
geosciences

Article

Stratigraphy, Petrography and Grain-Size
Distribution of Sedimentary Lithologies at Cahuachi
(South Peru): ENSO-Related Deposits or a Common
Regional Succession?

Marco Delle Rose 1,* , Michele Mattioli 2 , Nicola Capuano 2 and Alberto Renzulli 2

1 Istituto di Scienze dell’Atmosfera e del Clima, Consiglio Nazionale delle Ricerche, Complesso Ecotekne,
Via per Monteroni, 73100 Lecce, Italy

2 Dipartimento di Scienze Pure e Applicate, Università degli Studi di Urbino Carlo Bo, Campus Scientifico
Enrico Mattei, 61029 Urbino, Italy; michele.mattioli@uniurb.it (M.M.); nicola.capuano@uniurb.it (N.C.);
alberto.renzulli@uniurb.it (A.R.)

* Correspondence: m.dellerose@isac.cnr.it; Tel.: +39-0832-298816

Received: 13 December 2018; Accepted: 6 February 2019; Published: 8 February 2019
����������
�������

Abstract: Several central Andean pre-Columbian sites struck by hydrogeological disasters due to El
Niño-Southern Oscillation (ENSO) events are reported in the literature. The mainstream explanation
for the decline and demise of Cahuachi (pampa of Nazca, south Peru) implies the damage and burial
of such a ceremonial center as a consequence of two catastrophic river floods, which occurred around
600 CE and 1000 CE, respectively. Therefore, geological studies at Cahuachi are mandatory with
regard to both the correlations of ENSO-related deposits (“event-strata”) among different Peruvian
sites and the assessment of the millennium-scale climate variability. In particular, the latter is crucial
to evaluate the environmental and economic consequences due to the incoming fluctuations of ENSO.
In this paper, stratigraphic, grain-size distribution, and petrographic investigations on a sedimentary
section exposed close to one of the main temples of Cahuachi are reported. They represent the first
test for the current mainstream explanation. The preliminary finding indicates that the studied
stratigraphic interval may belong to the common regional succession of the pampa of Nazca rather
than the ENSO-related deposits described in the literature. However, further geological research will
be necessary to unravel this issue in more detail.

Keywords: Mega El Niño; pampa of Nazca; Cuenca Pisco; Rio Grande de Nazca; grain-size;
volcaniclastic layer; stratigraphy; petrography

1. Introduction

Several central Andean pre-Columbian sites struck by hydrogeological disasters due to ENSO
(El Niño-Southern Oscillation) events are reported in both the literature in the Earth sciences [1–3]
and archaeology [4–6]. Grodzicki [7,8] claims that the ceremonial center of Cahuachi (Rio Grande
de Nazca, South Peru) was first severely damaged, then completely buried by catastrophic river
floods as a result of two Mega El Niño events, which occurred around 600 Common Era (CE) and
1000 CE, respectively. According to such a hypothesis, each event would be proved by a conglomerate
layer. This is based on an interpretative geological setting of the deposits outcropping around the
archaeological site, without, however, either geological characterization or direct dating of the main
sedimentary lithologies. The ages assigned by Grodzicki to conglomerates were deduced from
uncertain stratigraphic relationships with deposits containing materials dated with the 14C method.
Despite this uncertainty, the stratigraphic succession of Cahuachi could be a climate proxy-record of
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particular interest, especially regarding the millennium-scale climate variability, and thus must be
investigated in further detail. Again, several authors have emphasized the correlations of ENSO-related
deposits (“event-strata”) among different archaeological Peruvian sites [9–11]. These correlations
would support the concept of Mega or Super El Niño events [12–14] leading to heavier precipitation
phases driven by ENSO, which would hit the central Andean coast with centennial-scale periodicity.
It is worth observing that the understanding of the variability of El Niño over geological time is
crucial for assessing the environmental and economic consequences due to the incoming fluctuations
of ENSO [15–17].

