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ABSTRACT

In the recent decade, knowledge graph has been a key technique under quick 
development in artificial intelligence. Due to its great potential for tackling big data 
and solving complex scientific questions in the geosciences, it has attracted the atten-
tion of both computer scientists and geoscientists. In this paper, we review concepts 
and technologies relevant to the knowledge graph, the workflow of geoscience knowl-
edge graph construction, and state-of-the-art examples from several geoscience disci-
plines. There are two general strategies for constructing geoscience knowledge graphs: 
top-down and bottom-up. The detailed technologies include geoscience domain 
know ledge modeling, data collection, knowledge extraction, knowledge cleaning and 
fusion, knowledge storage, and knowledge service and discovery. A few recent studies 
have shown that knowledge graph is a useful tool for improving our understanding of 
the evolution of the Earth and can assist in data-intensive geoscience studies. At the 
end of the paper, we discuss the best practices from the studies reviewed and propose 
research topics for future work. Both knowledge and rules in existing human-curated 
databases and text mining from the literature should be leveraged in constructing 
geoscience knowledge graphs. Moreover, development of a higher level schema for 
existing ontology models and a comparable training corpus should be considered.
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1. INTRODUCTION

Geoscience is a data-intensive field. Since the first geologi-
cal map was produced by William Smith in 1815, geoscience 
research has produced massive heterogeneous data sets. The 

data set associated with the geosciences consists of structured, 
semi-structured, and unstructured data obtained from differ-
ent sources using varied methods (Zhu et al., 2017; Wang et 
al., 2018b, 2021). Structured data are stored in the spreadsheet 
and relational database in terms of rows and columns (Jatana 

Downloaded from http://pubs.geoscienceworld.org/gsa/books/book/2377/chapter-pdf/5743374/spe558-02.pdf
by INGEMMET user
on 14 December 2022

mailto:wangchb@cug.edu.cn
https://doi.org/10.1130/2022.2558(02)
https://doi.org/10.1130/2022.2558(02)
mailto:editing@geosociety.org


12 Wang et al.

et al., 2012; Adam and Schultz, 2015) in databases such as 
EarthChem1, Geobiodiversity Database (GBDB)2, Macrostrat3, 
Mindat4, and the RRUFF project5. The unstructured data do not 
have a predefined schema and usually require data processing 
to yield semantic information and relational data (Sint et al., 
2009; Li et al., 2015), such as satellite imagery, geoscience lit-
erature, scanned geological map, and image. Semi-structured 
data is a special form of structured data that combines the con-
tent and data structure and uses tags to label semantic elements. 
It does not obey the relational data model (Madani et al., 2013; 
Tekli, 2016), such as the XML-based online geological map in 
the OneGeology6 database.

Geoscience also produces massive unstructured data that 
are mainly stored in the form of literature written in natural lan-
guages. Based on the estimation of Google Scholar, there are 
389,000,000 records of academic literature, of which 114,000,000 
are written in English (Khabsa and Giles, 2014; Gusenbauer, 
2019). The GeoRef7, a comprehensive bibliographic database in 
geoscience, contains over 4,200,000 records of the geoscience 
literature, and it continues to increase by more than 100,000 doc-
uments annually. National Geological Library of China8 contains 
more than 370,000 records of geoscience documents written in 
Chinese. The massive geoscience literature is a valuable digital 
legacy from which geoscientists can make further data mining 
and knowledge discoveries.

In the geosciences, the study of biological evolution in the 
nineteenth century and the study of geo-plate theory in the twenti-
eth century promoted our understanding of the Earth and the evo-
lution of life. In the 1980s, Earth system science was proposed to 
study and explore global Earth system behaviors from a unified 
system viewed at multiple temporal and spatial scales through 
deep, cross-interdisciplinary research involving geoscience, life 
science, chemistry, mathematics, information science, and social 
science (Jacobson et al., 2000). The Earth system science ini-
tiative supported by academic organizations and governments 
has accelerated the accumulation of geoscience data. Therefore, 
how to deal with the diverse and heterogeneous geoscience data 
becomes a big challenge for Earth system science.

Because the knowledge graph can integrate multiple data 
and promote domain knowledge discovery, the knowledge graph 
has been favored by geoscientists in the recent decade (Wang et 
al., 2021). The knowledge graph can employ the triple structure 
to link and represent all of the knowledge from different data 
sources based on a schema. Beyond processing structured data, 
it can also extract knowledge from unstructured literature based 
on its supporting techniques. Knowledge reasoning also pro-

vides a powerful tool that geoscientists can use to better under-
stand the Earth’s evolution. Knowledge graph and its related 
technologies provide a powerful tool for processing diverse and 
heterogeneous geoscience big data and exploring complex ques-
tions in the geosciences.

Research related to the geoscience knowledge graph has 
been carried out in the fields of paleontology, geological sur-
vey, petroleum geology, geological disasters, mineral explora-
tion, and more (Fan et al., 2020; Holden et al., 2019; Peters et 
al., 2017; Li et al., 2018; Zhou et al., 2020; Zhu et al., 2017). 
The research mainly involves the following steps. (1) The design 
and construction of a domain ontology model for a certain topic 
in geosciences to guide the construction of a knowledge graph.  
(2) Mapping the relational database and data model to a knowl-
edge graph. (3) Knowledge graph construction by mining 
unstructured text. (4) Semantic query of knowledge graph and 
knowledge service. (5) Data mining and knowledge discovery.

In the core science system of the U.S. Geological Survey 
(USGS), multidisciplinary data management and integration 
were proposed to promote the work of solving complex scien-
tific and social problems (Bristol et al., 2012). The National Sci-
ence Foundation (NSF) has supported the EarthCube9 program 
for a decade to develop sharable tools and cyberinfrastructure to 
transform geoscience research. The Deep-Time Digital Earth10 
(DDE) program was initiated in 2019 to harmonize global 
deep-time Earth data, share global geoscience knowledge, and 
transform Earth science. Gil et al. (2019) proposed the essen-
tial research agenda of an intelligent system of geosciences. In 
these important scientific programs and agendas, the knowledge 
graph is involved at different levels and is regarded as an impor-
tant tool for future research in the geosciences. In the knowledge 
graph, the triple graph structure is employed to represent knowl-
edge. In this way, a knowledge graph can not only organize the 
relational data set, but also process the unstructured text data for 
extracting the triple-structure knowledge from the geoscience 
literature. Knowledge graphs have different research focuses for 
different domains and scenarios. In the domain of the geosci-
ences, knowledge graph has great potential for knowledge orga-
nization, the representation of big data, and knowledge discov-
ery in the geosciences.

