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Continental glacial deposits are rarely preserved in nature. Recent studies of the LPIA reveal the presence of
periglacial deposits in Northern Chad covering an area of 20,000 km2. Using satellite maps, this project managed
to examine the entirety of the Ennedi Plateau. 3D reconstructions of this mountain range reveal complex glacial
morphological features. This paper presents large-scale subglacial features interbedded with proglacial fluvial
features and discussed the variables at play during the progressive, repetitive, and perhaps cyclical nature of
the Carboniferous glaciation. Using remote sensing techniques, this paper shows that there are three major ice
advance–retreat cycles that led to the deposition of mega-scale glacial lineations with a complex fluvial channel
belt. Palaeo-geomorphological mapping of satellite images in northern Chad reveals that the Late Carboniferous
Chadian ice sheet covered at least 20,000 km2, a much greater extent than previously thought (ca. 6000 km2).
Glacial lineations (GLs) are dominant and extensive on the plateau. They are arranged in widespread ice stream
networks and developed at multiple stratigraphic levels. This broadly indicates palaeo-ice flow to the north. We
report a newly discovered pristine channel belt, covering at least 300 km2 of a plateau in the Ennedi Plateau. A
swarm of N–S trending channels, up to 250 m wide, is recognised. These are of both braided and meandering
characters and are organised into channel belts of up to 500 m width. The mapped palaeo-morphology shows
complex crosscutting relationships. The channel belt is intercalated with zones of GLs; hence, ice activity pre-
ceded and succeeded fluvial activity. Preserved planform sinuous channel geometries show distinctive point
bar deposits and scroll bar geometries therein, which testify to a terrestrial, subaerial environment, rather than
to their evolution in the subglacial realm, e.g. as eskers. Therefore, we find that cross-cutting, amalgamated chan-
nel systems record the complex phases of meltwater release during glacial retreat in the advance–retreat cycles
of the Late Palaeozoic Ice Age in Chad.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The Ennedi Plateau of northern Chad exhibits an extensive archive of
Late Palaeozoic subglacial landforms on sandstone plateaux (Fig. 1A, B)
(Le Heron, 2018). Until now this area has been subject to comparatively
little investigation with only a first order geological framework and an
overview geologic map available in the public domain (Wolff, 1964). Re-
connaissance geological fieldwork has recently resumed at the far west-
ern extremity of the Ennedi region, where focus is on the record of the
Late Ordovician glaciation and establishing a robust stratigraphy for the
first time (Ghienne et al., 2023). Together with the Aïr region in Niger
(Lang et al., 1991), the Ennedi Plateau is one of only two areas in northern
eron).

.V. This is an open access article und
Africa where evidence for Late Palaeozoic Ice Age (LPIA) deposits is
known to be preserved. In Niger, ground trothing revealed evidence for
soft-sediment striation surfaces and fluvioglacial deposits (Lang et al.,
1991) which is an important anchor point for any discussion of LPIA gla-
ciation in the Sahara because outcrops in Chad remain very difficult to ac-
cess. This is in contrast to southern Africa where well preserved glacial
deposits are widespread (e.g. Visser, 1997; Dietrich and Hofmann,
2019), but probably younger (Latest Carboniferous; Griffis et al., 2021).
Well-exposed, shallow-dipping outcrops extend hundreds of kilometres
along strike and are ideal for satellite image mapping. Whilst studies of
ancient glacial and proglacial environments in the Palaeozoic have been
built around traditional outcrop analysis (e.g. Frank et al., 2014) with
few exceptions (e.g. Beuf et al., 1971), satellite imagery has been widely
used to complement and enhance prior studies, e.g. in Uruguay (Assine
et al., 2018) andNamibia (Andrews et al., 2019). Satellite imagery is avail-
able for analysis. These datasets play a powerful role in determining the
er the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 2. (A) Satellite image (Microsoft BingMaps) with mapped GLs, grouped according to the stratigraphic level they occur on. (B) SRTM data converted to a 3D-Model of (A) highlighting
the stratigraphic relationship between colour coded sets of GLs.
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character of flow and meltwater release in ancient ice sheets. At outcrop,
prior studies of LPIA glacial landscapes have tended to be relatively local-
ised, concentrating for example on subglacial deformation in soft sedi-
ment (e.g. Vesely and Assine, 2014; Le Heron et al., 2019), together with
detailed characterisation of glacial bedrock terrains (Isbell et al., 2023).
To date, the role of meltwater in the formation of glacially related uncon-
formities in the LPIA is often unclear. In this case, satellite images can play
a powerful role in characterising the patterns of meltwater release and
distribution in the LPIA record, that is simply not achievable at the local
outcrop context. Large-scale glacial sediment landform assemblages are
well documented from the Tibesti of the Libyan–Algerian border areas, in-
cluding palaeo-ice streams (Moreau et al., 2005), tunnel valleys and
channel-dominated proglacial systems (Girard et al., 2015; Bataller
3

et al., 2021). These studies set an excellent precedent for LPIA
investigations.