However, before the publication (in 1994) of the Mapa geologico del cuadrangulo de Palpa (geological
quadrangle map of the Palpa) [18], the geological knowledge of the Rio Grande de Nazca Basin was
scarce, and therefore, the thesis of Grodzicki and his group (launched in 1990 and 1992 and then
becoming nearly a “paradigm”) was difficult to prove. In addition, the lack of large outcrops within
the Cahuachi archaeological site hampered the stratigraphic survey of the bedrock. During the 2012
archaeological excavation works at Cahuachi, the geological substratum close to one of the main temple
of the site, namely the Piramide Sur, was temporarily exposed. In this way, a stratigraphic study and
sampling were carried out, and the grain size features and petrographic analysis were subsequently
performed. As a whole, the data collected on the geological bedrock of Piramide (or Temple) Sur
first allowed for a comprehensive comparison with nearby Pliocene–Pleistocene deposits, and shed
light into the robustness or not of Grodzicki’s thesis about the ENSO-related catastrophic river floods,
considered for at least three decades as the mainstream and paradigmatic explanation of the demise of
Cahuachi as for other pre-Columbian sites for which, however, the hypothesis is better supported by
the data [19–22].

2. Geological and Environmental Features

2.1. Regional Setting

Cahuachi is located within the morpho-structural unit named Cuenca Pisco consisting, in turn,
of Cordillera de la Costa, Llanuras Costeras, Depresión de Ica-Nasca and Fruente Andino [23].
The Llanuras costeras and the Depresión de Ica-Nasca show flat landscapes, i.e., the pampas, due to the
sub-horizontal setting of the pre-Quaternary substratum (Figure 1).
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The Cuenca Pisco gradually emerged from the ocean during the late Pliocene–early Pleistocene,
thus evolving from a marginal sea (seaward barred by the ridge of the Cordillera de la Costa) to the
present coastal plain. The uplift of the Andes led to abundant supplies of conglomerates that built
alluvial fans within the Fruente Andino while planation surfaces and stream terraces formed at the
Llanuras Costeras and the Depresión de Ica-Nasca. The lower planation surface has an altitude of
about 385 m a.s.l. and a late Middle Pleistocene age (i.e., 200 ka) as determined by cosmogenic ray
dating [24]. The regional succession of the pampa of Nazca is constituted by the Pisco and Changuillo
formations, both of Tertiary age. The plain has an average altitude of about 500 m a.s.l., gently slopes
toward the north-west and is bounded by mountain chains of sedimentary and igneous Mesozoic
units (Figure 2).
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Figure 2. Geological sketch of the pampa of Nazca. Legend: (a) marine Jurassic-Cretaceous formations,
(b) igneous rocks, (c) marine to continental Tertiary formations (from [18], modified).

The Pisco Formation (Fm) was defined at the beginning of the XIX century during the pioneering
geological surveys of the Cuenca Pisco. In contrast, the Changuillo Fm was identified only during the
1980s with the field mapping of the Mapa geologico del cuadrangulo de Palpa (geological quadrangle map
of the Palpa) [18]. The latter shows a marine to continental transition from the bottom to the top and is
constituted by variously-interstratified mudstones, sandstones, breccias and conglomerates. Around
Changuillo Village, i.e., the “area-type”, some volcaniclastic layers have been found [23]. In several
places at the east side of the Cuenca Pisco, conglomerates are prevalent at the top of the Changuillo Fm.
Thus, a specific lithostratigraphic unit, named the Canete Fm, has also been defined [23], and is built
up by progradational alluvial fans. Along the Cordillera de la Costa, a staircase of terraces represents
the corresponding deposits and suggests the episodic uplift of the Dominio Costero. The boundary
between the Changuillo and Canete Fms is generally described as transitional while the facies evolve
from shallow marine water to shoreface to an alluvial system. Biostratigraphically significant fossils
are scarce. The presence of Carcharodon carcharias, Dinocardium nov. sp. Aff., and D. ecuadorialis suggests
a middle–upper Pliocene for the Changuillo Fm [25]. No fossils have been found in the Canete Fm,
although an upper Pliocene–lower Pleistocene age can be roughly supposed due to the regional
stratigraphic setting [26].
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The pampa of Nazca belongs to the hyper-arid “chala” life-zone (i.e., the region comprised between
the coast and the Andean Precordillera [27]) and constitutes the north-west outlying area of the
Atacama Desert. Its environmental conditions are controlled by the SE Pacific anticyclone and the cold
Humboldt Current, both inhibiting rainfall. Currently, the annual precipitation is lower than 20 mm,
although El Niño-Southern Oscillation may determine significant inter-annual variations. The aridity
degree as well as the average impact of El Niño events change along a south–north gradient [28].
Ephemeral or seasonal rivers cross the pampa and allow both biological life and human settlements
such as the ceremonial center of Cahuachi, which is located on the course of the Nazca River (Figure 2).