In the era of big data and artificial intelligence, using knowl-
edge graphs and related technologies to improve the paradigm of 
geoscience research for solving complex problems has gradually 
gained consensus among geoscientists and computer scientists 
(Gil et al., 2019; Ma, 2021; Wang et al., 2021). In this paper, 
we review the status of research into text mining and knowledge 
graph construction from the geoscience literature and propose a 
few topics for the future work of geoscience knowledge graph 
construction and applications. The remainder of this paper is 
organized as follows. Section 2 introduces concepts relevant to 

1https://www.earthchem.org/
2http://www.geobiodiversity.com/home
3https://macrostrat.org/
4https://www.mindat.org/
5https://rruff.info/
6http://portal.onegeology.org
7https://pubs.geoscienceworld.org/georef
8http://www.cgl.org.cn/

9https://www.earthcube.org/
10http://www.ddeworld.org/
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the knowledge graph and technical systems. Section 3 reviews 
the workflow and key technologies of geoscience knowledge 
graph construction based on text mining from the geoscience lit-
erature and data mapping from relational data, and introduces the 
construction and application of knowledge graph in the domain 
of porphyry copper deposits briefly. Section 4 provides a discus-
sion and recommends a few topics for future work. Section 5 
provides a conclusion.

2. REFLECTING ON CONCEPTS AND 
TECHNOLOGIES RELATED TO  
KNOWLEDGE GRAPH

2.1. History of Knowledge Graph

A knowledge graph is a graph-structured model that 
employs a node–edge–node structure to organize the knowledge 
of a domain (Singhal, 2012; Ehrlinger and Wöß, 2016). Every 
piece of knowledge can be expressed using the triple structure 
of subject–predicate–object. The nodes represent the entities 
of subject and object while the edge represents the semantic 
relation of the predicate. The rapid development of knowledge 
graph in recent years has benefited from many related research 
fields such as semantic network, expert system, natural lan-
guage processing (NLP), semantic web, database, deep learning 
algorithm, and high-performance computing (Feigenbaum and 
Buchanan, 1993; Berners-Lee and Hendler, 2001; Annervaz 
et al., 2018; Chen and Luo, 2019; Wang et al., 2019). Recent 
knowledge graph developments have absorbed the concepts and 
frameworks of the semantic web in terms of knowledge organi-
zation and representation, making knowledge exchange easier 
between computers and humans.

Although knowledge graph is now a popular topic in the 
academic and industrial sectors, it has taken a long time to 
develop (Fig. 1). Knowledge graph is an intuitive product of 
knowledge representation in artificial intelligence. In the 1960s, 
semantic network (or frame network) was proposed as a form 
of knowledge representation among concepts (Quillan, 1963). 
A semantic network was composed of interconnected nodes and 

edges and was mainly used in the field of natural language pro-
cessing. Nodes represent concepts, and edges represent the rela-
tions among them. In this stage, the semantic links contained in 
the edges were weak, simple, and unable to support complex 
reasoning in the semantic networks. In the 1970s, the term of 
knowledge graph was first proposed in the instructional system 
of courses (Schneider, 1973). In the early stage, knowledge 
graphs were used to restrict the semantic relation in the semantic 
networks (Nurdiati and Hoede, 2008; Gebretensae, 2019). With 
the release of Google knowledge graph, the term “knowledge 
graph” had a new meaning that is now widely accepted by aca-
demia and industry.

To address the drawback of weak semantics, extensive 
work was carried out to enhance the semantic relations. In 
the 1970s, artificial intelligence research focused on expert 
systems composed of knowledge bases and inference engines 
(Fig. 1; Feigenbaum and Buchanan, 1993). In the context of an 
expert system, the knowledge base is a sub-system that contains 
a series of human knowledge used by a computer system to 
emulate the human decision-making process (Gaschnig, 1982; 
Duan et al., 2005). The knowledge graph can be regarded as a 
graph-structured knowledge database (Hogan et al., 2022). The 
inference engine is another sub-system for an expert system 
that employs logic rules (e.g., IF-THEN rules) in the knowledge 
base to deduce new information. A knowledge base with strong 
semantic relations was proposed as a necessary infrastructure to 
support the reasoning functions in an expert system (Gaschnig, 
1982; Liao, 2005). Description logic model is a knowledge rep-
resentation language that describes concept classification and 
their relations (Fig. 1) and can strengthen the semantic links 
for logical reasoning (Nardi and Brachman, 2010). It provides 
a logical formalism for ontology and the semantic web. In com-
puter science, each ontology is the formal, explicit, and detailed 
description of a shared conceptual model (Gruber, 1995). The 
ontology model was usually used to design computational mod-
els for artificial intelligence systems (Jepsen, 2009). In the con-
struction of a domain-specific knowledge graph, an ontology 
model design is a pioneering work as it is able to define a frame-
work of entity classes, semantic relationships, and instances.

Figure 1. Timeline shows the history from semantic 
network to knowledge graph. OWL— Web Ontolo-
gy Language; RDF—Resource Description Frame-
work; OIL—Ontology Interchange Language; 
DAML—DARPA Agent Markup Language; 
RDFS—Resource Description Framework Schema;  
SHOE—Simple HTML Ontology Extensions.
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The internet and the web led to explosive growth in data; 
however, in the early days, they could not meet the requirement 
for processing the complex tasks of reasoning and decision-
making. The semantic network was also extended into the web 
domain. The semantic web proposed by T. Berners-Lee not only 
links textual pages through hyperlinks but also defines and links 
entities together to build a cyberspace knowledge base (Berners-
Lee, 1998). To address the increasingly complex semantic web 
technology stack, linked data—a set of design principles for 
sharing machine-readable interlinked data on the web—was pro-
posed to build a linked open data ecosystem (Fig. 1; Berners-Lee 
et al., 2008). In 2012, Google’s knowledge graph was released; it 
is a commercial realization of some ideas from the semantic web 
(Singhal, 2012). Since then, the knowledge graph has entered a 
stage of rapid development and has been widely used in a series 
of research and commercial applications.

The representation of knowledge graph requires corre-
sponding descriptive language. In the early stage, knowledge 
representation was based on the traditional syntactic ontology 
languages (e.g., Cycl11, KL-one12, F-Logic13, and DOGMA14). 
After 1995, XML-based web markup language became popular 
for representing description logic and defining the structure of 
knowledge. In 1999, the first web markup ontology language was 
released and was further expanded into DARPA Agent Markup 
Language (DAML) by the U.S. Defense Advanced Research 
Projects Agency (DARPA) (Hendler et al., 2000). At the same 
time, European scientists also developed a similar markup lan-
guage, the Ontology Interchange Language (OIL) (McGuinness 
et al., 2002). In 2004, the World Wide Web Consortium (W3C) 
released a new language, Web Ontology Language (OWL), which 
is based on the integration of OIL and DAML. In recent years, 
several new markup languages, serialization formats, schemas, 
and database structures were developed for knowledge represen-
tation, such as JSON-LD15, Schema.org, RDFa16, and Graph DB.

2.2. Technological Ecosystem of Knowledge Graph

With the rapid development over the last few decades, the 
knowledge graph is more than just a tool for improving search 
engines or creating a knowledge representation. It has formed 
a technological ecosystem with varied approaches and appli-
cations. In addition to the schema and markup language of the 
knowledge graph, the construction and application of the knowl-
edge graph benefit widely from the associated techniques of data 
mapping, deep learning, NLP, data fusion, visualization, knowl-
edge reasoning, and database development. In the construction 
of a knowledge graph, data mapping can transform structured 

relational data into a triple knowledge graph, while NLP is used 
to extract entities and semantic links from the unstructured lit-
erature. Deep learning algorithms are the supporting infrastruc-
ture for NLP and knowledge graph to train models and extract 
information. The database is not only used to store structured 
knowledge, it also supports data mapping for quick construction 
of knowledge graphs by mapping the existing relational data-
bases. Visualization is the representation interface of a knowl-
edge graph for users. Data fusion is used for semantic and entity 
alignment among multi-source knowledge graphs. For scientific 
research, knowledge discovery is a fundamental task of knowl-
edge graph, in which semantic reasoning is the corresponding 
tool in many applications.