The aims of this paper are:

(1) Provide the first high quality, regional map of a glacial
landsystem preserved in the Ennedi Plateau from satellite data.

(2) Document a complex set of palaeo-channels exposed in inverted
relief.

(3) Present a tentative evolutionary model for the landsystem in
terms of glacial cycles.

In so doing, we present new findings on the lateral transition from
subglacial to proglacial settings, a relationship that is commonly very



Fig. 3. Relationship between palaeo-ice stream tracks with their glacial lineations and associated inverted channel structures. Location of this area is shown in Fig. 1. A: Non-interpreted
satellite image (Microsoft BingMaps) with specific features highlighted, and with zoomed-in areas as follows. Feature 1 shows N–S oriented, parallel glacial lineations; feature 2 shows a
ridge-like structure representing a boundary between two sets of lineations, whereas feature 3 illustrates curvilinear structures. B: Interpreted satellite image, showing evidence for dis-
crete channel generations crosscutting each other, together with the relationship between different generations of glacial lineations. The corresponding cross section (based on SRTM el-
evation data), drawn orthogonal to themain lineation orientation, illustrates the different present-day elevations at which each of the features occurs. A wide variety of channel forms can
be observed, including sinuous and braided types, and multiple crosscutting relationships in the central area alongside isolated channel remnants. Note that in contrast to the palaeo-ice
stream tracks, which occupy present day depressions, the channel belt sits on a regional high. The area shown in this map is used as template for the depositional model in Fig. 5.
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obscure in the deep time record (Moreau et al., 2005) as the record is
typically poorly preserved or obscured in satellite images. We explore
the origins of the palaeo-channels and consider the role of meltwater
production.We interpret the palaeo-channels to represent the develop-
ment of proglacial sandar.

2. Methodology

Planform mapping and spatial analysis of 20,000 km2 of the Ennedi
Plateauwere undertaken using satellite imagery acquired fromBingMaps
(Microsoft Corporation, 2023) and elevation data acquired from Shuttle
Radar Topography Mission (SRTM) 1 Arc-Second maps (U.S. Geological
Survey, 2023) with a resolution of 30 m/pixel. These images are freely
available in the public domain for examination. The SRTM images were
processed in QGIS to generate digital elevation models (DEMs) at differ-
ent scales. The study-area consists of sub-horizontal to gently northward
dipping plateaux, exposing bedding surfaces over hundreds of kilometres.
The mapped area straddles strata mapped as middle to Upper Devonian
(Wolff, 1964), but which are otherwise undifferentiated. Features
mapped at the regional (small) scale include linear structures on different
topographic levels on the plateaux. Crosscutting relationshipswere noted
and differentiated, in particular faults and fractures crosscutting the linear
structures were used to differentiate between these and tectonically pro-
duced features. Establishing the crosscutting relationships then allowed a
tentative sequence of events to be elucidated.

3. Data

3.1. Description

Systematic mapping of the Ennedi Plateau shows an extensive set of
structures. They are extending over more than 250 km along from E
to W (Fig. 1). We recognise sets of glacial lineations of approximately
4

5–15 km in width and 20–100 km in length, organised within palaeo-
ice stream pathways. On the large scale these have sharp boundaries
(Fig. 1). The palaeo-ice stream tracks cover approximately 30 % of the
Ennedi Plateau. A broad NW–SE trend for the palaeo-ice streams is
recognised. However, tributaries feeding into large (10–15 km wide)
trunk ice streams are also documented (e.g. centred on about 17.84°S,
23.62°E: Fig. 1). The glacial lineations themselves are elongated, ridge
like structures, ca. 10–100 m in width and ca. 500–1000 m in length,.
Crosscutting relationships can be demonstrated across the plateau,
with multiple sets of glacial lineations recognised (Fig. 2A). An impor-
tant observation is that these lineations occur at different stratigraphic
levels (Fig. 2A). Some palaeo-ice stream margins are characterised by
a sharp, ridge-like margin, whereas others are demarcated by palaeo-
channels as described below.

