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ABSTRACT 
Flotation is the most used separation process 
worldwide.  Flotation characterization is usually 
carried out in batch conditions at laboratory scale.  A 
phenomenological description of the flotation process 
is challenging, however, the evaluation of flotation 
performance in a contextual manner by means of a 
pilot plant is beneficial to reduce uncertainty on 
metallurgical results.  In addition, leveraging pilot 
plant results by digitalize them helps describe the 
process dynamically.  Consequently, flotation pilot 
plant testing allows a Digital Twin (DT) to be 
generated by combining ore characteristics, process 
information and a digital architectural platform.  
Therefore, the generation of a Digital Twin of the 
flotation pilot plant provides a tool to explore and 
evaluate new operating scenarios.  This allows an 
optimum scenario to be identified and scaled up (i.e., 
industrial operation).  In other words, the pilot plant 
with its digital twin may become the physical twin of 
the industrial plant as long as a robust scale-up 
methodology is available.  This contribution proposes 
an innovative and enhanced geometallurgical 
characterization to evaluate ore variability and its 
metallurgical performance holistically.  It is believed 
that this new proposed approach will help plant 
operators improve their technical and economic 
performance. 
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1. Introduction  
 

The mining industry is facing a challenging 
environment. Complex geological resources and 
decreasing ore grades make the characterization 
process intense and expensive. High-quality 
mineralogical information is needed to design, 
construct, commission and operate mineral processing 
plants (Nad et al., 2022). 

The availability of innovative instrumentation 
generates significant amount of data (information) that 
can help monitor and control processes better.  The 
digitalization of this information help leverages process 

description.  Digital mineral processing developments 
allow data in real-time to be managed efficiently. In 
addition, instrumentation and sensor-based systems 
allow flowsheets to be monitored and controlled.  
Analysis of process data using machine learning and 
artificial intelligence is becoming more and more 
common to process control and automation (Jooshaki 
et al., 2021). Data may now be collected from many 
sources throughout a mineral processing plant, i.e., at a 
much higher degree of resolution (Koistinen et al., 
2020).    

Digitalization is the ability to turn existing products or 
services into digital variants, and thus offer advantages 
over tangible products (Nad et al., 2022). 

Digitalization in the mineral processing and 
beneficiation industry is commonly interpreted as 
strategies of process control.  Flotation is becoming 
better instrumented, and therefore, there is now 
information available that was not considered in the 
past.  

Artificial Intelligence (AI) studies of ore processing, 
and the flotation process are increasing as time is going 
by. Similarly, Machine Learning (ML) applications in 
mineral processing have been focused on flotation and 
ore sorting (Jooshaki et al., 2021).  Digital Twin 
applications have been used to map out different 
processing scenarios.  These scenarios consider 
alternative operating conditions and varying ore 
characteristics to define ore boundary conditions. The 
integration of geometallurgical data, feed ore 
characteristics, and plant online sensor data with a 
detailed dynamic mineral particle-based processing 
model of the plant is today urgently required (Ross, 
2019). 

Digital Twin of a mineral processing plant, in 
particular, flotation separation process will allow 
different processing scenarios to be explored, i.e., to 
generate answers to “what-if” questions.  In addition, 
advanced process control of different plant areas may 
be implemented, so that the best approaches to 
different production events and scenarios can be 
explored in context (i.e., flowsheet configuration) 
(Kortelainen, 2019). 

This paper describes the use of a flotation mini pilot 
plant in combination with a digital twin of it to explore 



 

processing scenarios and their metallurgical 
performance.  It is also explored in this contribution 
that the mini pilot plant configuration is considered a 
physical twin of an industrial plant by having a robust 
scale-up methodology associated with the pilot plant. 
This article proposes an advanced way of conducting a 
flotation geometallurgical characterization of a given 
ore. 
 
2. SGS Mini Pilot Plant (MPP) 
 
2.1. Description 

 
The Mini Pilot Plant (MPP) designed, constructed, 

commissioned, and operated by SGS is an autonomous 
mobile installation, well-instrumented with the 
capability of processing ores with real circuits 
configurations, i.e., to emulate commercial industrial 
plants (see  

Figure 1). 
 The MPP can be used to explore processing scenarios 

considering grinding, classification, flotation and solid-
liquid separation. In particular, the flotation section of 
the MPP consist of 12 mechanical cells with air 
injection measured through mass flow meters. The 
flexibility of the MPP allows a variety of circuit 
configurations to be explored. It is believed that the 
MPP flexibility may help accommodate the industrial 
context of each client (SGS, 2021). 