2.3. Strategy for Constructing Knowledge Graph

The strategy for knowledge graph construction can be cat-
egorized into top-down and bottom-up (Fig. 2). In the top-down 
strategy, the knowledge model, which includes the domain 
ontology model, semantic description framework, knowledge 
exchange syntax, and entity tagging system, is created first as a 
schema for a domain knowledge graph. The scope of information 
extraction of entities and semantic links from the unstructured 
literature is defined in the domain ontology model. In the bot-
tom-up strategy, the scope and schema of information extraction 
are unclear at the early stage. The information extraction of enti-
ties and semantic links is based on some basic syntax rules. The 
extracted results require post-processing (e.g., data filtering and 
knowledge fusion) before the cleansed knowledge can be stored 
in the knowledge graphs.

The top-down strategy first determines the schema and then 
inputs data according to the schema constraints. The bottom-up 
strategy first collects the data and then extracts the schema from 
the data. In a domain, the scheme is relatively stable and can be 
derived from the domain expert knowledge. The top-down strat-
egy can design the required entities and semantic relations for 

11https://en.wikipedia.org/wiki/CycL
12https://en.wikipedia.org/wiki/KL-ONE
13https://en.wikipedia.org/wiki/F-logic
14https://en.wikipedia.org/wiki/DOGMA
15https://json-ld.org/
16https://www.w3.org/TR/rdfa-primer/ Figure 2. Two strategies for constructing knowledge graph (KG).

Downloaded from http://pubs.geoscienceworld.org/gsa/books/book/2377/chapter-pdf/5743374/spe558-02.pdf
by INGEMMET user
on 14 December 2022

http://Schema.org
https://en.wikipedia.org/wiki/CycL
https://en.wikipedia.org/wiki/KL-ONE
https://en.wikipedia.org/wiki/F-logic
https://en.wikipedia.org/wiki/DOGMA
https://json-ld.org/
https://www.w3.org/TR/rdfa-primer/


 Knowledge graph construction from geoscience legacy 15

application scenarios. Due to the clear domain schema in the geo-
science domain, the top-down strategy is the preferred method 
for extracting information from unstructured geoscience litera-
ture and integrating the existing relational data for knowledge 
graph construction. Increasing data will cause the evolution of 
schema in the general field; the bottom-up strategy is the appro-
priate way to construct a general knowledge graph.

3. KNOWLEDGE GRAPH CONSTRUCTION IN  
THE GEOSCIENCES

Due to the clear and stable domain schema in the geosci-
ence domain, the top-down strategy is preferred for construct-
ing a geoscience knowledge graph. Construction of a geoscience 
knowledge graph is a systematic work that requires cooperation 
among geoscientists and computer scientists. The construc-
tion process mainly includes six aspects (Fig. 3). In geoscience 
knowledge modeling, computer scientists assist geoscientists in 
designing the knowledge model for the selected domain. In the 
construction process from knowledge extraction to knowledge 
storage (Fig. 3), the main works are performed by computer sci-
entists, while geoscientists review the early knowledge graph and 
provide the support of expert knowledge. In the landing scenario 
of a knowledge graph, profound cooperation is needed among 
geoscientists and computer scientists to provide knowledge ser-
vice and enable knowledge discovery in applications.

3.1. The Workflow of Knowledge Graph Construction

3.1.1. Geoscience Domain Knowledge Modeling
Knowledge modeling mainly includes ontology modeling, 

semantic description framework, knowledge exchange syn-
tax, and entity-relation tagging systems (Fig. 3). The semantic 
description framework is used to define the basic data model 
and logical structure in the knowledge graph. The exchange syn-
tax refers to the data exchange formats. Some mature solutions 
for semantic description and knowledge exchange syntax are 
provided by W3C, which recommends the Resource Descrip-
tion Framework (RDF) that uses the triple structure of subject– 
predicate–object to represent knowledge. The knowledge 
exchange syntax can use JSON-LD, Turtle17, and other formats 
recommended by W3C.

The ontology model and entity-relation tagging system are 
the key tasks in knowledge modeling. Each ontology is the for-
mal specification of the shared conceptualization of a domain 
of study (Gruber, 1995). The ontology model can define the 
classes, property, semantic relation, and vocabulary in a geo-
science knowledge graph. The ontology model is designed to 
satisfy the objectives and requirements of a geoscience knowl-
edge graph based on the existing ontology model, data model, 
terminology, expert knowledge, and relational database model in 

the geoscience domain. The ontology model can be edited and 
designed on the platforms of Protégé, Ontolingua, OntoSaurus, 
WebODE, OntoEdit, OilEd, WebOnto, and TopBraid Composer 
(Lambrix et al., 2003; Roche, 2003). The entity tagging system 
employs a series of tokens to mark the semantic information in 
the geoscience text data and is used to recognize the semantic 
units that carry the greatest text data information. Therefore, the 
ontology model can provide terminology and domain knowledge 
for designing the entity tagging system and the corresponding 
geoscience tokens.

Constructing an ontology model and entity tagging system 
in the geosciences is not a simple task. Both must be continuously 
improved. Therefore, a hybrid method combining collaboration, 
loop iterative evolution, and expert evaluation is often used in the 
construction process. That is, in the early stage, a small work-
ing group of geoscientists and computer scientists draws up a 
geoscience domain ontology model and entity tagging system, 
and then the established model is corrected and updated using 
iterative evolution. Finally, domain experts are invited to review 
the ontology model and entity tagging system to ensure that the 
knowledge model is robust and representative.

Geoscience ontology models had been studied before 
knowledge graph was widely studied and applied in the academic 
and industrial fields. As a shared conceptualization of domain 
knowledge, the geoscience ontology model has been designed 
for geoscience domain knowledge representation, linked data in 
the geosciences, knowledge integration, and development of a 
geoscience information management system (Cox and Richard, 
2005; Raskin and Pan, 2005; Fox et al., 2009; Ma et al., 2012, 
2014; Wang et al., 2018a; Garcia et al., 2020; Mantovani et al., 
2020). A typical geoscience ontology model is in the domain of 
the geologic time scale, which is a chronological framework for 
Earth history. Continuous discoveries in stratigraphy and paleon-
tology result in the geologic time scale being updated frequently 
by the International Commission on Stratigraphy. A series of 
ontology models has been designed to represent the geological 
time scale chart from different viewpoints (Cox and Richard, 
2005, 2015; Ma et al., 2011, 2012, 2020; Wang et al., 2018a). 
In addition to geologic time scale ontology, ontology models 
in other geoscience branch domains have also been designed, 
such as the Semantic Web for Earth and Environmental Termi-
nology (SWEET) designed by NASA (Raskin and Pan, 2005) 
and those in mineral exploration (Mentes, 2012), petroleum (Li 
et al., 2010), structural geology (Babaie et al., 2006; Zhong et 
al., 2009), geological map (Mantovani et al., 2020), geological 
hazard (Liu et al., 2010), and marine science (Rueda et al., 2009).