In the inter-stream areas, and locally at the boundaries between sets
of glacial lineations, palaeo-channel belts are preserved (Fig. 1). Individ-
ual palaeo-channels occur in positive (i.e. inverted) relief. At the re-
gional scale (Fig. 1), the largest of the palaeo-channel belts consists of
broadly N–S palaeo-channels, running broadly parallel to the GLs and
the enclosing palaeo-ice streams. The northern part of this channel
belt is shown in detail in Fig. 3. At this scale, based purely on the visual
spectrum satellite image data (see Wohlschägl et al., this volume, for
more detail), 4 generations of palaeo-channels can be elucidated, with
clear crosscutting relationships. Surprisingly, the palaeo-channels oc-
cupy relatively elevated areas, with palaeo-ice streams and GLs ca. 30–
70 m below them in adjacent, topographically low-lying areas (Fig. 3).
The longest individual palaeo-channels attain 8 km in length and are a
minimum of 5–8 m deep, as measured from the base to the crest of
the inverted features.

Planform morphologies include sinuous single-thread channels and
braided channels, which exhibit numerous crosscutting relationships
(Fig. 4). At the metre-scale resolution, palaeo-channels display bank-
attached bar architectures. Channel bars and sharp margins between



Fig. 4. Close up view of satellite image (Microsoft BingMaps) with associated interpretations shows three discrete channel generations crosscutting each other and corresponding cross
section (based on SRTM elevation data) for (A) (based on SRTM). Darker shades of each colour for the associated channel generation show features of internal architecture, where the
rock is more resistant to weathering and thus highlights lateral and channel-internal variations in the rock texture. All exposed rocks show aWNW–ESE and NNE–SSW-trending fracture
pattern, highlighted in rose plots for (A) and (B). See Fig. 3 for precise location. Note that the cross-section demonstrates unequivocally that the channel forms are set in positive reliefwith
respect to the surrounding desert plain.
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channel bodies and the surrounding sediment are observed (Fig. 4).
Cross-sectional profiles of bends in single-thread systems are markedly
asymmetrical (Fig. 4). Abundant fracture sets cross-cut these palaeo-
channels, and show pronounced WNW–ESE and secondary ENE–SWS
orientation (Fig. 4). These crosscut not only the stratigraphy in the
study area, but also under- and overlying strata. The fractures do not ap-
pear to have an obvious relationship to palaeo-channel orientation.

3.2. Interpretation

Mapping of the Ennedi Plateau greatly extends the known area of the
LPIA ice sheet record in northern Africa. For the first time, the recognition
of multiple sets of GLs at different stratigraphic levels is demonstrated,
implyingmultiple phases of subglacial erosion anddeposition. This stands
in contrast to earlier interpretations where sinuous, parallel structures
were recognised, but assignment to multiple events or timing could not
be established (e.g. Le Heron, 2018). The recognition of crosscutting do-
mains, expressed by differently oriented flow sets at each stratigraphic
level, probably implies the development ofmultiple bedform populations
suggestive of time-transgressive ice stream evolution (Stokes and Clark,
2001, their Fig. 8). Crosscutting domains on individual stratigraphic levels
could be interpreted via two alternative models. In the first, multiple (re)
advances in separate glacial cycles adequately explain crosscutting rela-
tionships. In the secondmodel, oscillation of the icemargin in a single gla-
cial cycle is invoked. We tentatively favour the first model, because
5

individual domains are separated by an estimated 10 to 20mof sediment
(Fig. 2B), which can better be explained by accumulation during separate
glacial cycles (stadial following interstadial), rather than short-lived oscil-
lations. On the basis of our mapping, we recognise three separate strati-
graphic levels of GLs, inferred to correspond to individual phases of ice
stream development in the Ennedi Plateau, possibly related to three
major glacial advances (Isbell et al., 2023). The crosscutting relationship
between GLs in the different sets testifies to significant changes in the di-
rection of ice movement in successive glacial cycles.