Environmental conditions have repeatedly changed over south Peru during the late Quaternary.
Starting from the Upper Pleistocene, fluctuations in the moisture transport led to repeated shifts from
grassland to desert, and vice versa, on the lower western slopes of the Andes [29]. At the beginning of
the Holocene, an increase in easterly precipitation led progressively to persisting vegetation belts in the
mountain areas that, in turn, have determined the formation of soils and eolian deposits. About 4.2 ka,
the establishment of the modern ENSO atmospheric conditions determined a decrease in precipitation
and progressive expansion of deserts. Further environmental changes occurred later as inferred from
geomorphological features. Finally, from the end of the last millennium Before the Common Era (BCE)
to about 1.3 ka (which is a time interval comprising the rise and decline of the Nasca Culture), alluvial
deposits have widely accumulated within the Depresión de Ica-Nasca. Such a process suggests an
important hydrological activity [30].

2.2. The Nasca Culture: From the Thriving Period to the Demise

The Nasca Culture arose during the Early Intermediate Period, i.e., around 200 BCE, later
spreading its cultural and religious dominance over a large area of southern Peru under the influence of
the theocratic capital of Cahuachi [31,32]. The ceremonial center (Figure 3) became a place of periodic
pilgrimage from places very far afield, preserving this function until about 450 CE [33].
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During this period, intense rains and associated mud-debris flows damaged the structures built
with adobe bricks, sometimes involving the reconstruction of buildings among which was the Gran
Piramide. Moreover, several authors have stated a strong link between the course of the Nasca
civilization and the environmental conditions. As an example, Schittek et al. [34] stressed that the
thriving period of the Nasca culture coincided with a relatively humid period while its demise
coincided with an abrupt environmental turnover occurring at 1.3 ka. Up to about 0.8 ka, the lack
of river activity is interpreted as due to renewed hyper-arid conditions, coinciding with the warm
Medieval Climate Anomaly [35]. A further shift to relatively humid conditions is again indicated by
the river activity and occurrence of landslides. This moist and hydrologically unstable period would
last until the Little Ice Age [30].
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3. Material and Method

Cahuachi consists of a number of naturally smoothed mounds forming the core of pyramids
and temples made of adobe [36]. According to Grodzicki [7,8,37] the bedrock of Cahuachi is
represented by Holocene alluvium, covering the Tertiary substratum, and includes three ENSO-related
conglomerates, dated to the first century BCE, around 600 CE, and around 1000 CE, respectively. Each
conglomerate would have been deposited by “slimy-crumbly flows” triggered by huge precipitation
events. The upper and younger conglomerate was identified by Grodzicki on the Gran Piramide
(Figure 4) and correlated with a similar strata visible in the northern area of the site. This latter was
dated using organic material placed at its top [7,37]. In this way, this conglomeratic bed should cover
all of the structures of Cahuachi up to 408 m a.s.l. [38].
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As mentioned above, an excavation close to the Piramide Sur (about 70 m south-east of the Gran
Piramide, see Figure 4) carried out by the archaeological team of G. Orefici, has temporarily allowed
the observation of a stratigraphic column of about 13 m (Figure 5). A close cavity (probably a type of
food storage) has enabled us to extend the stratigraphic observations in depth for a total of 17 m [39].

The measured section is capped by a conglomerate corresponding to that described by
Grodzicki [8,39] on the Gran Piramide and thus allows us to test his thesis. The stratigraphic
observation was performed together with the collection of twelve samples for laboratory analysis.