3.1.2. Geoscience Data for Constructing Knowledge Graph
In the geosciences, the data set that is used to construct 

knowledge graphs mainly includes structured databases and 
unstructured text data (Fig. 3). The structured data consist of 
a geoscience relational table and database. The relational geo-
science database consists of a series of tables, and tables con-
taining relational records can be regarded as a special type of 17https://www.w3.org/TR/turtle/
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TABLE 1. A LIST OF REPRESENTATIVE ONLINE GEOSCIENCE DATABASES

Database Discipline Content Reference

National Mineral Deposit 
Database of China

Geology and mineral 
resources

Deposit name, location, mineralization 
type, size, utilization status, genetic type, 
geological work level

http://ngac.org.cn/kuangchandi/

Mineral Resources Online 
Spatial Data

Geological map, global mineral  
deposits, geochemical and geophysical 
survey data

https://mrdata.usgs.gov

OneGeology Global geological map http://portal.onegeology.org/
OnegeologyGlobal

PBDB
Paleobiology

Distribution and classification of fossil 
animals, plants, and microorganisms https://paleobiodb.org/

GBDB Section-based stratigraphic and 
paleontological information geobiodiversity.com

EarthChem Petrology, geochemistry, 
geochronology

One-stop-shop databases including 
PetDB, SedDB, NAVDAT, MetPetDB, 
the U.S. Geological Survey National 
Geochemical Database, GEOROC,  
and GANSEKI

https://earthchem.org/

GeoKem Petrology, geochemistry Composition of all volcanic and  
igneous centers http://www.geokem.com/

LEPR Geochemistry Elemental partitioning in magmatic 
systems

http://traceds.ofm-research.org/access_
user/login.php

Mindat Mineralogy, mineral 
deposit

Minerals and their localities, deposits, 
and mines https://www.mindat.org/

RRUFF Mineralogy Raman spectra, X-ray diffraction, and 
chemistry data for minerals https://rruff.info/

Macrostrat Sedimentary, petrology, 
paleobiology

Spatial and temporal distribution of 
sedimentary, igneous, and metamorphic 
rocks as well as data extracted from them

https://macrostrat.org/

Note: PBDB—Paleobiology Database; GBDB—Geobiodiversity Database; LEPR—Library of Experimental Phase Relations.
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relational database. The relational geoscience data mainly come 
from online databases. Table 1 lists some representative online 
geoscience databases. The relational data not only provide the 
logical table for triple mapping, they also provide a seed of 
knowledge for producing training data quickly. “Unstructured 
geoscience data” mainly refers to text data from academic papers 
and geological survey reports derived from the geological survey 
programs and the published literature in an academic literature 
database. Due to the diversity of data sources, data cleaning and 
calibration of the raw data is required, such as the crawling and 
downloading of academic literature, text and table recognition 
from the literature, data correction, unified coding of documents, 
and the building of text corpus.

3.1.3. Knowledge Extraction from Geoscience Data
In addition to using the manual method, the computer-aided 

method is a cost-effective way to construct a geoscience knowl-
edge graph. The relational geoscience tables and databases can 
be transformed into RDF data using mapping languages (Fig. 
3). R2RML and direct mapping (DM) are two mapping lan-
guages recommended by W3C. DM is used in the simple trans-
formation from the relational database to RDF, while R2RML 
is a customized mapping language that provides the functions 
to view relational data in the RDF model. A logical table from 
the relational data is mapped into a triple structure of subject– 

predicate–object through R2RML and DM mapping (Fig. 4). 
A logical table can be a basic table, view, or SQL query result. 
Each row in the logical table is mapped into several RDF triples 
that include subject mapping and multi-predicate object map-
ping. Finally, the RDF triples are combined to form a unified 
knowledge graph.

Unstructured literature is another main data source for the 
construction of geoscience knowledge graphs (Fig. 3). Low-
dimensional entity and relational information extraction from the 
high-dimensional geoscience literature is a complex task and a 
great challenge that is difficult for traditional methods of pro-
cessing structured data. NLP is the main way to extract entities 
and their relations from the geoscience literature for text min-
ing. From the view of NLP tasks in the construction of a geo-
science knowledge graph, the studies mainly include word seg-
mentation for language without space between words, geological 
entity recognition, and extraction of the semantic link between 
entities (e.g., Luo et al., 2017; Wang et al., 2018c; Qiu et al., 
2018; Consoli et al., 2020). In geoscience literature, English is 
not the only written language. In some languages, like Chinese, 
words are not naturally separated by spaces as in English. For 
example, geological texts in Chinese need to be segmented into 
a series of semantic units of vocabulary before they can be pro-
cessed further. The tasks of word segmentation and geological 
entity recognition are similar. The difference between them lies 
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in the  different tokens used. The token in the word segmentation 
indicates the start and end of a multi-character word, whereas the 
token in the entity recognition indicates the start and end of an 
entity word that is customized by domain knowledge. Word seg-
mentation is performed to divide the high-dimensional text data 
into words and character combinations with semantics separated 
by spaces or slashes based on the tokens. Entity recognition is 
performed to extract the named entities defined in the entity tag-
ging system from the unstructured geoscience literature and treat 
non-entity words as a class of OTHERS.

The methods of entity recognition are categorized into rule-
based, machine learning, and deep learning. The rule-based 
methods use the customized rules and domain dictionary to 
extract entities based on string matching. Dictionary matching 
is a typical method for entity recognition, such as the forward 
maximum matching method (Li et al., 2009; Zhang et al., 2006), 
backward maximum matching (Bhasuran et al., 2016; Gao et al., 
2005a), and the shortest path method (Gao et al., 2005b). The 
features of syntax and text data parts of speech (e.g., inverse doc-
ument frequency, typical prefixes, and suffixes) were also used to 
design rules for entity recognition from the literature (Kim and 
Woodland, 2000; Chiticariu et al., 2010; Zhang et al., 2013; Efti-
mov et al., 2017). The rule-based methods usually perform with 
high precision and low recall in a domain. They are weak in gen-
eralization ability and are difficult to apply to a different domain 
(Karystianis et al., 2017).

