
The crustal evolution of South America from a zircon Hf-isotope
perspective

Carita Augustsson,1 Arne P. Willner,2 Tobias R€using,3 Hans Niemeyer,4 Axel Gerdes,5

Christopher J. Adams6 and Hubert Miller7
1Institutt for Petroleumsteknologi, Universitetet i Stavanger, Stavanger 4036, Norway; 2Institut f€ur Geologie, Mineralogie und Geophysik,

Ruhr-Universit€at, Bochum 44780, Germany; 3Institut f€ur Geologie und Pal€aontologie, Westf€alische Wilhelms-Universit€at, Corrensstrasse

24, M€unster 48149, Germany; 4Departamento de Ciencias Geol�ogicas, Universidad Cat�olica del Norte, Casilla 1280, Antofagasta Chile;
5Institut f€ur Geowissenschaften, Johann Wolfgang Goethe-Universit€at Frankfurt, Altenh€oferallee 1, Frankfurt am Main 60438, Germany;
6GNS Science, Private Bag 1930, Dunedin 9054, New Zealand; 7Department f€ur Geo- und Umweltwissenschaften, Ludwig-Maximilian-

Universit€at, Luisenstraße 37, M€unchen 80333, Germany

ABSTRACT

Hf-isotope data of >1100 detrital zircon grains from the Palaeo-

zoic, south-central Andean Gondwana margin record the com-

plete crustal evolution of South America, which was the

predominant source. The oldest grains, with crustal residence

ages of 3.8–4.0 Ga, are consistent with complete recycling of

existing continental crust around 4 Ga. We confirm three major

Archaean, Palaeoproterozoic (Transamazonian) and late Mesopro-

terozoic to early Neoproterozoic crust-addition phases as well as

six igneous phases during Proterozoic to Palaeozoic time involv-

ing mixing of juvenile and crustally reworked material. A late

Mesoproterozoic to early Neoproterozoic, Grenville-age igneous

belt can be postulated along the palaeo-margin of South Amer-

ica. This belt was the basement for later magmatic arcs and

accreted allochthonous microcontinents as recorded by similar

crustal residence ages. Crustal reworking likely dominated over

juvenile addition during the Palaeozoic era, and Proterozoic and

Archaean zircon was mainly crustally reworked from the eroding,

thickened Ordovician Famatinian arc.
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Introduction

Several studies argue that active con-
tinental margins are major sites of
juvenile crust addition, crustal
reworking and continental growth
(e.g. Lucassen et al., 2004; Franz
et al., 2006; Cawood and Buchan,
2007; Condie, 2007). The Andean
margin of South America has been a
classical convergent margin since at
least Cambrian time (Ramos, 2009).
In the south-central Andes, several
magmatic arcs contributed to the
growth of Gondwana during early
Palaeozoic time. This is reflected in
the detritus of basins that evolved
from east to west in Ediacaran–Cam-
brian time mainly in an accretionary
prism in northwest Argentina, in
Ordovician–Devonian time in retro-
arc and forearc environments, and in
late Palaeozoic time in accretionary
prisms of the Coastal Cordillera of
Chile. In these basins, zircon assem-
bled from all major orogenic periods
of the entire continent.

Zircon analysis is a valuable tool
for understanding processes related
to crustal growth and evolution (e.g.
Kinny and Maas, 2003; Scherer et al.,
2007). In particular, the Hf-isotope
composition of U–Pb-dated detrital
grains can be used to infer the geo-
chemical characteristics of the crust
(Scherer et al., 2007). The crustal his-
tory of the protolith material of indi-
vidual zircon grains can be
reconstructed back to its fractiona-
tion from a depleted mantle. As such,
zircon of different ages grown from
material with a similar crustal history
can be detected (e.g. Gerdes and Zeh,
2006, 2009; Kemp et al., 2006).
Hence, the Hf-isotope compositions
of detrital zircon grains from deposits
with broad zircon age spectra allow a
reconstruction of the growth history
of an entire continent.
In this study, we concentrate on

siliciclastic sedimentary rocks of the
Palaeozoic continental margin of
South America at 22–36°S (Fig. 1),
where magmatism is mainly related
to an Ordovician (Famatinian) and a
Late Carboniferous to Permian mag-
matic arc (e.g. Rapela et al., 1998;
Lucassen et al., 1999). Our aim was
to track the Eoarchaean to Palaeo-
zoic crustal growth of South America