The grain-size composition of the sediment samples was determined through dry sieving after
overnight drying in an oven at 80 ◦C. Dried sediments were homogenized and classified according
to the Wentworth scale grade [40] by passing through a stack of sieves with mesh apertures of 4 mm
(granules), 2 mm (very coarse sand), 1 mm (coarse sand), 0.50 mm (medium sand), 0.25 mm (fine
sand), and 0.063 mm (silt). These grain-size steps were then transformed into the logarithmic ϕ scale
of Krumbein [41]. Weights (±0.0001 g) of the sediment fractions were used to determine the general
grain-size distribution of the sediments. Moreover, the grain size data for all samples were reclassified
into gravel, sand, and mud, and presented in a ternary diagram [42].

Mineralogic and petrographic investigations were carried out at the University of Urbino Carlo
Bo using a polarized light optical microscope and a scanning electron microscope (SEM) FEI Quanta
200 FEG environmental scanning electron microscope (ESEM) equipped with an energy-dispersive
X-ray spectrometer (EDAX) for semi-quantitative chemical analyses.
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4. Results (Stratigraphic, Mineralogical and Petrographic Analysis)

4.1. Stratigraphy

The succession measured beneath the Piramide Sur had a sub-horizontal attitude and showed
four subvertical joint systems, which were arranged according to angles of about 45◦. Three main
lithologies were recognized: greyish conglomerates and breccias, light brown sandstones, and light
beige mudstones (Figure 6). In addition, a lithoid silty layer, a few centimeters thick, was found and
sampled (CH3) at 6.5 m from the base.Geosciences 2019, 9, 80 7 of 18 
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The section ended just below the foundation of the temple, as indicated by the presence of mortar
for adobe (Figure 7b). The stratification was plane-parallel except for some lenticular bodies and a few
undulated lithological boundaries. Conglomerates prevailed at the lower half portion of the column
while mudstones were more abundant at the upper half. The former presented imbrications of the
pebbles, erosive basal contacts, and a sandy-muddy matrix. The pebbles generally showed degrees
of sphericity from low to middle (Figure 7a). The thickest conglomerate measured 1.8 m, showed an
abrupt undulated lower surface, and was placed at the top of the section (Figure 7b). Mudstones were
either laminar or massive, but always poorly consolidated (Figure 7c). Load casts were observed at the
upper surface of each stratum of mudstone overlaid by a conglomerate. Sandstones presented cross
lamination (Figure 7d).Geosciences 2019, 9, 80 8 of 18 
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Figure 7. Stratigraphic features of the Piramide Sur section: (a) pebbles concentrations at the base of
the upper conglomerate; (b) top of the section (1.8 m conglomerate overlays mudstone; mortar for
adobes partially covers the contact); (c) the portion of the section comprised between 5 and 6.5 m from
the section’s base (it consists of mudstones and sandstones; note the whitish thin bed in the upper side);
(d) a detail of cross-lamination in sandstone.

Sandy and silty fractions of the samples were screened on macro- and micro-fossil contents, but
all tests gave a negative result.

4.2. Textural (Grain-Size) Characteristics

According to the stratigraphic description reported in the previous section, and applying the
textural classification by Folk (1954), our analysis of the sediment grain-size (on the basis of the method
of Wentworth, 1922, revisited on the logarithmic ϕ scale by Krumbein, 1934) shows that the lithologies
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of Cahuachi are categorized into three groups: “sandy conglomerate”, “muddy sandstone”, and
“sandy mudstone”, with one sample (CH2) falling in the slightly conglomeratic muddy sandstone field
(Table 1 and Figure 8). The majority of the sediment samples (46 vol.%) belong to the sandy mudstone
group, while sandy conglomerate and muddy sandstones are present in a minor and comparable
amount (27 vol.%). It is worth noting that one of the collected samples (CH3) was not processed for the
grain size analysis because of its lithoid state; for this reason, it will be described as a separate sample
(see next section). In addition, the statistic grain-size parameters of the sandy mudstones were not
processed as the most abundant grain size fraction >4 ϕ (i.e., <63 microns) of this textural group was
not separated into different grain-size classes for a correct cumulative curve.

Table 1. Grainsize distribution of the statistical parameters of studied sediments. SC = Sandy
Conglomerate; SCMS = Slightly Conglomeratic Muddy Sandstone; SM = Sandy Mudstone; MS
= Muddy Sandstone; PKG = Platykurtic; MKG = Mesokurtic; LKG = Leptokurtic; VLKG = Very
Leptokurtic; PSo = Poorly Sorted; VPSo = Very Poorly Sorted; MSo = Moderately Sorted. n.d. =
not determined.