 

 
 
Figure 1: SGS Mini Pilot Plant (MPP), flotation units. 

In addition, it is worthwhile mentioning that the MPP 
has got re-grinding capabilities, and column flotation 
cleaning unit.  

MPP can be operated through a centralized control 
interface with remote accessibility. 

The testwork using MPP allows results to be 
produced in order to evaluate metallurgical 
performance in context (i.e., flowsheet configuration). 
Metallurgical performance is determined by capturing 
data and characterizing metallurgical samples with a 

XRF handheld analyzer.  This makes characterization 
data fast availability. 

Note that the MPP uses Denver mechanical flotation 
cells design.  

Figure 2 shows a diagram that provides specific details 
of the flotation cell system used in the MPP. Note that 
air injection occurs through the agitator shaft, tailings 
discharges by means of a weir, and concentrate froth is 
removed by an automatic scraper. MPP mechanical 
flotation cells are 1.7 (L) each, the cross-sectional area 
of every cell is 140.22 (cm2). The standard impeller 
speed used in the MPP flotation system is 1000 RPM, 
and the superficial gas velocity range used is of 0.25 – 
0.60 (cm/s). The average feed flow rate is 167 (g/min). 

 

 
 
Figure 2: MPP Flotation cell system. 

It is important to highlight that the MPP is a mobile 
processing equipment (Rig) which allows ore 
metallurgical processing to be carried out in-situ (i.e., 
industrial plants locations). It is worthwhile noting that 
this MPP feature helps characterizing different 
industrial process streams which facilitates the 
advanced geometallurgical characterization (i.e., 
capturing of ore variability). 

Having described the MPP hardware, it is now 
possible to provide a dynamic mass balance description 
of the flotation configuration to be used in the 
development of the Digital Twin. Note that the MPP 
has got the flexibility to accommodate different 
configurations. However, the Digital Twin will be 
considered using a simple flowsheet to illustrate the 
development approach. 

 
2.2. Digital representation of the MPP 

 
The modelling and simulation of the main flotation 

components of the MPP are presented in this section.  
A dynamic model was considered to represent the 
flotation operation of the MPP. Data generated in the 
MPP were used to establish the dynamic description of 
the process. 



 

 

Figure 3 shows the digital representation of the 
flotation flowsheet configured in the MPP. Note that 
the flowsheet configuration used has a Rougher 
flotation stage, which consisted of six mechanical cells 
in series, and a Cleaner stage which also considered six 
mechanical cells in series. This configuration was 
studied in open and closed circuit, i.e., the former is a 
three-product configuration, and the latter is a two-
product configuration. The closed circuit considered 
the recirculation of the Cleaner tail to a node that also 
fed the fresh feed and made up the Rougher flotation 
feed. The main purpose of considering these two 
configurations was to illustrate the development the 
Digital Twin associated to the MPP. Note that open 
flowsheet run operating results are presented in the 
appendix section of this paper. 

 

Figure 3 also shows the digital system equations which 
are precursor of the dynamic modelling/simulation of 
the MPP configuration. Note that this description is 
based on a steady-state process operation (i.e., no 
accumulation) which in other words, means no time 
dependency. On the other hand, a dynamic description 
of the process is time dependent (Quintanilla et al., 
2021), which require a set of differential equations to 
be solved. It is also important to indicate that the 
steady-state models help determine the interaction 
among process variables, on the contrary, dynamic 
models help quantify process changes under changing 
conditions, and determine how and when new steady-
state is reached.  

 

 
 
Figure 3: Flotation flowsheet configured in MPP. Digital 

representation based on real-time information and dynamic 
modelling/simulation description. 

In the physical system, the model development is 
based on key compartments which describe the 
physical system phenomenologically. At the same time, 
these compartments have key process parameters 
associated which are measured through smart 
instrumentation and sensors. The integration of key 
compartments, key parameters measurement, and a 
robust phenomenological models allow digital 
modelling/simulation to be generated in the MPP 
context. 

Figure 4 illustrates a representation of a digital 
modelling structure for the MPP flotation cell system. 
Note that the input considers the volumetric flow rate 
and feed grade. For the cell digital representation, the 
models are defined taking into account the number of 
the cell (along the Rougher or Cleaner stage), mineral 
species, froth and pulp zones, and product streams 
(i.e., tailings and concentrates). Furthermore, the 
parameters related to these compartments are mineral 
mass, rate constant, feed mass flow, volumetric flow, 
and froth and/or pulp level. Finally, the main objective 
of this digital representation (i.e., 
modelling/simulation) is to obtain valuable and gangue 
content on froth and pulp phases, which are a function 
of each parameter defined previously. 