from detrital data and to monitor
the change in Hf-isotope signatures
with time using a large dataset of
>1100 laser ablation inductively cou-
pled plasma mass spectrometry Hf-
isotope compositions of detrital zir-
con from 30 siliciclastic rocks of
Cambrian to Permian age (Table 1).
Furthermore, we trace crustal addi-
tion throughout the entire Palaeozoic
era for the present-day south-central
Andes. We combine the Hf data with
published U–Pb ages from the same
grains (Adams et al., 2008, 2011;
Willner et al., 2008; Augustsson
et al., 2011, 2015).

Geological framework: crustal
growth of South America

During the Palaeoproterozoic
Transamazonian Orogeny (2.25–
1.8 Ga), zircon formed within amal-
gamated Archaean cratons, in the
R�ıo Apa and the R�ıo de la Plata cra-
tons (Fig. 1; Tassinari and Macam-
bira, 1999; Rapela et al., 2007;
Cordani et al., 2009). Further
Palaeoproterozoic and Mesoprotero-
zoic orogenic activity at 1.8–1.3 Ga
was followed by late Mesoprotero-
zoic to early Neoproterozoic Gren-
ville-age processes (1.2–0.9 Ga) that
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are represented in the allochthonous
Arequipa Massif, the Suns�as Belt,
the Western Sierras Pampeanas, and
the Punta del Este Terrane (Fig. 1;
Tassinari and Macambira, 1999;
Basei et al., 2000; Martignole and
Martelat, 2003; Casquet et al., 2005;
Chew et al., 2007; Cordani et al.,
2009). Western Gondwanan amalga-
mation of the Brazilian Craton ended
with the Cryogenian–Early Palaeo-
zoic Brasiliano Orogeny at c. 650–
520 Ma (Basei et al., 2000) partly
concomitant with the break-up of
Rodinia (Dalziel, 1997).
Extensive Ediacaran to early Cam-

brian turbiditic sediment (Puncovis-
cana Formation and equivalents;
Table 1) was deposited on the
palaeo-continental margin in north-
western Argentina, continuously
accreted during the Pampean Oro-
geny at c. 570 to c. 520–490 Ma
(Je�zek et al., 1985; Willner et al.,
1987; Rapela et al., 1998), and partly
incorporated in a magmatic arc
(Rapela, 2000; Escayola et al., 2011).
Younger, Cambrian to Permian,
deposits (Table 1) were transported
dominantly from the Eastern Sierras
Pampeanas and other areas affected
by time-equivalent processes and the
Ordovician Famatinian Orogeny
(c. 510–490 Ma to c. 460 Ma; e.g.

Pankhurst et al., 1998; Augustsson
et al., 2011, 2015), which is part of
an extensive magmatic arc along
major parts of Andean South Amer-
ica (Pankhurst et al., 2006; Chew
et al., 2007; Horton et al., 2010).
The Famatinian arc, exposed at mid-
crustal level, had excess crustal thick-
ness comparable to that of the pre-
sent-day central Andes (Lucassen
and Franz, 2005; de los Hoyos et al.,
2011). Magmatism ceased during Sil-
urian to Devonian time in northern
Chile (Bahlburg and Herv�e, 1997).
The allochthonous Cuyania Ter-

rane, exposed in the Argentine Pre-
cordillera (Fig. 1), collided with
South America at 29–36°S during
Middle Ordovician time (c. 472–
455 Ma; Casquet et al., 2001;
Ramos, 2009; Mulcahy et al., 2011;
van Staal et al., 2011; Garber et al.,
2014). Continental collision zones
with high-pressure metamorphism
are present on the eastern and west-
ern flanks of the terrane (Davis
et al., 1999; Casquet et al., 2001; van
Staal et al., 2011; Willner et al.,
2011; Garber et al., 2014). The west-
ern flank represents a Devonian (c.
390 Ma; Willner et al., 2011) colli-
sion zone with the Chilenia terrane
(Fig. 1; Ramos et al., 1986). Contin-
uous accretion and arc development

in central and northern Chile reoc-
curred at c. 320–220 Ma (Willner
et al., 2005).

