate between databases is also a widely used approach in data 
preprocessing and preparation. The above-mentioned metadata 
and data specifications in the INSPIRE Directive is a good use 
case for that approach. Another example is the global “OneGeol-
ogy” project for improving the accessibility of geological maps 
on the Internet (Jackson, 2010). OneGeology has developed a 
tool kit to set up online geologic map services. More than 110 
countries have participated in the project, and about half of them 
are serving map data to a web map portal. The original maps 
are heterogeneous because they are recorded in different for-
mats and use different data models, terminology, and language. 
Through the OneGeology map service tool kit, the online ser-
vices of those maps are made consistent, and they can be browsed 
in a centralized map window. The “OneGeology-Europe” proj-

ect (Laxton, 2017) has utilized multilingual vocabularies to 
develop innovative capabilities for the online geologic maps of 
participating European nations. New functions of OneGeology-
Europe include the multilingual user interface, federated queries 
across distributed geologic map services, consistency with other 
regional and international data standards, and more. As reflected 
in those examples, well-organized data preprocessing prepara-
tion can significantly change the 80/20 rule in data science activi-
ties or even reverse it.

3.4. Data Archive, Distribution, and Discovery

Nowadays, it is a new normal that funding agencies require 
researchers to include a data management plan in their grant 
proposals (Dietrich et al., 2012; NSF, 2015). Increasingly, data 
are treated as a formal research output and receive the same 
attention as paper publications. The FAIR data principles 
(Wilkinson et al., 2016) are now well received in almost all 
scientific disciplines, including geoscience (Stall et al., 2019; 
Lannom et al., 2020). The FAIR data principles represent many 
preceding efforts on data management and stewardship and rep-
resent a systematic approach to sharing and reusing scientific 
data in an open scientific environment. Those efforts include 
data infrastructure construction (Cutcher-Gershenfeld et al., 
2016), persistent and resolvable identifiers for data publication 
(Klump et al., 2016), metadata standardization (Starr and Gastl, 
2011), provenance documentation (Lebo et al., 2013), data cita-
tion (Parsons et al., 2010), and more. There are many general-
purpose data portals where researchers can upload and share 
their data. Moreover, there are specific data portals that only 
focus on one or a few subjects, such as petrology, geochemis-
try, and geophysics. Data-producing agencies such as NASA, 
USGS, the National Oceanic and Atmospheric Administration 
(NOAA), and the U.S. Department of Agriculture (USDA) all 
have their own data archives and data portals that allow users to 
search and access data of interest. For instance, USGS enables 
federated query to a long list of mineral resource spatial data-
bases through a central portal (USGS MRDATA, 2021). As 
workflow platforms such as Jupyter Notebook and R Mark-
down are increasingly used, many data portals have also devel-
oped packages to enable data access from workflow platforms, 
such as the paleobioDB R package for the Paleobiology Data-
base (Varela et al., 2015) and the neotoma R package for the 
Neotoma Paleoecology Database (Goring et al., 2015).

The FAIR data principles prioritize findability. It is true that 
from the perspective of a user, data discovery is a key step if the 
user’s work needs to access data on external databases or data 
portals. A top-down approach can be used to search records in 
data portals with specific themes, such as EarthChem (earthchem 
.org), PANGAEA (pangaea.de), Neotoma (neotomadb.org), 
Paleo BioDB (paleobiodb.org), and many data portals organized 
by the federal agencies. Moreover, there are also registries for 
metadata from multiple data portals, such as DataONE ( dataone 
.org), as well as registries of data portals, such as RE3DATA 
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(re3data.org). On those data portals, a user can quickly narrow 
down the scope of a search by selecting disciplines, subjects, geo-
spatial range, time span, and other attributes. Another approach 
of data discovery is the free-style search, such as those enabled 
by the Schema.org (Noy et al., 2019). By providing metadata 
through the Schema.org specifications, the records in a data portal 
will be made indexable to search engines. For example, Google 
has indexed millions of data sets on thousands of data portals and 
made them searchable through the Google Dataset Search engine 
(Noy et al., 2019). A user can search data sets with any combina-
tion of keywords. Once a data set is identified on the search engine, 
the user can access the data set through the web address provided 
in the metadata. Recently, there have also been discussions about 
dataguides, which are a type of computer-aided analysis that can 
inform researchers about what data to collect and where to find 
them (Shipley and Tikoff, 2019).