Recently, many methods of machine learning and deep learn-
ing have been proposed and used in the NLP tasks of entity rec-
ognition. As the supervised methods, the machine learning and 

deep learning methods both train entity recognition models based 
on the training corpus. The biggest difference between the two 
methods is that the deep learning method uses neural networks 
to design an end-to-end pipeline rather than designing a series of 
features for a machine learning algorithm. The supervised meth-
ods in the NLP tasks include three steps of distributed representa-
tion, context encoder, and decoder. The text data are regarded as 
a high-dimensional column vector that is a challenge for memory 
management and computer processing in the NLP tasks (Dhillon 
et al., 2002; Hotho et al., 2005). To enable the computer to pro-
cess text data, the text data need to be transformed into numerical 
data and can be represented by one-hot encoding. For a corpus 
of length N, every word can be represented as an N-dimensional 
vector. In a one-hot vector, the position of the encoded word is set 
to 1 while the remaining positions are set to 0. However, the one-
hot vector is sparse, and it is difficult to describe the contextual 
semantics (Johnson and Khoshgoftaar, 2020). Similar words have 
similar semantics, and the semantics of the words are determined 
by their context. The word in the corpus can be mapped into a 
k-dimensional word vector based on the neural networks, and 
the vector transformation of text is named as word embedding 
or distributed representation. The semantic similarity is deter-
mined by the word vector distance. The continuous bag of words 
model (CBOW) and skip-gram are widely used for word embed-
ding in the NLP (Guthrie et al., 2006; Mikolov et al., 2013). The 
encoder is designed to mine the hidden patterns between contexts 
in the word embedding sequence. The commonly used encoders 
include convolutional neural network, recurrent neural network, 
recursive neural network, deep transformer, and language model. 

A
ID Deposit 

name 

Altname Lat Lon Age 

(Ma) 

Ore tonnage Cu 

grade 

Mo 

grade 

Au 

grade 

Ag 

grade 

1 Agua Rica Mi Vida -27.37 -66.28 65 1761 0.42 0.03 0.18 3.2 

<http://mineraldeposit/Agua_Rica> <http://mindep/mineraldeposit_longtitude> "-66.28" . 

<http://mineraldeposit/Agua_Rica> <http://mindep/mineraldeposit_cugrad> "0.42" . 

<http://mineraldeposit/Agua_Rica> <http://mindep/mineraldeposit_latitude> "-27.371" . 

<http://mineraldeposit/Agua_Rica> <http://mindep/mineraldeposit_aggrade> "3.2" . 

<http://mineraldeposit/Agua_Rica> <http://mindep/mineraldeposit_augrade> "0.18" . 

<http://mineraldeposit/Agua_Rica> <http://mindep/mineraldeposit_depositage> "65" . 

<http://mineraldeposit/Agua_Rica> <http://mindep/mineraldeposit_oreton> "1761" . 

<http://mineraldeposit/Agua_Rica> <http://mindep/mineraldeposit_altName> "Mi Vida" . 

<http://mineraldeposit/Agua_Rica> <http://mindep/mineraldeposit_mograd> "0.033" . 

<http://mineraldeposit/Agua_Rica> <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://mindep/mineraldeposit> . 

B

Figure 4. A demo case of data mapping from relational data to Resource Description Framework (RDF) data.  
(A) The records in the relational database; (B) the mapping result of RDF.
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The decoder takes the features from encoders as input and out-
puts the entity labels.

The machine learning methods used in entity recognition 
mainly contain hidden Markov model (Morwal et al., 2012), 
decision tree (Szarvas et al., 2006), maximum entropy (Chieu 
and Ng, 2003), support vector machine (Ekbal and Bandyopad-
hyay, 2008), and conditional random field (CRF) (Sobhana et 
al., 2010). Recently, there have been more and more case studies 
of deep learning applications in entity recognition, such as con-
volutional neural network (Chen et al., 2019), recurrent neural 
network (Liu et al., 2017), recursive neural network (Li et al., 
2017), transfer learning (Lee et al., 2017), active learning (Shen 
et al., 2017), reinforcement learning (Fang et al., 2019), genera-
tive adversarial network (Zhang et al., 2019), and long short-term 
memory (Hu et al., 2018).

Most studies on the text mining of geoscience literature are 
focused on geological entity recognition (Table 2). The method of 
entity recognition includes dictionary matching, machine learn-
ing (e.g., CRF), and deep learning methods (e.g., BiLSTM, atten-
tion-based BGRU, and deep belief networks). The performance 
of geological entity recognizers trained in different studies varies 
greatly. Due to differences in training test corpus, entity types, 
and algorithms in these studies (Table 2), the performances of 
these entity recognizers are not comparable. However, these case 
studies have proven that it is feasible to extract entities from the 
unstructured geoscience literature based on existing techniques.

In addition to geological entities, the geological literature 
contains a large amount of property information of a special 
entity type, which is embedded in the geological text in the 
form of tables and text descriptions. This property information 
has obvious similarities to the forms of numerical values plus 
physical units, such as age, temperature, element concentration, 
and other properties. Therefore, the regular expression method 
is preferred for extracting attribute information from the geo-
science literature.

Geological entities represent the nodes of the literature, while 
semantic relationships provide links between entities to form the 
information network of the geoscience literature. The entity rep-
resents the subject and object information in the triple structure. 
The semantic relationship represented by the predicate is also 
important semantic information in the geoscience literature. In 
the process of constructing the knowledge graph, the semantic 
link between entities needs to be extracted. According to how the 
training corpus is built, semantic link extraction methods can be 
divided into supervised learning and weakly supervised learning 
methods. The supervised learning methods require the labeling 
of a large amount of corpus while weakly supervised learning 
requires only a small amount of labeled data for model learning.

In recent research of the weakly supervised methods, 
multi-task transfer learning, bootstrapping, active learning, and 
label propagation were used to extract the semantic relations 
(Chen et al., 2006; Jiang, 2009; Zhou et al., 2010; Angeli et al., 
2014; Pawar et al., 2017; Qu et al., 2018). Besides, some unsu-
pervised methods such as clustering and the template-based 

approach were also used in the relation extraction (Chambers 
and Jurafsky, 2011; Sun et al., 2011; Adel et al., 2018; Das et 
al., 2019). A few studies were focused on semantic link extrac-
tion from the geoscience literature. The simplest way to extract 
semantic links is to use the co-occurrence frequency to repre-
sent the semantic relationship between adjacent geological enti-
ties (Wang et al., 2018c). Moreover, factor graph and attention-
based BGRU were also used in the extraction of semantic links 
from the geoscience literature (Table 2; Peters et al., 2014; 
Zhang, 2015; Zhou et al., 2020).

PaleoDeepDive and GeoDeepDive are the most influen-
tial cases of text mining in the geosciences. PaleoDeepDive, a 
machine reading and learning system, was developed to extract 
fossil information from the literature and update the paleobiol-
ogy database (PBDB) (Peters et al., 2014). GeoDeepDive, the 
updated version of PaleoDeepDive, is still ongoing and extracts 
geological unit information for North America from the geo-
logical literature and builds the macrostrata (https://macrostrat 
.org/). Two factors have led to the success of these two cases:  
(1) The research has received in-depth technical support from 
geo scientists and computer scientists, especially the support of 
Stanford CoreNLP and DeepDive. (2) The paleontology database 
collected in the early stage provides a large number of training 
data, dictionaries of geological terms, and semantic rules.