Results: Hf-isotope compositions

Most Archaean grains have eHf(t) of
�10 to +5. An oldest Palaeoprotero-
zoic igneous phase of approximately
Transamazonian age (c. 2.2–1.7 Ga)
and a Mesoproterozoic (c. 1.6–1.3
Ga) igneous phase mainly include
zircon with eHf(t) of �15 to +10
(Mp1, Mp2 in Fig. 2), with the high-
est values corresponding to the
depleted mantle (eHf = 0 at 4.07 Ga
and +14 today). Late Mesoprotero-
zoic to early Neoproterozoic (c. 1.2–
0.9 Ga; Mp3) and Cryogenian to
Cambrian (0.8–0.5 Ga; Mp4) phases
are proven by zircon with eHf(t) of
�20 to +10 (Mp3, Mp4; Fig. 2, 3). A
fifth igneous phase is late Cambrian
to Silurian (c. 500–400 Ma) with
main eHf(t) of �10 to +5 and a few
grains with values down to �20
(Mp5; Figs 2 and 3). The youngest
magmatic phase (Mp6) similarly is
represented by zircon with main
eHf(t) of �10 to +5 for grains of
400–350 Ma age but with eHf(t) of
�5 to +5 for younger zircon (Fig. 3).
All data are part of the same Hf-iso-
tope compositional trends, irrespec-
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and Ramos (2009).
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tive of origin along the Palaeozoic
Gondwana margin.
The Hf-isotope compositions fol-

low three crustal evolution paths,
representing zircon with similar
model ages (Fig. 2). They are sepa-
rated by gaps, particularly in juvenile
zircon distribution. Mainly Archaean
and Palaeoproterozoic zircon has
comparable Palaeoarchaean to
Mesoarchaean model ages (TDM = c.
3.3–2.8 Ga). A second crustal evolu-
tion path, with Palaeoproterozoic,
approximately Transamazonian,
model ages (TDM = c. 2.5–1.8 Ga),
includes the main Palaeoproterozoic
to early Mesoproterozoic cluster and

some of the late Mesoproterozoic to
Palaeozoic grains (Fig. 2). The third
crustal evolution path (Figs 2 and 3),
with Mesoproterozoic to Neopro-
terozoic model ages (TDM = c. 1.6–
0.8 Ga), includes the main groups of
late Mesoproterozoic and younger
ages. The four oldest model ages are
3.8–4.0 Ga, deriving from 3.4 to
3.1 Ga zircon.

The oldest preserved zircon and
crust in South America

The rareness of Archaean zircon is
due to massive dilution by younger
zircon. Additional Hf-isotope data

from zircon of South American
provenance are similar to our data,
with evolved to juvenile signatures
and crustal residence ages of up to
c. 4.0 Ga, proving Palaeoarchean
crustal evolution for the first time
(Fig. 4). This trend is consistent with
data from an Amazonian granitoid,
where ages for the oldest zircon crys-
tals of 3.7–3.2 Ga and Sm–Nd model
ages of 3.5 Ga are also reflected in
modern Amazon River sand (Cor-
dani and Sato, 1999; Tassinari and
Macambira, 1999; Iizuka et al.,
2010). Hence, there is no evidence
for crust older than about 4.0–
3.7 Ga in the Amazonian craton.

Table 1 Descriptions of the studied units.

Geological unit Depositional age Dating objects Depositional setting Ref. Sampled lithology

Puncoviscana Fm Ediacaran to Early Cambrian Trace fossils, detrital

zircon

Turbiditic 1 Metagreywacke

Guarguar�az Complex Late Ediacaran to Early

Palaeozoic

Detrital zircon Marine, passive margin 2, 3 Garnet mica schist

Mes�on Group Mainly Middle Cambrian Acritarchs in overlying

strata,

detrital zircon

Shallow-marine, tidal 4 Quartz arenite

CISL Early Ordovician Zircon in lava Marine, turbiditic, forearc

to intra arc

5 Greywacke

Puna Turbidite Complex:

Lower Turbidite System

Middle Ordovician Graptolites Deep-marine, turbiditic,

retro arc

6 Greywacke

Salar del Rinc�on Fm Latest Ordovician to

earliest Silurian

Spores, brachiopods Shallow-marine 7, 8 Arenite

Quebrada Ancha Fm Latest Ordovician to

early Silurian

Brachiopods Shallow-marine, sub-tidal 9 Red arenite

Zapla Formation,

upper Mbr

Early Silurian Chitinozoans Fluvial channels of coastal

alluvial fans

10, 11 Arenite

Lipe�on Fm Early to late Silurian Chitinozoans, bivalves Shallow-marine, sub-tidal 10, 12 Quartz arenite