Sample Mean
(Mz)

Median
(Md)

Sorting
(σ)

Skewness
(Sk)

Kurtosis
(KG) Remarks Gravel

(%)
Sand
(%)

Mud
(%)

Texture
Group

CH1 0.51 0.55 1.77 0.04 0.74 PKG PSo 28.32 68.82 2.864 SC
CH2 1.67 1.73 2.2 0.08 1.25 LKG VPSo 8.008 78.77 13.23 SCMS
CH4 0.02 -0.38 1.93 0.46 1.33 LKG PSo 33.45 59.58 6.96 SC
CH5 n.d. n.d. n.d. n.d. n.d. n.d. n.d. - 12.65 87.35 SM
CH6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. - 43.57 56.43 SM
CH7 n.d. n.d. n.d. n.d. n.d. n.d. n.d. - 23.78 76.22 SM
CH8 2.88 2.69 1.25 0.4 1.76 VLKG MSo - 86.06 13.94 MS
CH9 n.d. n.d. n.d. n.d. n.d. n.d. n.d. - 26.41 73.59 SM

CH10 2.71 2.63 1.33 0.26 1.61 VLKG MSo - 87.82 12.18 MS
CH11 n.d. n.d. n.d. n.d. n.d. n.d. n.d. - 21.5 78.5 SM
CH12 −0.4 −1.10 1.69 0.67 1.04 MKG PSo 55.43 40.17 4.4 SC
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Figure 8. Ternary grain-size classification diagram proposed by Folk (1954), showing the proportion of
mud, sand and gravel for the studied sediments collected at the Cahuachi site.

The grain size distribution patterns for the studied samples are graphically illustrated in Figures 9
and 10. According to the histograms in Figure 9, the sandy conglomerates show slightly bimodal
distributions, with the main mode coinciding with the coarse modal class (−1 ϕ) and the second,
minor mode moving to the finer classes (2 ϕ in the CH1 sample, >4 ϕ in the other samples). Muddy
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sandstones are typically unimodal (3 ϕ), except for the CH2 sample, which showed a second, minor
mode toward the finer classes (>4 ϕ). Sandy mudstones are typically fine-grained, always showing a
significant mode for classes >4 ϕ. Mz values range from –0.4 to 0.51 ϕ in the sandy conglomerates and
1.67 to 2.88 ϕ in the muddy sandstones.
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On the basis of the cumulative curves, the median diameter (Md, i.e., 50th percentile) of the sandy
conglomerates varies from 0.55 to –1.10 ϕ whereas that of the muddy sandstones ranges from 1.73 to
2.69 ϕ. The sorting value, mostly linked to the supply sources, to the energy of the environment, and
the transport processes, varies from poorly sorted (1.69–1.93 ϕ) sandy conglomerates to moderately
sorted (1.25–1.33 ϕ) muddy sandstones with the slightly conglomeratic muddy sandstone being very
poorly sorted (2.2 ϕ).

The skewness values (Sk, indicating the deviation between Md and Mz) in the Cahuachi lithologies
range from 0.04 to 0.67 ϕ in the sandy conglomerates, and from 0.08 to 0.4 ϕ in the muddy sandstones
(this also includes the slightly conglomeratic muddy sandstone sample). Accordingly, all of these
samples vary from near symmetrical to strongly positively skewed.

Regardings the Kurtosis parameter (KG, showing the measure of the shape of the histogram
curve, i.e., plate vs. tip), the studied samples also showed significant variability, with KG ranging
from platykurtic (0.74 ϕ, CH1), through to mesokurtic (1.04 ϕ, CH12) and leptokurtic (1.33 ϕ, CH4) in
the sandy conglomerates. The muddy sandstones are very leptokurtic (1.61–1.76 ϕ), with the slightly
conglomeratic muddy sandstone that is leptokurtic (1.25 ϕ).