By integrating the results of each cell by a mass 
balance and reconciliation process, it is possible to 
establish the overall metallurgical performance of the 
MPP. 
 

 
 
Figure 4: Digital modelling general structure for the flotation 
process in the MPP flotation cell system. 

In order to capture process information and describe 
correctly the process configuration, key instruments 
and sensor-based systems are required.  In addition, 
three main aspects need to be considered: robust 



 

simulation environment, high fidelity models and real-
time two-way communication with the physical 
process. The latter is essential to have a Digital Twin 
(Kortelainen, 2019). 

 

Figure 5 depicts the level definition that establishes the 
requirement to have a Digital Twin. It is seen in this 
figure that three instances are considered to reach the 
two-way communication with the physical process. 
These are Digital Model, Digital Shadow, and Digital 
Twin. In other words, the Digital Twin has fully 
integrated automatic data flow in both directions 
(Kritzinger et al., 2018). 

Having obtained a Digital Twin, this can be used to 
mimic a real process.  In practical terms, this provides a 
safety net for an industrial operation because DT can 
explore in a safe way, new operating conditions 
without negative impacts on industrial performance. In 
addition, a Digital Twin allows deep process 
understanding to be obtained, i.e., integration between 
process variables, knowledge of dynamic phenomena 
(delays, time constants, bottlenecks), and planning, 
process development.  

It is also important to indicate that a Digital Twin 
helps establish advanced process 
monitoring/measurement. It also helps link other 
measurement to key process variables, e.g., image-
based froth measurement, and soft sensors 
development. 
 

 
 
Figure 5: Level definition of the integrated data flow between MPP 
and Dynamic modelling/simulation description. 

 
3. MPP and Digital Twin 
 
3.1. Digital environment in mineral processing 
 

A powerful method for analyzing a vast amount of 
data is Machine Learning (ML). This approach is ideal 
for mineral processing data mining since the availability 
of new and innovative instrumentation and sensors.  In 
other words, there is available more information 
generated that can now be ML’ed (Jooshaki et al., 
2021). 

ML algorithms may diagnose the metallurgical 
performance embedded in collected processing data. 
That is to say, ML can be used to develop data-driven 
models for mineral processing equipment (e.g., mills, 
flotation cells) (McCoy, 2019). 

The combined use of ML and Artificial Intelligent (AI) 
create the conditions for the development a Digital 
Twin in mineral processing. Organizations, such as GTK, 
ABB, Metso:Outotec, have already developed and 
implemented Digital Twin applications with the 
purpose of digitalization and automation of mineral 
processing activities, online visualizations, testing of 
processing parameters before going live, co-working 
with partners/customers, big data analytics, 
reinforcement learning, dynamic simulation, and 
process optimization (GTK, 2019; ABB, 2022; 
Metso:Outotec, 2022) (McCoy and Auret, 2019). 

Consequently, the use of a Digital Twin in the mineral 
processing area has got three clear benefits, namely, 
enriched decisions, calibrated performance, and 
tangible solutions (Nad et al., 2022). These three 
aspects allow safe environments, material traceability, 
science-based model calibration, and fast and easy 
solutions to be implemented. It goes without saying 
that a Digital Twin helps study processes in real-time by 
observing and diagnosing them. It is also important to 
indicate that Digital Twin provides an environment for 
operator training, and new scenarios testing. 

 
 
 

3.2. Structure of the Digital Twin implementation  
 
It is expected that the Digital Twin should provide an 

optimal plant model that captures the process 
background accurately. In other words, a well-
instrumented physical process (MPP) generates 
process information that will constitutes the database 
needed to tune process model dynamically which help 
explore new processing scenarios, and then validate 
them in the physical system. This two-way 
communication is like having a mirror image of the 
physical system that is represented digitally.   In order 
to validate new scenarios and improve process 
performance, the Digital Twin of the physical system 
should identify appropriate process conditions to be 
used.  

Figure 6 illustrates the above-mentioned description, 
and clearly depicts the two-communication protocol, 
i.e., experimental data ↔ prediction.  

In the implementation of the Digital Twin, an 
important aspect to be considered is the process 
monitoring and control based on significant and/or 
critical parameters and variables. To determine the 



 

significant variables of the process, it must be 
established the benefit level that would be reached 
through each measurement. This must be in the 
metallurgical context of the physical system and the 
process modelling/simulation (i.e., MPP Digital Twin). 
The identification of these parameters and variables 
allows implementation and calibration to be addressed 
correctly in the physical system. Besides, by identifying 
the critical information to be obtained, it is possible to 
prevent unnecessary complexities (Koistinen et al., 
2020) which may impact the control strategy 
associated to the operation of the MPP, and therefore, 
affecting the development of the Digital Twin. 
 