Sierra del Tigre Fm Devonian Brachiopods Open-marine, turbiditic 13, 14 Greywacke

Zorritas Fm, Lower Mbr Middle Devonian Brachiopods Shallow-marine, tidal 15, 16 Quartz arenite

El Toco Fm Late Devonian Plants Deep-marine shelf, turbiditic 14, 17 Arenite

Sierra Argomedo Fm Late Devonian to Early

Carboniferous

Detrital zircon, bivalves,

intrusion

Shallow-marine, shoreface 18 Arenite

Zorritas Fm, Upper Mbr Early Carboniferous Brachiopods Marine, deltaic distributary

channels

15, 19 Quartz arenite

Cerro Oscuro Fm Late Carboniferous Plants Braided river, retro arc 7, 20 Arenite

Array�an Fm Early Carboniferous Detrital zircon Distal submarine fan, turbiditic 3, 21 Fine-grained

metagreywacke

Western Series Carboniferous Detrital zircon, mica Marine, turbiditic 3, 22 Metagreywacke

Eastern Series Carboniferous Detrital zircon, mica Marine, turbiditic 3, 22 Metagreywacke

Agua Dulce Metaturbidite Carboniferous Detrital zircon Distal submarine fan 3, 21 Fine-grained

metagreywacke

Choapa Complex Late Late Carboniferous Detrital zircon Turbiditic 3, 23 Metagreywacke

Cerro de Cuevitas Fm Late Late Carboniferous

to early Permian

Invertebrates Shallow-marine, coastal 13 Arenite

CISL is the Cord�on de Lila Igneous and Sedimentary Complex. References: (1) Je�zek et al. (1985), Durand (1993), Adams et al. (2008); (2) L�opez and Gregori

(2004); (3) Willner et al. (2008); (4) Moya (1998), Rubinstein et al. (2003), Augustsson et al. (2011); (5) Niemeyer (1989), Zimmermann et al. (2010); (6)

Bahlburg (1990), Bahlburg et al. (1990); (7) Donato and Vergani (1985); (8) Benedetto and S�anchez (1990), Rubinstein and Vaccari (2004); (9) Navarro et al.

(2006), Niemeyer et al. (2010); (10) Grahn and Guti�errez (2001); (11) Moya and Monteros (1999); (12) Andreis et al. (1982), Malanca et al. (2010); (13) Nie-

meyer et al. (1997a); (14) Bahlburg and Breitkreuz (1993); (15) Niemeyer et al. (1997b); (16) Boucot et al. (2008); (17) Moisan et al. (2011); (18) Breitkreuz

(1985), Augustsson et al. (2015); (19) Isaacson and Dutro (1999); (20) Galli et al. (2010); (21) Rebolledo and Charrier (1994); (22) Herv�e (1988), Willner et al.

(2005); (23) Charrier et al. (2007).
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Detrital zircon of 3.6–3.1 Ga age has
consistently been observed in
Archaean and Proterozoic strata of
southern Africa, Western Australia
and Antarctica (compilation by Zeh
et al., 2008). Together with our data,
these populations follow an Eoar-
chaean to Palaeoarchean crustal evo-
lution path (Fig. 4) similar to that of
average modern-day continental
crust and to those of mixing trends

(Zeh et al., 2008, 2011). The
Archaean path originates at c.
4.0 Ga, near the intersection for the
depleted mantle and the chondritic
uniform reservoir, and thus repre-
sents the oldest continental crust pre-
served on Earth. Any continental
crust formed before 4 Ga, also from
South America, is assumed to be
completely recycled into the mantle
(Zeh et al., 2008, 2011; this study).