3.1.4. Knowledge Fusion
Due to the diverse and multilingual data sources, the knowl-

edge acquired in the knowledge extraction process is vague and 
heterogeneous and includes such items as different names of the 
same entity, different references of the same entity, and other 
heterogeneous problems. Entity disambiguation and entity align-
ment are required to address these issues (Fig. 3). Entity align-
ment mainly depends on similarity-based methods, rule-based 
methods, and division-based methods. The similarity-based 
method uses the triangular inequality feature of the metric space 
to filter out the entity pairs that do not satisfy the mapping condi-
tions, realize the alignment of entities, and eliminate the hetero-
geneity (Euzenat and Valtchev, 2004). The division-based method 
divides the large-scale knowledge graph into several small 
knowledge graphs for matching to reduce the total time required 
for similarity calculation (Rahm et al., 2004). The rule-based 
method usually requires different rules for different source data. 
Probability and semi-supervised learning methods are introduced 
into the rule-based method to build matching rules automatically 
and reduce subjective interference (Suchanek et al., 2011; Niu 
et al., 2012). Furthermore, broad geoscience knowledge graph 
construction also requires knowledge of fusion technologies to 
integrate the knowledge graphs of different disciplines.

3.1.5. Knowledge Storage
Knowledge graph storage methods include relational data-

bases, RDF-based storage, and graph databases (Fig. 3). The 
method based on a relational database needs to map the triple 
relationship in the knowledge graph into a relational database, 
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TABLE 2. A LIST OF TEXT MINING TECHNOLOGIES AND THEIR APPLICATIONS IN THE GEOSCIENCES 

No. Topic Research content Method Language P* R* F* Reference 

1 

Word 
segmentation

Chinese word segmentation BiLSTM Chinese 85.59 85.52 85.55 Qiu et al., 2018 

2 Geological word segmentation in Chinese CRF Chinese 94.14 91.40 92.75 Wang et al., 
2018c  

3 Chinese word segmentation CRF Chinese 91.50 92.20 91.80 Huang et al., 
2014 

4 

Named 
entity 

recognition 

Extract entities of geologic time, geological 
structure, rock, and stratum from geological reports 
in Chinese 

Attention-based 
BiLSTM model 

Chinese 86.74 86.05 86.39 Qiu et al., 2019 

5 

Eon, era, period, epoch, age, si liciclastic 
sedimentary rock, carbonate sedimentary rock, 
chemical sedimentary rock, organic-rich 
sedimentary rock, Brazilian sedimentary basin, 
basin geological context, lithostratigraphic unit, and 
miscellaneous data relevant to the oil and gas 
industry 

BiLSTM-CRF Portuguese 86.63 82.71 84.63 Consoli et al., 
2020 

6 Mineral, rock, ore deposit, timescale, strata, and 
location from geological report in English 

Dictionary matching 

English 

78.44 84.19 80.96 

Enkhsaikhan, 
2021 Character-Level LSTM 

+ Word-Level BiLSTM 76.35 79.24 77.59 

Word-Level BiLSTM 77.54 79.98 78.53 

7 Extract entities related to location, method, and 
data from geological hazard literature in Chinese 

CRF 

Chinese 

82.10 77.56 79.81 

Fan et al., 2020 

BiLSTM-CRF 92.05 94.19 93.10 

The deep, multi-
branch BiGRU-CRF 

model 
94.13 94.25 94.19 

Att-BiLSTM-CRF Chinese 89.69 89.52 89.61 

8 
Extract entities related to eon, era, period, and 
sedimentary basin from literature in Portuguese CRF Portuguese 76.78 43.27 54.33 

Amaral et al., 
2017 

9 

Extract entities related to country, state, 
waterbodies, mineral, person, organization, city, 
region, mountain, island, river, village, measures, 
year, fault, rock, and time 

CRF English 77.05 77.27 75.81 Sobhana et al., 
2010 

10 

Minerals, commodity names, geological eras, 
rocks, stratigraphic units, mineralization styles, 
location names, mines, tectonic setting names, and 
regions 

Dictionary matching English    
Enkhsaikhan et 

al., 2018 

11 
Time and spatial features, property, ent ity 
relationship, and feature relationship  Deep Belief Networks Chinese 93.16 95.90 94.51 

Zhang et al., 
2018 

12 Incident description, tools and equipment, workover 
steps from the text in the oil and gas fields 

Bi-LSTM+SoftMax 

Chinese 

83.00 91.00 87.00 

Zhong et al., 
2020 

Bi-LSTM+CRF 85.00 98.00 92.00 

Word2Vec-Bi-
LSTM+CRF 

87.00 100.00 93.00 

13 Stratum, geological history, paleobionts, geological 
structure, rock, and other 

Dic-Att-BiLSTM Chinese   
86.55 RGR  

Qiu et al., 2020 
91.18 GJP  

14 
Geological timescales, mineralogy, host rock types, 
and alteration types 

Dictionary matching, 
TF-IDF, TextRank, 

POS 
Chinese    

Holden et al., 
2019 

15 Semantic 
link Semantic information in geological text in Chinese 

Attention-based 
BGRU and highway 

network 
Chinese 76.80   Luo et al., 2017 

16 
Entity and 
semantic 

link 

Extract entity and semantic information related to 
paleontology DeepDive Multilingual    

Peters et al., 
2014; Zhang, 

2015 

Extract entity and semantic link to construct petro 
knowledge graph 

*P—Precision; R—Recall; F—F-measure.

Bert, language 
technology platform, 

manual rule 
Chinese    Zhou et al., 

2020 
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which requires a serious workload for the query and storage 
of semantic information. The method based on RDF storage is 
incompatible with the massive property information. The graph 
database is a NoSQL database and mainly uses nodes and edges 
to organize data. Nodes represent entities in the knowledge graph, 
and edges represent semantic links among entities. Because there 
is a large amount of valuable property information in the geosci-
ences, the graph database can add labels and key values to the 
nodes to represent the classification and property information of 
the entity, which is appropriate for knowledge graphs.

3.1.6. Geoscience Knowledge Service and  
Knowledge Discovery

The purpose of knowledge graph research is to construct a 
knowledge graph through various knowledge acquisition meth-
ods and provide the service for knowledge semantic query, 
semantic reasoning, and visualization of temporal and spatial 
information (Fig. 3). There are some knowledge services associ-
ated with knowledge graph available online for geoscientists and 
the public. For example, PBDB, Macrostrat, PetroKG (Zhou et 
al., 2020), and GeoDocA (Holden et al., 2019) are well-known 
data and knowledge service systems.

The PBDB was started in 1998 (Callaway, 2015). In the 
early stage, it is just a relational database for paleontologists to 
store fossil information collected from field surveys and pub-
lished papers. There are 410 contributors from over 130 institu-
tions in 24 countries who have contributed to PBDB18. In 2013, 
S.E. Peters and Chris Ré collaborated to explore the feasibil-
ity of using text mining to extract paleontological information 
from the published literature (Peters et al., 2014; Callaway, 
2015; Peters and McClennen, 2016). Then PaleoDeepDive, a 
customized version of DeepDive for paleobiology, was created 
to extract fossil information from the literature and update the 
PBDB database. As of April 2021, The PBDB includes 76,068 
references, 434,743 taxa, 819,564 opinions, 219,016 collections, 
and 1,515,784 occurrences. PBDB is not only a paleontology 
database; it also provides excellent data query, Web app, API 
interface, mobile app, R library, and paleontology analysis tools 
(Peters and McClennen, 2016; Varela et al., 2015).