3.5. Data Analysis and Result Interpretation

Many people would simply think of data science just as data 
analysis. Indeed, data analysis is a key step in the data life cycle, 
but it is just a part of the process. In past decades, many studies 
focused on the theories and applications of statistical models and 
data mining in geoscience (Merriam, 2004; Sagar et al., 2018). In 
recent years, the fast-growing methods and technologies of big 
data (Yang et al., 2017, 2019), cloud computing (Li et al., 2015; 
He et al., 2019), machine learning (Lary et al., 2016; Bergen et 
al., 2019; Karpatne et al., 2019), and deep learning (Reichstein et 
al., 2019) have been widely used in geoscience with achievement 
of significant outcomes. Many innovative, data-driven discover-
ies were seen in paleobiology (Peters et al., 2017), paleontology 
(Fan et al., 2020a), mineralogy (Hystad et al., 2015, 2019), water 
resources (Wen et al., 2018; Sun and Scanlon, 2019), forest cover 
change (Hansen et al., 2013), and public health (Goovaerts, 2008, 
2021). Data analysis often includes two steps: exploratory and 
confirmatory data analysis (Fig. 1F). This conventional statisti-
cal method can still be very useful for data science applications 
today. Exploratory data analysis is used to get a better understand-
ing of the data and draw plausible research questions or hypoth-
eses (Tukey, 1977; Camizuli and Carranza, 2018). Confirmatory 
data analysis, in contrast, is where the complicated models and/
or algorithms are applied to prove or disprove the hypotheses.

Data visualization has been increasingly discussed as an 
efficient way to improve the understandability of a data science 
process and the interpretability of the data science results (Fox 
and Hendler, 2011; Ma et al., 2015; Wing, 2019). Data visual-
ization not only means to make the information visible, but also 
that the visualization should make the information easy to per-
ceive by a reader. Many may think of visualization just as a way 
to present data science results, but in actual practice, many data 
visualization techniques can also be used in data preprocessing 
and analysis. For example, box plot is a widely used visualiza-
tion in exploratory data analysis. Ma et al. (2017) used a three-
dimensional cube matrix to explore the co-relationship between 

elements and mineral species and generated new research ques-
tions for detailed analyses. Morrison et al. (2017) applied net-
work analysis to visualize the patterns of co-existence of miner-
als. In Dutkiewicz et al. (2015), machine learning was used to 
generate new hypotheses based on the analysis of big seafloor 
sediment data. GPlates software (Müller et al., 2018) was used 
as a data visualization platform in that study, which generated 
impressive results. These examples show that data visualiza-
tion is an efficient approach for facilitating collaboration among 
geoscientists, data scientists, mathematicians, and data manag-
ers and for making the data science process and results under-
standable to a broader audience.

3.6. Repurposing

Repurposing means that a piece of data can be reused in 
other projects either by external users or the data producers them-
selves. Data interoperability and reusability will be the focus in 
this step. The FAIR data principles as well as the open data and 
open science campaigns suggest that metadata should include the 
provenance information of the original research activities that 
generated the data (Di et al., 2013; Gil et al., 2016; Wilkinson et 
al., 2016; Zeng et al., 2019; Lehmann et al., 2020). According to 
best practice, besides sharing data, researchers should also docu-
ment their software packages, workflow setup, and the context 
information that interconnects the entities, agents, and activities 
involved in a research program. Open data and open science are 
helping to change the culture of research and create a virtuous 
data ecosystem in geoscience (Sinha et al., 2010; Welle Donker 
and van Loenen, 2017; Caron, 2020). Many new scientific dis-
coveries are based on research activities that use “other people’s 
data.” For example, the work of Muscente et al. (2018) on the 
ecological impacts of mass extinctions used fossil community 
data from the Paleobiology Database. The work of Keller and 
Schoene (2012) on disruption in secular lithospheric evolution 
and Keller et al. (2015) on volcanic–plutonic parity and continen-
tal crust both used data from EarthChem. The work of Hazen et 
al. (2019) on mineral evolution used data from Mindat and other 
open data resources. To promote a healthy open data ecosystem, 
legal and ethical issues are also discussed (Berman et al., 2018; 
Kelleher and Tierney, 2018; Wing, 2019).

4. FROM BIG DATA TO DATA SCIENCE ECOSYSTEM: 
A VISION FOR THE NEXT DECADE

Along with the evolution of data science theory and meth-
odology, the upgrading of computational facilities and capabili-
ties, the thriving of big data and open data in geoscience, and the 
training of geoscientists with data science skill sets, it is certain 
that data science will be applied more frequently in geoscience, 
which will lead to more scientific discoveries. What will be the 
trends in methodology and technology, and what should a geo-
scientist be aware of to be better prepared for the data revolution? 
This section offers a few thoughts.
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4.1. Open Data and Open Science Will Be the New Normal