 
 
Figure 6: MPP – Dynamic modelling/simulation data exchange in 
the Digital Twin implementation. 

The use of smart instrumentation not only is 
associated to measurable variables directly, but also to 
combine different measurements to infer an aspect of 
the process that cannot be measured (i.e., soft-sensor, 
e.g., bubble size). The modelling and simulation 
required to develop a Digital Twin must be tuned. This 
process also helps infer parameters that are difficult to 
measure experimentally. As a result, the MPP Digital 
Twin considers direct and indirect measurement of key 
variables to generate the two-way communication 

through automated data exchange (see 
Figure 6). 

 
4. Innovative and enhanced geometallurgical 
characterization 
 
4.1. SGS geometallurgical flotation characterization 
 

Geometallurgy is an integration of fundamental 
economic geology and deposit mineralogy into process, 
i.e., mine plans and resource recovery schemes. A 
geometallurgical model considers three sub-models: 
geological model (minerals, elemental grades, and 
lithology), process model (forecasting, metallurgical 
response for geological units), and production model 
(timeframe and different scenarios for ore mining and 
processing). The application of the geometallurgical 
model helps reduce operations risks and optimize 
production. It is important to realize that a utilization of 
a geometallurgical model is a long-term commitment 
(Lishchuk, 2018; Fustos, 2017; Parian, 2015). 

Consequently, the generation of reliable 
geometallurgical information is required to populate a 
geometallurgical model. SGS has a proven record 
developing and measuring ore characteristics in order 
to capture ore attributes to be included and distributed 
in a geometallurgical model. 

Figure 7 depicts a comprehensive approach 
developed by SGS to carry out an advanced 
geometallurgical flotation characterization. This 
approach consists of five complementary steps:  

1. Geometallurgical approach. 
2. Phenomelogical representation of flotation 

process. 
3. Kinetic flotation model. 
4. SGS MFT batch flotation characterization. 
5. Mini Pilot Plant and Digital Twin. 
Step 1: An integrated geometallurgical approach that 

considers ore attributes distribution in order to 
establish resource recovery schemes. Note that SGS 
has got the capabilities to quantify many different 
attributes associated to the ore. 

Step 2: A phenomenological description of a flotation 
separation process is devised considering that there are 
two well-defined zones: Collection zone (pulp) and 
Froth zone. It goes without saying that there is a 
dynamic interaction between both zones as indicated 
in the diagram (see Figure 7). Note that diagram was 
designed for steady-states conditions and true 
flotation. Nonetheless, it is important to realize that 
flotation recovery also has a non-selective component 
associated to it, i.e., entrainment (Montes, 2015). 

Step 3: Since a flotation cell is a separation reactor, 
this needs to be described kinetically. A kinetic model 



 

that considers hydrodynamic aspects of the flotation 
process (i.e., air injection mechanism and mixing 
characteristics), zones efficiencies (i.e., froth recovery 
and pulp recovery), and ore intrinsic attributes (i.e., 
floatability determination based on mineralogical 
assemblage). In addition, it is also needed to include in 
the process kinetic description nature of the flotation 
reactor (i.e., flotation cell type, either mechanically 
agitated, CSTR1, or pneumatic driven, PFR2). 

Step 4: Mineral Flotation Testing (MFT) is a laboratory 
batch flotation test devised by SGS to capture ore 
floatability characteristic considering the mineralogical 
features of the ore (Turner-Saad, 2010).  MFT has 
become a referent in order to characterize flotation 
response for geometallurgical purposes. MFT is a 
comprehensive laboratory characterization procedure 
which generates as a result a kinetic rate constant 
distribution based on particle size distribution and 
mineralogy of it. It also captures floatability response 
based on the degree of the induced hydrophobicity. 
MFT can be used to characterize different process 
streams to capture ore floatability depending upon 
processing stages. 

Stage 5: Dynamic modelling and simulation of MPP, 
machine learning training of operating data generated 
allows a Digital Twin description to be obtained. The 
utilization of the MPP infrastructure provides process 
evaluation in a contextual manner (i.e., flowsheet 
configuration operated continuously). The use of MPP 
Flotation Digital Twin facilitate capturing ore variability 
which is an advanced integration of the different 
aspects of the process, i.e., advanced geometallurgical 
flotation characterization. 