4.3. Composition of the Volcaniclastic Layer CH3

Along the stratigraphic succession of Cahuachi, the lithoid silty layer (CH3) has a volcaniclastic
origin. It placed above the two sandy conglomerates (CH1 and CH2), at the bottom of the stratigraphic
section (Figure 6). This layer is composed of a predominant juvenile volcanogenic glass, associated with
minor sialic and mafic volcanic crystals, and a scarce lithic fraction (Figure 11). The juvenile material
consists of predominantly white pumices, marked by fluidal, spongy, and minor blocky texture, and
fresh glass shards showing typical morphological features of explosive silicic magmatic eruptions
(i.e., cuspate, plate, Y-shaped). Frequently, the delicate spines of bubble-wall and pumice shards are
undeformed, suggesting that the shards were sufficiently cold at the moment of the depositional
process of this volcaniclastic level. Igneous minerals include plagioclase, clinopyroxene, biotite,
and Fe–Ti oxides. These generally occur as loose subhedral crystals, but they can also be found as
phenocrysts/microphenocrysts in pumices and lithic clasts. The lithic fraction is mainly represented by
fine-grained, vitropyric rock fragments. Some lithics contain phenocrysts of plagioclase and pyroxene
in a groundmass consisting of the same phases and brown glass.

Semi-quantitative chemical analyses were carried out on selected mineral phases and glass shards
in a thin polished section with an SEM (Figure 11). The composition of the analyzed plagioclase
crystals roughly ranged from andesine to labradorite. Pyroxene was present as euhedral to subhedral
crystals of augitic compositions, while mica was Mg-rich biotite.

This volcaniclastic level could represent a widespread tephrostratigraphic regional marker in the
framework of the regional sedimentary sequences.
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Figure 11. Scanning electron microscope (SEM) microphotographs and energy-dispersive X-ray
spectrometer (EDAX) spectra of the studied volcaniclastic layer (CH3) from the Cahuachi succession.
Gl = glass; Pl = plagioclase; Bi = biotite; Cpx = clinopyroxene; Ox = Fe-Ti oxides.
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4.4. Petrography of Pebbles within the Sandy Conglomerates

Representative pebbles within the sandy conglomerate samples (CH1, CH4 and CH12) of the
investigated Cahuachi succession were selected for thin section petrographic study by a polarized light
optical microscope to determine their lithology. The sandy conglomerates contain pebbles of similar
petrographic composition (Figure 12). The petrotypes observed can be referred to as sedimentary,
magmatic, and metamorphic rocks. Sedimentary lithoclasts, mainly represented by siltites, arenites,
quartz-arenites, and volcaniclastic arenites; magmatic lithoclasts (plutonic and volcanic) consisting
of granites, granodiorites, diorites, andesites, dacites, and rhyolites (also comprising of vitrophyric
pyroclasts); and metamorphic pebbles, composed of gneisses and schists. Fragments of vitrophyric
pyroclasts are also abundant.
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Figure 12. Thin section microphotographs (a–e: crossed nicols polarized light; f: simple polarized
light) in of representative pebbles from the sandy conglomerates. a = arenite; b = quartz-arenite; c =
intermediate (andesite-like) volcanic rock; d = acid (dacite-rhyolite-like) volcanic rock; e = granitoid
(with feldspar crystals mostly altered to sericite and clay minerals); f = vitrophyric pyroclast.
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The sedimentary lithoclasts are dominated by arenites and quartz-arenites, while siltites
and volcaniclastic arenites are subordinate. Arenites and quartz-arenites (Figure 12a,b) show a
mineralogically homogeneous texture dominated by very fine to coarse-grained quartz grains.
The detrital grains are variable, but in general, are of a medium degree of roundness and sphericity.
The quartz is predominantly monocrystalline and non-undulatory to weakly undulatory, but
some grains exhibit undulose extinction or distinct zones of extinction with sharp boundaries
(i.e., polygonized quartz). The amount of variously altered alkali feldspar is scarce and decreases
passing from arenites to quartz-arenites. Granitoid rock fragments and carbonate lithics appeared in
some thin-sections of the arenites. The siltite clasts show good sorting and appear with a massive
and parallel laminated microstructure. The volcaniclastic sandstones, which are predominantly
coarse-grained, contain a mixture of framework grain types including variably altered, coarse-grained
porphyritic types with large euhedral feldspars, finely crystalline basaltic, and devitrified glassy grains,
together with sub-rounded to angular detrital quartz grains.