The concept of open science is being widely accepted in 
academia (Donoho, 2017; NASEM, 2018b; Aspesi and Brand, 
2020). Open science is an umbrella concept for a long list of 
“open” activities, including open access to publications, open 
source software programs, open data, open samples, and open 
workflows, just to name a few. Many open science activities will 
take place on the internet and the web (Berendt et al., 2020). For 
example, data will become more open, accessible, and interac-
tive through various protocols and interfaces, such as those main-
tained by the World Wide Web Consortium and the Open Geo-
spatial Consortium. Facilitated by the FAIR principles and other 
associated efforts, the shared data will be better curated, which 
will save researchers time on data preprocessing and preparation. 
The USGS mineral resources spatial data portal is an example 
of that trend (USGS MRDATA, 2021). The Giovanni infrastruc-
ture of NASA (Acker and Leptoukh, 2007) has also been work-
ing toward cooperation among NASA’s distributed data archives 
to enable federated data exploration and comparison (Lynnes, 
2020). For reflection, a key idea in the vision of the Semantic 
Web (Berners-Lee et al., 2001) is the persistence and traceability 
of resources on the web. Similar to the digital object identifier 
(DOI) for publications, many other entities and agents in open 
science, such as data, software packages, samples, researchers, 
organizations, and research grants, will also have their persistent 
and resolvable identifiers on the web. By connecting those identi-
fiers, we can easily weave a graph for all of the objects, steps, and 
workflows involved in generating a scientific finding.

Workflow platforms such as Jupyter Notebook, R Mark-
down, and others will be widely used in geoscience from research 
projects to classroom education. Those workflow platforms are 
not only good tools for collaborative and reproducible research 
activities, they also provide well-organized environments for stu-
dents to learn and use programming languages. Many geoscience 
data portals now have Python or R packages to enable users to 
search and access data directly from a workflow, and there have 
been various successful applications in geoscience (Varela et al., 
2015; Peters and McClennen, 2016; Choi et al., 2021; Rosen-
berg et al., 2020). We anticipate that workflow platforms will 
become more popular in geoscience in the future. Similar to the 
needs of computer scientists and data scientists for trustworthy 
artificial intelligence (Floridi, 2019; Wing, 2020), geoscientists 
also express the request for provenance in their workflows (Gil 
et al., 2019). Recently, packages have been developed in work-
flow platforms to capture provenance. For example, the MetaClip 
(Bedia et al., 2019) framework is able to capture the provenance 
description of a climate product and then append the provenance 
information inside the resulting image. Once that image is loaded 
to the MetaClip Web portal, the provenance information inside it 
will be read and visualized. To tackle large data sets, researchers 
have begun to deploy workflow platforms in the cloud environ-
ment (Hamman et al., 2018; Sun et al., 2020). This will be a trend 
in big geoscience data processing in the near future.

4.2. Big Data, Smart Data, Data Science, and the Changes 
They Bring to Geoscience

Big data does not mean we can dump and share data while 
simply relying on machine learning to identify patterns in the 
chaos. Many researchers have discussed the idea of smart data 
(Iafrate, 2014; Sheth, 2014; Maskey et al., 2020). That is, the 
application of metadata and semantics to add more machine-
readable structures in data generation and collections and the 
deployment of intelligent algorithms to improve the precision 
of data discovery and analysis. Smart data will bring refreshing 
changes to the data life cycle and help researchers quickly iden-
tify the data to be used and extract value from the data. Many 
geoscience data portals, such as EarthChem, Neotoma, and the 
Paleobiology Database have already applied controlled vocab-
ularies to improve the precision of data search and query. The 
Google Dataset Search engine, enabled by Schema.org, offers 
a playground for developing more innovative functions in data 
search. The geoscience community has already begun to work 
on approaches to expose Schema.org-compatible metadata on 
their data portals (Shepherd et al., 2019; Valentine et al., 2020) 
and make the metadata indexable to the Google Dataset Search 
engine. When more data portals enable such functions, an end 
user will be able to search a variety of data on the Google Data-
set Search engine. Metadata portals for specific geoscience dis-
ciplines or subjects such as deep time (Stephenson et al., 2020) 
can also be built with those indexable metadata from various data 
portals. Those improved functionalities will greatly benefit end 
users (Chapman et al., 2020). With more provenance information 
about workflows documented and shared, smart search engines 
can be developed that use such information to provide recom-
mendations not only on data, but also on software packages that 
can be used to analyze the data, potential research topics for the 
data, and researchers with whom to collaborate. For example, 
Mookerjee et al. (this volume) discussed that by using machine 
learning, data management systems will be able to make connec-
tions to other data sets that can potentially build collaborations or 
suggest other geographical areas to study.