The palaeo-channel belts contain several features, resembling bar-like
structures, meandriform appearance and cross-cutting relationships that
permit detailed evaluation. The bank-attached bar architectures are
interpreted as point bar deposits. This suggests that the channels likely
meandered. Scroll-bar structures prove a meandering history. Individual
bends in the preserved channel deposits are found to have been laterally
accreting and translating downstream (Fig. 4). In cross-section, some of
the single thread channels exhibit differential erosion, which may be
interpreted as a signal of heterogeneous deposits within the channel,
whereby subtle lithological differences have affected the durability of
the resulting outcrop. The interpreter must, however, be aware of the
inverted relief scenario which we interpret as follows. In an initial
phase, channels were cut into a soft substrate that was then filled with
fluvial material. These deposits were then buried and lithified. Finally,
subsequent uplift and exhumation of the unit has exposed the outcrop,
hence enabling its weathering and erosion, particularly of the sediment
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in between channels. In the Palaeozoic of the Sahara, this process of
inverted channel development has many precedents, for example by di-
rect comparison to Ordovician channels exposed in Mauritania, Algeria
or Libya (Ghienne and Deynoux, 1998; Girard et al., 2012; Deschamps
et al., 2013). The sharp palaeo-channel margins should be interpreted
with caution, but it is proposed that these record the effects of preferential
cementation. Such phenomena are associatedwith high permeability de-
posits and have been described from other ancient inverted channels in
Utah (Pain and Oiler, 1995; Clarke and Stoker, 2011). The timing of the
pervasive fractures that crosscut the palaeo-channels cannot be
determined, other than to conclude that they are later features. Neverthe-
less, a structural influence on the channel pathways can likely be
dismissed. Had the fractures already existed prior to channel incision
and subsequently been reactivated, an influence on the orientation ofme-
anders (for example) would be expected, and this is not the case.

The explanation of inverted relief for the palaeo-channel bodies
removes the need for interpretation of eskers beneath an ice
mass (e.g. Beaud et al., 2018). Further, the highly meandriform
palaeo-channels in the Ennedi contrast more generally with eskers
which are typically low sinuosity ridges (e.g. Stoker et al., 2021). In-
stead, the presence of both braided and sinuous channel planform
morphologies testifies to a highly dynamic system with variable dis-
charge and sediment load, and characterised by cannibalisation via
avulsion and repeated lateral migrations of meander bends over
the floodplain. The elevated position of the largest palaeo-channel
belt on a plateau flanked by GL-bearing palaeovalleys (Fig. 3),
poses no paradox if these features were cut at different intervals. Two
hypotheses for this exist, which can only be fully resolved through field-
work. These are (i) that the palaeo-channel complex formed first and
was then dissected by an ice stream by progressive incision and regional
terrace development, or (ii) following an earlier phase of ice stream inci-
sion (forming the GLs) a package of strata was deposited into which the
palaeo-channel complexes were cut. This latter model would imply that
the flow was on the palaeo-highs.

Exploring the origin on thepalaeo-channels further,we contend that
the collective geometry of these structures provides affirmative evi-
dence for genesis in a subaerial, as opposed to a subglacial setting.
Thus, we suggest that they represent the evolution of a large proglacial
sandur system (Magilligan et al., 2002; Marren et al., 2009). Note, how-
ever, that there are other contexts in which channels could develop in a
glacial setting that need to be considered; e.g. in a subglacial environ-
ment. Beneath modern ice masses, sinuous meandering “channels” ap-
pear on numerical models of the northern part of the Greenland ice
sheet, although it is acknowledged that this is a non-unique solution
(Chambers et al., 2019, their Fig. 4).

Meandering channels also occur on the surface of many glaciers
(Karlstrom et al., 2013). Note that the preservation potential of these
in the rock record is nil. Furthermore, it would be hard to reconcile
the crosscutting relationships in Fig. 3 or 4 with such an origin. Subgla-
cial drainage is complex to model (Rada and Schoof, 2018; Chambers
et al., 2019), and well developed zones of multigenerational,
meandriform channels are unexpected. This is because the confining
pressure of overlying ice would suppress the development of meander-
ing channel bodies. Thus we firmly reject a subglacial origin of these
channels in the Ennedi.

We propose that the channels represent a vast proglacial drainage
plain or sandur. Modern sandar, such as those in northern Iceland, ar-
chive not only the products of steady state processes such as channel
belt development, but also sheet flood deposits, hyperconcentrated
flow deposits and debrites produced during jökulhlaup release
(Marren et al., 2009). These processes conspire to produce highly com-
plex, braided, anastomosing, and meandering planform geometries. In
addition to recordingwide incisions resulting from the 1999 jökulhlaup
in Iceland (Russell et al., 2010), the current forefield of Solheimajökull,
for example reveals complex fluvial meandering geometries with scroll
bar deposits that developed in sand and gravel. These structures result
6

from the lateral migration of channel systems, and rule out their devel-
opment beneath an ice mass. Furthermore, the full spectrum of geome-
tries is also known from the LateOrdovician record in the Sahara (Girard
et al., 2012; Deschamps et al., 2013) and is well studied in quaternary
glacial environments (e.g. Maizels, 1993).