The magmatic lithoclasts are mainly represented by granite, granodiorite, syenite, and volcanic
rocks (andesites, dacites and rhyolites). These clasts occur as pebbles, with various roundness degrees.
Pebbles of volcanic origin (Figure 12c,d) are typically sparsely to densely porphyritic, rarely aphyric
with a glassy to a fine-grained matrix. Pale brownish clinopyroxene and amphibole are the dominant
mafic phenocrysts. Plagioclase phenocrysts are abundant in the phenocrysts population, while either
plagioclase or alkali feldspar could be part of the groundmass. The granites and the granodiorites are
mostly characterized by the slight to strong alteration of feldspars into secondary minerals such as
sericite and clay minerals (Figure 12e). Their microstructures are holocrystalline and hypidiomorphic
granular. Diorite lithoclasts are subordinate (with respect to granitoids).

Metamorphic lithoclasts are very subordinate and are mainly represented by gneisses and
schists. They show a variable schistose texture characterized by the parallel alignment of fine-
to medium-grained mica flakes (mainly biotite, muscovite) intercalated with quartz, plagioclase,
K-feldspar, and other minor minerals. Muscovite is generally more abundant than biotite in the schists,
where it could be the only phyllosilicate.

Vitrophyric pebbles (Figure 12f) consist of colorless to brownish, vesicle-poor to pumiceous, silicic
glass shards, euhedral crystals (feldspars and biotite), and altered volcanic lithic clasts. In some cases,
these clasts are almost entirely formed by an assemblage of vitrophyric particles such as Y-shaped
glass shards and glass fragments with sinuous or cuspate outlines, with subordinate subhedral to
euhedral crystals.

5. Discussion, Summary and Outlook

The stratigraphic study of the Piramide Sur section (Figure 6) did not emphasize any fundamental
discontinuity and therefore the section must belong to a single unit. This feature is not in agreement
with the interpretation of Grodzicki [8,37] of the sandy conglomerate at the top as an ENSO-related
deposit. Moreover, due to the lithological features, the whole succession of Figure 6 can be easily
correlated to the regional succession, and in particular, to the upper part of the Changuillo Formation
or the transitional stratigraphic level of the Changuillo–Canete Fms [23,43]. The surveyed features
did not permit the correlation of the geological section to a well-defined depositional environment,
however, one can hypothesize a depositional setting related to the progradation of alluvial fans.

The detection of mortar for adobe (for the constructive characteristics of the Piramide Sur Temple,
see Orefici [44]) covering the top conglomerate at the Piramide Sur stratigraphic section (Figure 7b)
requires some considerations. Near Gran Piramide, Grodzicki [8] asserted that the conglomerate
covered a wall of adobe, thus supporting both its depositional interpretation and dating. Currently,
clear contact between the conglomeratic layer and the adobe structure is not visible due to both
the restoration works of the archaeological building and the thick level of eluvium constituted by
gravel and sand coming from the conglomerate [39]. It is most likely that Grodzicki did not have
good exposure of the bedrock and considered the conglomerate was a recent alluvial deposit under
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the influence of a geomorphological aerial photo interpretation [45]. On the contrary, the top of the
Piramide Sur section clearly shows the relation between the sandy conglomerate and the bottom of
an adobe wall, thus constraining the pre-existence of the geological layer from which sample CH12
was collected.

An outlook to support the preliminary results of the present study should be to date the sandy
conglomerates of the Cahuachi stratigraphic section using the optically stimulated luminescence (OSL)
method to rule out the recent age supposed by Grodzicki [8,37]. The optical dating of sediments using
OSL signals in mineral grains began in 1985 [46]. This exciting new technique dates deposition back to
200 ka or more and its applications cover many areas of Earth and environmental sciences, comprising
archaeological and anthropologic contexts [47,48]. OSL has, in fact, the potential to determine the time
elapsed since energy was trapped in the crystal structures as a result of exposure to natural ionizing
radiation was last released by exposure to daylight (i.e., the time elapsed since the last transport and
deposition of sediment). Minerals most commonly used in OSL are quartz and feldspar, which are
virtually ubiquitous in terrestrial surface sedimentary settings. The technique complements other
Quaternary dating methods of sedimentary succession including radiocarbon (14C), uranium series
methods, and cosmogenic nuclide techniques. Debris flow dating by OSL is currently used (e.g., [49]
and references therein), although the opportunity for sufficient light exposure during debris flows is
limited, and thus heterogeneous resetting of the latent OSL signal can be expected [50].