The smart data will save researchers time on data discovery 
and allow them to put more efforts toward proposing research 
questions and conducting data analysis. This will be possible 
whether working with a small amount of data and identified 
research questions or a large amount of data that requires explor-
atory data analysis and hypothesis generation (Kitchin and Lau-
riault, 2015). Ma (2018) compared the data science process with 
conventional science approaches and pointed out that a unique 
feature of data science in the big data era is that while a lot of data 
are collected, we may not yet have formed a specific research 
question. Bergen et al. (2019) discussed that machine learning 
provides the means to discover high-dimensional and complex 
relationships in data and enables exploration of more scientific 
hypotheses. If the conventional approaches are small data and 
small knowledge (i.e., domain experts and personal comput-
ers), then the data science process can enable big data and big 
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knowledge (i.e., domain experts, smart data, machine learning, 
and cloud environment). In big data–enabled, multidisciplinary 
geoscience research projects, interpretability of the workflow 
will help people from different disciplinary backgrounds bet-
ter understand the results and findings (Reichstein et al., 2019). 
This overlaps with the work on explainable and meaningful arti-
ficial intelligence in computer science (Hagras, 2018; Holzinger, 
2018; Chari et al., 2020). In the geoscience community, there 
has been some initial work on this topic in workflow platforms, 
such as the “Meaning Spatial Statistics” initiative (Stasch et al., 
2014), and we anticipate that more projects will be launched in 
the near future.

4.3. Science of Team Science to Facilitate Data-Driven 
Geoscience Discovery

In the data ecosystem underpinned by open science, there 
will be small data science projects that only require a small team, 
personal computers, and open source software packages. There 
will also be large-scale data science projects that cross disci-
plinary boundaries and require the collaboration of researchers 
from different institutions, high-performance computing facili-
ties, efficient infrastructure for data storage and transmission, 
and large software programs for data management and process-
ing. To succeed in such data science projects, the science of 
team science is recommended by many communities (NASEM, 
2015). Key elements of the science of team science include 
(1) clear communication to reach consensus on the objective 
among team members, (2) regular brainstorming activities to 
identify and specify research questions, (3) complementary 
expertise from team members on problem solving, (4) regular  
team meetings to review progress and seek alternative 
approaches, and (5) positive and supportive working relation-
ships within the team. The recent collaboration on data-driven 
mineral evolution study (Hazen et al., 2019) shows success-
ful real-world practices of team science. In that work, a list of 
activities was organized to create an environment where people 
from different knowledge backgrounds could quickly step out 
of their comfort zones, get familiar with each other, and work 
together on focused scientific topics.

Geoscience communities also need some cultural change to 
fully embrace open data and open science. The NASEM (2020) 
“Earth in Time” report envisioned a list of science priority ques-
tions for the NSF Earth science programs in the next decade. 
The report also made two recommendations on cyberinfrastruc-
ture. One is about a strategy to support FAIR data practices in 
community data efforts and the other is about the initiation of 
a  community-based standing committee to provide advice on 
cyberinfrastructure needs and advances. Community of prac-
tice has received increasing attention in many academic asso-
ciations and has been discussed as a catalyzer for open science 
(Cutcher-Gershenfeld et al., 2017). Many researchers have been 
actively promoting open science in geoscience (Caron, 2020). 
For instance, the Earth Science Information Partners, through 

collaboration with EarthCube, the American Geophysical Union, 
European Geosciences Union, Geological Society of America, 
American Meteorological Society, and other organizations, has 
successfully organized many successful Data Help Desk activi-
ties recently and archived a long list of reusable resources (ESIP, 
2020). Hundreds of researchers across the world have joined 
those activities as volunteers to answer questions and share 
research outcomes. We anticipate that more such activities will 
be organized in the future to promote data science applications 
and cultural change in the geosciences.

5. CONCLUDING REMARKS

This paper presents a review of recent data science activities 
in geoscience from the perspective of a data life cycle. It first pro-
vides a description of the basic concepts and theoretical founda-
tion of data science. Then, by following the process of the data life 
cycle, it reviews a number of the latest publications on each step in 
the data life cycle and summarizes the shareable experience from 
them. Finally, a vision of the trends in data science applications in 
geoscience is discussed, including open science, smart data, and 
the science of team science. The author hopes the review from the 
aspect of a data life cycle will lower the barrier of data science for 
geoscientists, especially newcomers to data science applications. 
Individual geoscientists can gain awareness of resources available 
in the cyberinfrastructure, explore representative examples of data 
science, and initiate ideas for their own work. Research teams can 
learn methods for collaboration and team science. Geoscientists 
have been successfully embracing the strategy of community of 
practice to share data science resources and promote best prac-
tices. The author hopes the open science campaign will further 
facilitate data science applications in geoscience and lead to more 
data-driven scientific discoveries.
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