Macrostrat19 is the world’s largest homogenized geologic 
map database developed based on the GeoDeepDive20 and inte-
grates the spatial and temporal distribution information of sedi-
mentary, igneous, and metamorphic rocks. It provides a cyber-
infrastructure for geoscientists to study crustal formation and 
destruction and paleontological evolution (Husson et al., 2016; 
Peters et al., 2018). The database not only contains PBDB pale-
ontological data, it also contains a large amount of rock and 
stratigraphic chronology data organized in columns, units, poly-
gons, and packages. As of April 2021, it includes 1534 regional 

rock columns, 35,478 rock units, 2,540,323 geologic map poly-
gons, and 51,212 stratigraphic names from North America, the 
Caribbean, New Zealand, and the deep sea. Macrostrat provides 
access to the web app, mobile app, and API to explore the data for 
research and education.

In addition to online services, there are also some non-open 
services and databases associated with knowledge graphs in the 
geoscience field, such as GeoDocA, PetroKG, and GeoCloud. 
GeoDocA was developed by the University of Western Australia 
to assist in the search and analysis of mineral exploration reports 
(Holden et al., 2019). PetroKG is a knowledge graph in the 
upstream of PetroChina (Zhou et al., 2020). China University of 
Geosciences in Wuhan developed a system of automatic index-
ing and summarization of geological reports in Chinese. Zhu et 
al. (2017) developed the knowledge graph for mineral deposits. 
These functions are integrated into the GeoCloud, which was 
developed by the China Geological Survey.

Knowledge graph is helpful for improving data mining and 
promoting knowledge discovery in the geosciences (Fig. 3). 
Knowledge graph can enhance the interpretability of semantic 
information and data models in the data mining process and 
improve the reasoning ability of geoscience domain knowledge. 
In the petroleum industry, well log interpretation is necessary for 
potential reservoir detection and classification. The expert rule 
and feature engineering defined in the PetroKG improved the 
accuracy of well log interpretation by more than 7.69% over the 
traditional machine learning approaches (Zhou et al., 2020).

PBDB and Macrostrat not only provide the data and knowl-
edge service for research and education, but also promote our 
understanding of geological and biological evolution. For instance, 
the stratum statistics of stromatolites and their production based 
on natural language processing show that the appearance of stro-
matolites has a strong correlation with the growth of the total 
amount of dolomite rather than with mass extinction (Peters et al., 
2017). The amount of sedimentary rock is related to the change of 
oxygen and the evolution of life, which indicates that the unstable 
evolution of sedimentary rocks drives changes in oxygen, which 
in turn drives the evolution of life (Husson and Peters, 2017, 
2018). During the transition period between the Neoproterozoic 
and Paleozoic, the sediment volume increased by up to five times. 
A large amount of sediment was eroded before the Cambrian and 
corresponds to the great unconformity in North America (Hus-
son and Peters, 2018). These new knowledge discoveries are sup-
ported by PBDB, Macrostrat, and even GeoDeepDive.

3.2. Porphyry Copper Deposit Knowledge Graph

Mineral deposits are produced by the coupling of multiple 
geological processes and always have a close relationship with 
geological events related to the evolution of the Earth. Mineral 
deposits are regarded as a window for studying geodynamics. 
Porphyry copper deposits are located in the island arc, continental 
marginal arc, and collision orogenic setting and are an important 
raw material for the global economy (Sillitoe, 1972, 2010; Singer 

18https://paleobiodb.org/#/
19https://macrostrat.org/
20https://geodeepdive.org/
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et al., 2005). The formation and preservation of porphyry cop-
per deposits are closely related to volcanic rocks, strata, paleoen-
vironment, geological structure, geodynamic environment, and 
mineralogy. Understanding porphyry copper deposits depends 
on geochemistry, geophysical, mineral exploration, and other 
research techniques. Therefore, the porphyry copper deposit was 
selected as the domain for constructing a knowledge graph.

The data used in constructing the porphyry copper deposit 
knowledge graph include the USGS global porphyry copper 
deposit database21 and 37 academic papers with entity anno-
tation. The workflow of knowledge graph construction in the 
porphyry copper domain is shown in Figure 5. First, an ontol-
ogy model was designed based on the geological information 
related to the porphyry copper deposit model. There are 47 
entity types, and five relation types were created based on the 
classes in the porphyry copper deposit ontology model (Table 
3). Second, the relational data were mapped into the triple 
structure of the knowledge graph according to the customized 
rule based on the Neo4j platform22. The entities and relations 
from the geoscience literature were aligned with the mapping 
knowledge graph based on the similarity coefficient. Finally, a 

knowledge graph of porphyry copper deposit can be built and 
represented by the network graph (Figs. 5–6). Based on the 
knowledge graph, knowledge queries and reasoning can also be 
carried out for knowledge discoveries (Fig. 6).

4. DISCUSSION AND RECOMMENDATIONS FOR 
FUTURE WORK

Geoscience knowledge graph provides a solution for dealing 
with complex geoscience questions in the era of big data and is 
gradually being accepted by geoscientists and computer scien-
tists. Although geoscience knowledge graph research began in 
recent decades, results show that it is valuable for understand-
ing the Earth. Based on reviewing the state-of-the-art work in the 
geoscience knowledge graph, the following issues merit discus-
sion and study in the future.

4.1. Knowledge Representation Is the Key to  
Knowledge Graph

The state-of-the-art progress in the geoscience knowledge 
graph gives us some inspiration for further application and devel-
opment in numerous geoscience disciplines. There are many stud-
ies on text mining for geoscience knowledge graph construction. 
Text data mining is one of the supporting technologies that can 

21https://mrdata.usgs.gov/porcu/
22https://neo4j.com/

Figure 5. The workflow for constructing 
a knowledge graph in the domain of por-
phyry copper deposits. NER—named 
entity recognition. 
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TABLE 3. A LIST OF ENTITY AND RELATION TYPES USED IN THE CONSTRUCTION OF KNOWLEDGE GRAPH IN  
THE DOMAIN OF PORPHYRY COPPER DEPOSITS

Entity type Relation type

PorphyryCopperDeposit, Geographic, GeologicalSetting, Petrology, Mineralization, Mineral, Alteration, 
Geochemistry, Geochronology, Fluid, Document, Continent, Country, Province, City, Locality, 
GlobalGeologicalSetting, RegionalGeologicalSetting, IgneousRock, MetamorphicRock, SedimentaryRock, 
IgneousForm, MagmaType, MineralizationType, MineralResourceSpecies, MineralizationStage, OreBody, 
OreTextureStructure, MetalMineral, PrimaryMineral, AlterationMineral, AlterationStageZonation, 
AlterationType, MajorElement, TraceElement, EconomicElement, IsotopeElement, AnalysisMethod, 
AnalysisInstrument, GeologicTimescale, IsotopeAge, FluidInclusion, FluidSource, GeologicalStructure, 
GeologicalUnit, Author, Journal

subclass_of, is_a, has_object_
property, formed_by, related_to
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be used to extract information from the unstructured geoscience 
literature to construct geoscience knowledge graphs. However, 
it cannot fully represent the precise framework of a geoscience 
knowledge graph. The existing human-curated geoscience data-
base is also a valuable legacy. These databases are organized in 
the form of relational data. The knowledge contained in the rela-
tional database is an important structured knowledge resource 
that can be used in many ways.