4. Discussion

4.1. Timing of events

Based on ourmapping,we suggest that the glacial record of the Ennedi
contains sedimentsmade up of different stratigraphic levels. Thiswas pro-
duced by multiple glacial advances and subsequent development of
proglacial drainage systems. In order to explain and visualise the strati-
graphic development of the region, we present a sequential model of
block diagrams (Fig. 5). Glacial lineations are abundant and these are
organised into multiple flow sets. Bounding palaeo-ice streams can be
mapped, and spectacular palaeo-channel complexes are described. Inter-
pretations of crosscutting relationships together with the elevation data
allow a tentative chronological model for the evolution of the Ennedi
Plateau to be proposed (Fig. 5A–F). Glacial re-advances cut across
earlier-formed channels, now preserved as remnants within ice stream
pathways. This phenomenon occurs at multiple stratigraphic levels (see
Figs. 1 & 3). An earlier advance (Advance 1 in Fig. 5) resulted in a
northward-directed widespread glaciation of the Ennedi Plateau. Corre-
sponding terminalmoraines (see Fig. 3) record the ice front recession dur-
ing this stage (Fig. 5B). Diachronous development of the prominent
channel network followed this recession. This (glacio)fluvial package par-
tially overlies the subglacial lineations illustrating a northward directed
glacier drainage and southward directed recession. The variety of channel
forms, their spatial dimensions and crosscutting relationships to each
other indicate a relatively persistent period of ice-free conditions allowing
the transformation of a sandur-like system into a meandering river sys-
tem. Following this phase, a re-advance (Advance 2 in Fig. 5) overprinted
both fluvial and pre-existing subglacial facies. This advance–retreat cycle
(Fig. 5C & D) cuts into soft sediments, which accumulated during the
preceding intra/interglacial. Thewidth of the ice stream is traced by asso-
ciated flanking lateral moraines implying a limited lateral extent of the
glacier during this cycle. On satellite images, these structures are discern-
ible as distinctive ridges in the present day geomorphology. Given that
uplift and erosion affected the Ennedi Plateau on a regional scale in a
uniform way, denudation exhumed ice stream pathways of at least two
glacial periods and removed possible traces of Advance 2 (Fig. 5E & F).

4.2. Glacial cycles

Because GLs show different orientations on each plateau level, we
propose that each plateau preserves a separate phase of glacial erosion.
Therefore, GLs in the Palaeozoic record cannot be seen in terms of
scaled-up, self-similar versions of smaller scale lineations as previously
suggested by Le Heron (2018). This suggests that the different flow sets
represent individual events rather than a single advance that led to their
formation. Instead, on the basis of the crosscutting relationships of the
GLs, we suggest three discrete glacial cycles to be recognised (see Fig. 2).

It is unclear, without detailed fieldwork in the region, whether the
GLs at the lowermost elevations are oldest or youngest. Support for
the former interpretation might come from the similar geomorphology
of the Late Ordovician record at the Libyan–Algerian border, whereby
younger glacial rocks onlap lower and older glacially striated surfaces
(e.g. Moreau et al., 2005). This idea is supported by several tens of me-
tres of intervening stratigraphy between the subglacial surfaces on the
Ennedi Plateau. Markedly, this interpretation works in the opposite
sense to that of manymodern Alpine landscapes, which carved terraces
deeper and deeper levels (Reitner et al., 2012). The timeframe over
which these cycles developed and their connection to potential global
sea level cycles observed at low palaeo-latitudes (e.g. Davies, 2008)