The texture and composition of the sandy conglomerates confirm the above lithostratigraphic
correlation. On the basis of the petrographic composition of the pebbles, a very similar provenance
area of the sandy conglomerates could be inferred for all three of the investigated samples (CH1, CH4
and CH12). Although CH12 is characterized by a relatively higher mean grain-size (Mz –0.4 with
respect to 0.02–0.51 of CH1–CH4; Figure 8), all of the other textural parameters (Md, Sorting, Skewness,
Kurtosis; Table 1; Figure 9) are comparable for the three sandy conglomerates. In particular, the
similarity of the three cumulative curves (Figure 10) emphasize a poorly sorted character (σ 1.69–1.93
ϕ), indicating the similar energy of the sedimentary environment and transport processes. All of the
above features, coupled with similar roundness for all of the pebbles, independent of their sedimentary,
magmatic, or metamorphic origin, address the interpretation of the three sandy conglomerates as
being derived from similar geological conditions of (i) supply area, (ii) transport, and (iii) kind of
siliciclastic rocks, unlike their different position in the investigated stratigraphic sequence at Cahuachi
(CH1—CH4, bottom; CH12, top). As a matter of fact, if the thesis of Grodzicki was right, significant
textural and compositional differences should have occurred in the sandy conglomerate at the top,
with respect to the other similar lithological levels throughout the investigated section. Moreover,
the sandy conglomerates of Cahuachi are quite different to the El Niño catastrophic-flood signatures
described in the literature [19–22,51].

The lithoid silty layer CH3 has a volcaniclastic origin as shown above. It is worth noting that
some volcaniclastic layers have been reported at the upper portion of the Changuillo Fm [23,43],
while no volcanic layer was detected in the recent surficial deposits at the pampa of Nazca [52].
However, this should be further verified by additional mineralogical and petrographic studies
and detailed chronologic and tephrostratigraphic correlations on a regional scale among various
sections of the Changuillo Fm. Tephra fingerprinting is widely recognized as a useful method for
stratigraphic reconstructions across wide areas, which makes them a straightforward instrument for
dating and correlating stratigraphic sections. This method is largely employed in the Quaternary
(e.g., [53]) and has been used for correlating deposits of large eruptions of the Central Andes [54,55].
The abundant volcanic ashes interbedded with the basin-filling sedimentary succession provide a
snapshot of the long-lived activity of Andean volcanoes of southern Peru, frequently punctuated by
large explosive eruptions. In particular, fingerprints to correlate the tephra layer will be addressed
with similar geochemical compositions, morphology of glass shards, and their grain-size, together with
a detailed chronostratigraphic study using 39Ar–40Ar to date the biotite microlites that are ubiquitous
in the erupted pyroclastic products of intermediate to high-silica compositions characterizing
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subduction-related volcanism. Among the products of the continuous Neogene magmatic activity in
southern Peru [56], our tephrostratigraphic investigations will focus on the ash layers derived from
the Upper Barroso arc (between 3 and 1 Ma) as defined in the literature [57].

Our preliminary results on the stratigraphic, textural and petrographic study of the geological
interval investigated at Cahuachi provide fundamental clues on the matching of the studied section
with common regional successions (i.e., Changuillo– or Changuillo–Canete Formations) of the pampa
of Nazca rather than the ENSO-related deposits described by Grodzicki [7,8]. Further investigation of
the fine matrix particles (mostly clay minerals, work in progress) in the lithological units of the section
of Cahuachi here reported, together with the study of all the sections reported by Grodzicki, should
give additional constraints. The impact of the Mega El Niño events on southern Peru, especially those
that occurred around 1000 CE, should be reconsidered in terms of our thesis, which will be reconciled
with detailed chronological (e.g., tephrochronology) and biostratigraphic data [58,59].
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