The existing geoscience databases can quickly produce the 
prototype of geoscience knowledge graphs through mapping 
from the relational data set to a knowledge graph, and provide 
basic knowledge and rules for further text mining of the unstruc-
tured geoscience literature. For example, because of the attrac-
tion of the early human-curated database of PBDB, Ré and Peters 
collaborated on text mining of the paleontology literature and 
upgraded DeepDive to PaleoDeepDive to extract fossil informa-

tion from the geoscience literature. Due to the great success of 
DeepDive and its derivative versions, DeepDive has been updated 
to xDD, which is a digital library and cyberinfrastructure that 
facilitates the discovery and utilization of data and knowledge 
in published documents. Although xDD has a powerful ability 
to mine geoscience documents, success also depends on domain 
expert knowledge and the existing relational data. The geosci-
ence dictionary and existing fossil information in the early PBDB 
database provide the supporting data and knowledge required for 
model training and testing in PaleoDeepdive. The innovation 
and knowledge discoveries based on xDD are inseparable from 
domain expert knowledge and scientific issues in the domain. 
Therefore, these human-curated databases should be considered 
when constructing geoscience knowledge graphs.

Although there are already open and online geoscience 
databases, the semantic gap between different domains and 

Figure 6. Diagrams show (A) the visualization of knowledge graph in the domain of porphyry copper deposits and (B) a query result of the rela-
tionship between porphyry copper deposits, petrology, and intrusive rock.
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subdisciplines is not conducive to the deep integration of multi-
source and heterogeneous data. The lack of semantic informa-
tion in the relational data and unstructured data cannot support 
the  knowledge reasoning. Therefore, a broad geoscience knowl-
edge graph is necessary for future geoscience cross-disciplinary 
research. However, it is an impossible task to construct a whole 
geo science knowledge graph at one time. The feasible solution 
is to  construct every subdiscipline knowledge graph and then 
integrate multidisciplinary knowledge graphs to build a broad 
geoscience graph based on wide-ranging geoscience ontology 
and knowledge fusion techniques. DDE, a big science program 
initiated by the International Union of Geological Sciences that 
is associated with deep-time Earth data, designated 19 subdisci-
pline working groups to develop its DDE Knowledge graph.

4.2. Domain-Specific Knowledge Models in the Geosciences

Although there are a lot of geoscience ontology models 
designed for different purposes, they are not suitable for con-
structing domain-specific knowledge graphs in geoscience 
directly. The scope of a geoscience knowledge graph is defined 
by a knowledge model. The knowledge graphs in the geosci-
ence sub-disciplines have their topics and core schema, which 
results in differences in domain knowledge and terminology in 
different sub-disciplines. The ontology model in the knowledge 
model not only determines the geoscience entity tag in the text 
mining of geoscience literature, it also determines the seman-
tic relations between entities in the construction of knowledge 
graph. In the process of constructing knowledge graph, some 
synonym relation mentions can be extracted by NLP and then 
need to be aligned to the predefined semantic relations in the 
ontology model. Therefore, it is necessary to build a broad 
and professional ontology model to standardize entity annota-
tion and semantic relations and guide the construction of many 
knowledge graphs in the geosciences. The existing ontology 
models describe the knowledge system in certain geoscience 
fields, and a higher-level schema needs to be designed by inte-
grating the existing ontology models to guide the construction 
of geoscience knowledge graphs.

4.3. Comparable Training Corpus

The published case studies (Table 2) show that they have 
excellent performance in entity recognition and relation extraction. 
However, the different tokens and training corpus results in these 
models are not comparable. The studies with fewer entity types per-
formed better than those with more entity types. The studies using 
deep learning did not perform better than those using the machine 
learning model. In the field of NLP, there are some open corpora 
that include tokens and criteria for algorithm comparison. To pro-
mote the development of text data mining in the geosciences and 
enable text data mining to promote the development of geoscience 
knowledge graphs, it is necessary to build a series of corpora and 
criteria for different tasks of geoscience text mining.

4.4. Deep Knowledge Discovery

Multidisciplinary integration can promote knowledge dis-
coveries in the geosciences. The Earth has undergone a lengthy 
evolution of more than 4.5 billion years, which results in unique 
deep-time properties in geoscience data. Some discoveries of 
Earth and life evolution are hidden in the heterogeneous and 
deep-time geoscience dark data set that covers many disciplines 
and is difficult to process in traditional ways (Soreghan, 2004; 
National Research Council, 2008; Wang et al., 2021). More and 
more studies have proven that multidisciplinary collaboration is 
best for exploring the evolution of the Earth and life. Moore et 
al. (2018) revealed the biodiversity in the Archean ocean based 
on the cobalt-bearing mineral ecosystem and chemical character-
istics in vitamin B12. A high-resolution biodiversity evolution-
ary history from the Cambrian to Early Triassic was created by 
analyzing the Paleozoic big marine data set (Fan et al., 2020). 
Peters et al. (2017) revealed that the emergence of stromatolite 
had a close relation with dolomite rather than with mass extinc-
tion based on paleontology data extracted from the literature.

Although the above studies have proven that multidisci-
plinary integration and computer technology are beneficial for 
knowledge discovery in the geosciences, the heterogeneous 
and unstructured geoscience data sets with semantic gaps pose 
a great challenge for cross-disciplinary data mining for knowl-
edge discoveries (Wang et al., 2018a). The geoscience knowl-
edge graph is not only used to harmonize geoscience data and 
knowledge and visualize the geoscience knowledge. If we have 
the cyberinfrastructure of a broad geoscience knowledge graph, 
it can reduce the difficulty of conducting research similar to the 
examples given above. In this way, it can promote knowledge 
discoveries in the geosciences and deepen our understanding of 
the Earth’s evolution.

5. CONCLUSIONS

For data-intensive geoscience fields, research in recent 
decades has proven knowledge graph to be a functional tool 
for processing massive and heterogeneous geoscience data. 
In this paper, we reviewed concepts and technologies relevant 
to knowledge graph and the state-of-the-art progress of geosci-
ence knowledge graphs and then summarized the workflow to 
build a knowledge graph in the geosciences. Construction of a 
geoscience knowledge graph requires deep cooperation among 
geoscientists and computer scientists based on the technologies 
of NLP, machine learning, visualization, knowledge inference, 
relational data mapping, data fusion, and database. Although text 
mining based on NLP and deep learning methods is an impor-
tant approach for building a knowledge graph, the human-curated 
database is also an important legacy that can quickly produce the 
prototype of knowledge geoscience graphs and provide basic 
knowledge and rules for further text mining of the unstructured 
geoscience literature. In the future, domain-specific knowledge 
models and comparable training corpus should be considered 
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to improve the efficiency and quality of geoscience knowledge 
graph construction.
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