Fig. 5. Temporal and spatial evolution (A–F) of the area containing the channels (note Fig. 3). Step A: Earlier advancewithwidespread glaciation during the LPIA. Step B: Development of a
glaciofluvial drainage system that is associated with ice retreat and predates Advance 2 of step C. Note that channel remains do also occur in the eastern ice stream in Fig. 3. Step C: Sub-
sequent advance of ice that potentially occupies former glacier-pathways. Glacier is overriding glaciofluvial channel system (possible traces of ice streamswithin this advancemight have
been eroded). Step D: Postglacial drainage system of a later retreat-phase (note channel remains in the ice stream in Fig. 1). Step E: filled accommodation space (note that this stage sym-
bolises a stretch of several million years), affected by denudation via uplift leading to F. Step F visualises present day morphology and exhumed facies associations. Light grey: subglacial
facies of an earlier advance, dark grey: exhumed subglacial facies of a later advance, red: ridge-like structures potentially representing terminal and marginal moraines, yellow: (glacio)
fluvial facies postdating individual advances, green: channels, light blue: glacier, and orange: sedimentary rocks.
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requires further study. Thus, attempts to correlate the phases
recognised in our geomorphological analyses to cycles recognised in
the Dwyka Group at the other end of the continent (South Africa:
Dietrich and Hofmann, 2019) are premature.

4.3. The role of meltwater

The lateral relationships between the subglacial landsystem and
proglacial landsystem are notable for two reasons. Firstly, except for a
7

few channels crosscutting the youngest GLs, channel belts and GL
belts occur in mutually exclusive, N–S oriented zones. This suggests
that themeltwater systemwas initially controlled by strongly focussed,
regional pathways that ran broadly parallel to regional iceflow. Further-
more, this relationship implies that palaeo-ice stream trajectories had
minimal influence upon the meltwater systems (channel belts)
that subsequently developed, and rather a tendency for the channel
belts' former ice stream occupied areas. This would amplify the earlier
suggestions of Le Heron (2018) that, given the likely occurrence of a
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coastline to the north of the study area (Torsvik and Cocks, 2013) the
ice stream system did not primarily evolve in response to a
topographic (basement) control, but rather by e.g. iceberg calving at
the ice front (Winsborrow et al., 2010). Given the remoteness of
the area and the continuing lack of access, additional controls on melt-
water pathways as a result of basement heterogeneity must remain
conjectural.

To the authors' knowledge, the landsystem described herein is the
only known example of this age showing subglacial and proglacial de-
posits side-by-side with mappable relationships. The outcrop quality of
the sedimentary record of the LPIA in SW Africa is excellent, with some
outcrops of soft-sediment striated surfaces permitting detailed drone sur-
vey and insight into cyclic subglacial processes (Le Heron et al., 2019),
however features such as striated pavements are highly fragmentary. In
regions with similar mesa topography to northern Chad, such as the
Mariental area of Namibia which also has an excellent record of LPIA
glaciation (striated surfaces, boulder pavements, dropstone-bearing sedi-
ments: Stollhofen et al., 2000 and references therein), there is no evidence
for similar structures on satellite images. InUruguay, compelling evidence
for erosional bedforms such as roches moutonées cut into crystalline
basement is apparent on satellite images (Assine et al., 2018; Isbell
et al., 2023), but features that might record subglacial (e.g. eskers) to
proglacial meltwater release are conspicuously absent. The basal LPIA un-
conformity in Oman is locally striated in the Huqf, and this also lacks ev-
idence for associated channel systems, rather being directly overlain by
lacustrine deposits (Martin et al., 2012). None of these locations exhibit
the range of structures, so widely preserved over a large area as the
Ennedi Plateau.

5. Conclusions

• The Ennedi Plateau records aworld-class example of a Late Palaeozoic
landscape that shows the transition from a subglacial landsystem to a
proglacial landsystem. On the basis of satellite image interpretation,
the glacial record of northern Chad is now known to be of much
greater lateral extent than previously thought (approximately
20.000 km2 in this study vs. the 6000 km2 in Le Heron, 2018);

• The first full map of the Chadian glacial landsystem is presented, with
an extensive network of palaeo-ice streams, flow sets, and an excep-
tionally well-preserved suite of palaeo-channel belts;

• Mapping reveals that glacial lineations occur on three separate strati-
graphic levels, some of which have clearly different flow-orientations
and crosscutting relationships. This demonstrates the time-
transgressive development of palaeo-ice streams, and allows a gla-
ciation consisting of three individual cycles to be differentiated.
Crosscutting relationships between GLs on individual glacial sur-
faces are also observed;

• Palaeo-channels of subaerial origin exhibit complex, crosscutting
relationships, which testify to multiple phases of cut and fill. The
palaeo-channels are in inverted relief, whose character is ex-
plained through a simple burial and diagenetic model rather than
the need to appeal to an esker origin. Collectively, the wide range
of channel geometries and relationships permits insight into the
drainage patterns on a sandur in front of the Ennedi ice sheet.
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