Palaeoproterozoic to early
Mesoproterozoic evolution

The two major Proterozoic episodes
of juvenile magma production, repre-
sented as model ages at 2.5–1.8 Ga
and 1.6–0.8 Ga (Fig. 2), reflect the
known formation of juvenile crust
during the Transamazonian Orogeny
(2.25–1.8 Ga) in continental mag-
matic arcs, during rift phases in the
Central Amazonian Craton at 1.95–
1.6 Ga, in magmatic arcs during the
Rondonian–San Ign�acio Orogeny
(1.5–1.3 Ga), and during rifting at
1.4–1.2 Ga in areas affected by the
Rio Negro–Jurmena Orogeny (Cor-
dani and Sato, 1999; Tassinari and
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Macambira, 1999; Cordani et al.,
2009). The two pronounced igneous
mixing phases of juvenile and
reworked crust at 2.2–1.7 Ga and
1.6–1.3 Ga (Mp 1 and Mp 2 in
Fig. 2) correspond to calc-alkaline
arc magmatism in the Central Ama-
zonian craton during the Transama-
zonian, Rio Negro–Jurmena and
Rondonian–San Ign�acio (1.50–
1.30 Ga) orogenies (Cordani and
Sato, 1999; Tassinari and Macam-
bira, 1999; Cordani et al., 2009).
Tassinari and Macambira (1999)
reported an age minimum at 2.4–
2.0 Ga in the Central Amazonian
Craton that is also seen in our data
(Fig. 2). During the two igneous
phases, Archean and Transamazo-
nian crust, respectively, was
reworked. They are also represented
by detrital zircon from the Guar-
guar�az Collisional Complex, likely
part of Chilenia (Fig. 2, Table 1;
Willner et al., 2008).

The late Mesoproterozoic to early
Neoproterozoic (Grenville-age)
phase

Grenville-age (1.2–0.9 Ga) detrital
zircon is widespread in Ediacaran to
Palaeozoic strata along the Andean
continental margin at least from
southern Patagonia to Colombia
(e.g. Augustsson et al., 2006, 2015;
Adams et al., 2008; Horton et al.,
2010; Reimann et al., 2010), despite
present-day fragmentary exposures
of Grenville-age basement in the
Suns�as Belt, the Western Sierras
Pampeanas (partly related to Cuya-
nia), the Arequipa–Antofalla Massif
and the Punta del Este Terrane
(Fig. 1). Our similarly aged zircon
with positive eHf(t) is consistent with
major juvenile input at c. 1.6–0.8 Ga
and later crustal reworking (Mp3
in Fig. 2), in contrast to more
evolved zircon with Palaeoprotero-
zoic (Transamazonian) crustal evolu-
tion. Juvenile Grenville-age zircon is
also present in the Guarguar�az Colli-
sional Complex (Fig. 2; Willner
et al., 2008).
Amphibolite with a juvenile Nd-

isotope composition in the Western
Sierras Pampeanas represents man-
tle input (Kay et al., 1996). Hence,
the Hf-isotope signature from detri-
tal zircon cannot be used to distin-
guish a different provenance for
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Fig. 2 for references.

132 © 2016 John Wiley & Sons Ltd

Crustal evolution of South America • C. Augustsson et al. Terra Nova, Vol 28, No. 2, 128–137

.............................................................................................................................................................



South America and the Cuyania
and Chilenia terranes. More likely,
a similar Grenville-age basement
with both juvenile and more
evolved components underlies the
palaeo-margin of South America
and both microcontinents. Wide-
spread Grenville-age zircon in Edi-

acaran to early Cambrian strata
requires an extensive Grenville-age
igneous belt further east. Consider-
ing that the convergent margin of
the Ordovician Famatinian Arc had
excess crustal thickness (Lucassen
and Franz, 2005; de los Hoyos
et al., 2011), the older deposits were

likely thrust to the east over the
adjacent Grenville-age belt. This sit-
uation is similar to that of the pre-
sent Andean crust. Comparable Hf-
isotope compositions are present for
Grenville-age zircon of early
Palaeozoic strata from the eastern
Laurentia margin (Willner et al.,
2014).

Ediacaran to Carboniferous
evolution

Igneous bodies related to the early
Cambrian Pampean Orogeny in
northwestern Argentina intruded the
Ediacaran to early Cambrian depos-
its. Crustal reworking from these
and detritus related to magmatic
activity during the Brasiliano Oro-
geny (650–520 Ma; Mp4 in Figs 2
and 3), related to the break-up of
Rodinia, is corroborated by crys-
tallisation from late Mesoprotero-
zoic to early Neoproterozoic,
Grenville-age, crustal melt (recalcu-
lated Hf data, Hauser et al., 2011).
The studied Ordovician to Permian
basins (Table 1) were mainly fed
from the (active to extinct) Ordovi-
cian arc (Mp5, Fig. 2), either
directly or through sedimentary
recycling (Augustsson et al., 2015).
Our data indicate that this arc
mainly formed from Grenville-age
crust, implying that it developed
above Famatinian thickened crust.
Throughout the Palaeozoic era,
Palaeozoic-age zircon derived from
Grenville-age crust material, as indi-
cated by the corresponding model
ages (Fig. 2). Apparently Transama-
zonian crust was no longer avail-
able for crustal reworking along the
palaeo-margin of Gondwana. Com-
parable Hf-isotope compositions
also exist for early Palaeozoic strata
from the New Zealand, Australia
and Antarctica parts of the Gond-
wana margin (Fig. 5), indicating
that Gondwana-assembly magma-
tism mainly involved recycled crust.
The Carboniferous to Permian

arcs (Mp6 in Fig. 2) were crustally
reworked from the same Grenville-
age material. The somewhat higher
eHf(t) for zircon <350 Ma than for
older grains indicates mixing with
mantle material, during which most
Hf derived from the reworked crust.
Arc magmatism had started by Early
Carboniferous time (Willner et al.,
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tion trend is shown in grey. Also included are data from the microcontinents Gan-
deria and Avalonia, which separated from Amazonia (Willner et al., 2013, 2014),
data from the Brasiliano Belt (Matteini et al., 2012; Rodrigues et al., 2012) and
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(Augustsson et al., 2006). Data are represented by recalculated values for concor-
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2008; Bahlburg et al., 2009; Herv�e
et al., 2014). The igneous bodies
likely originated on Chilenia crust
because of their occurrence west of
its suture with Cuyania. If this arc
was situated on Chilenia, then Chile-
nia must have been underlain by
Grenville-age crust. After accretion,
Cuyania and Chilenia were overlain
by Palaeozoic strata (e.g. Gleason
et al., 2007; Bahlburg et al., 2009)
and likely added little detrital zircon.

Conclusions

The uniform Hf-isotope signature
of detrital zircon in basins that
evolved at the Pacific margin of
South America during Ediacaran to
Permian time records almost the
entire crustal evolution of the conti-
nent. This further proves mainly
South American sources. Our com-
bined Archaean data stress a
Palaeoarchaean crustal evolution,
which concurs with the trends
observed by Zeh et al. (2008, 2011),
adding weight to the idea of com-
plete recycling of existing continen-
tal crust on Earth around 4 Ga.
Formation of Proterozoic crust,

reflected by zircon with positive
eHf(t) and respective crustal evolution
trends, concurs with data from the
interior of the Amazonian Craton.
Archaean crust was reworked during
the Palaeoproterozoic Transamazo-
nian igneous phase. This material in
turn was partly reworked during the
late Mesoproterozoic to early Neo-
proterozoic Grenville-age and Cryo-
genian to early Cambrian Brasiliano
phases, and the Grenville-age mate-
rial was reworked during Palaeozoic
arc activity.
Grenville-age crust can be postu-

lated to have underlain the Edi-
acaran–Cambrian palaeo-margin of
South America as well as the micro-
continents Cuyania and Chilenia.
Laurentia and Gondwana were origi-
nally combined along the Grenville
belt within the Rodina superconti-
nent. They also separated along this
belt at around 700 Ma (or during the
Pampean Orogeny; Casquet et al.,
2012), leaving several intermediate
microplates behind, which partly
have re-collided with South America
(e.g. Dalziel, 1997; Ramos, 2010).
Hence, both Gondwana-affinity and
Grenville-belt-affinity zircon was

deposited along the Palaeozoic conti-
nental margin.
A thickened crust under the

Ordovician Famatinian Belt with
slow exhumation until Carboniferous
time (de los Hoyos et al., 2011) is
likely responsible for the remarkably
similar detrital zircon input over 300
Ma during the Palaeozoic era, as
reflected by our data (see also
Augustsson et al., 2015). This means
that the main detrital zircon input
from the Brazilian shield was mainly
sedimentary recycled during erosion
and exhumation of the Famatinian
belt. Hence, the pre-Andean conti-
nental margin was a site of continu-
ous continental growth with more
crustal recycling than juvenile addi-
tion.
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