One important aspect to take into account is that the 
phenomenological description of the flotation process 
has generically been obtained considering the system 
in steady-state condition. However, to develop the 
MPP Digital Twin an adaptation of the steady-state 
models to dynamic models needs to be utilized (i.e., 
sensor-based process is essential). At the same time, it 
is also important to realize that well-known MFT is a 
laboratory batch flotation characterization which will 
require an adaptation to be used in the context of MPP 
operation. Lastly, the integration of all these steps 
relies on having a well-instrumented and connected 
MPP system, so that real-time information is available 
to be transferred.  

Note that the value of the interconnection of these 
five steps creates the conditions for advanced 
geometallurgical flotation characterization. In other 

                                                        
1
 CSTR : Continuous Stirred Tank Reactor 

(https://en.wikipedia.org/wiki/Continuous_stirred-tank_reactor) 
2
 PFR : Plug Flow Reactor 

(https://en.wikipedia.org/wiki/Plug_flow_reactor_model). 

words, distribution of resources recovery information 
coming from a contextual process evaluation that 
includes mineralogical characterization combine with 
the right kinetic and dynamic description, represents 
the advanced geometallurgical flotation 
characterization approach. It is believed that this way 
of evaluating geometallurgical performance will 
enhance the reliability of the geometallurgical 
prediction capabilities in terms of future process 
performance. 

 
 

 
 

Figure 7 : SGS advanced geometallurgical flotation 
characterization. Approach consists of five complementary steps, 
namely, (1) Geometallurgical approach, (2) Phenomelogical 
representation of flotation process, (3) Kinetic flotation model, (4) 
SGS MFT batch flotation characterization, and (5) Mini Pilot Plant 
and Digital Twin. 

Improved monitoring and process planning can be 
achieved by smart sensors that generate the 
information required for a Digital Twin. The primary 
flotation parameters are air flow rate, pulp level, and 
rotor speed. Chemical reagent addition is also 
important to carefully control to achieve the desire 
metallurgical performance. In order to address 



 

metallurgical performance optimization in terms of 
recovery and grade, the MPP Digital Twin is the ideal 
tool to map out different processing scenarios and 
identify the optimal recovery-grade trade-off. The 
exploration of processing scenarios utilizing the MPP 
Digital Twin is a safe low risk approach which allows 
process conditions to be discovered efficiently (Hatton 
and Hatfield, 2013).  

 

Figure 8 depicts a schematic representation of the 
recovery grade optimization approach to be used with 
the MPP Digital Twin. This diagram shows that by 
operating the MPP, metallurgical data is generated, 
and an operational recovery-grade trade-off can be 
determined. Having obtain these metallurgical results, 
it is possible using the MPP Digital Twin approach to 
identify an optimized a recovery-grade performance. 
The latter is then validated by the feedback provided to 
the MPP operation. Ultimately, the process knowledge 
produced at the MPP scale needs to be scaled-up to 
implement the optimized process scenario at industrial 
scale. 

 

 
 
Figure 8: Schematic representation of the recovery grade 
optimization approach to be used with the MPP and Digital Twin, 
which allows knowledge transfer with industrial plant to be 
achieved through a robust scale-up methodology.  

 
4.2. Enhanced geometallurgical characterization 
 

The flotation process is the most common separation 
approach used in mineral processing. The fourth 
industrial revolution has allowed mineral process 
plants, in particular flotation cell, to be well-
instrumented (smart sensors) (Schach et al., 2019). This 
state-of-the-art instrumentation has enhanced 
monitoring and process control initiatives providing in 
real-time relevant process information. In addition, 
characterization equipment (i.e., composition) is also 
available to provide frequent chemical assays of dry 
solid particles and slurries. This information helps 
determine metallurgical performance quickly and 

effectively creating a system capable of integrating 
itself in a major optimization process initiative (i.e., 
MPP ↔ Digital Twin ↔ Industrial Plant). 

 

Figure 9 describes a holistic integration of the MPP and 
Digital Twin in the geometallurgical optimization on an 
industrial flotation process. As previously described, 
the dynamic simulation is the basis for the Digital Twin 
development which represents a “virtual image” of the 
MPP. The use of smart instrumentation and sensors, 
the MPP is capable of transfer experimental data of key 
process variables to a depository database. The digital 
system processes this data in order to generate a 
dynamic simulation of the physical system. As a result, 
the Digital Twin allows a MPP metallurgical 
performance to be predicted under operational 
conditions that are measured on-line. Model prediction 
must be validated by contrasting experimental data 
with predicted results. In this context, the 
communication routes transfer automated simulated 
results to the physical system. Note that, in order to 
secure a Digital Twin, communication must occur in 
two-ways (i.e., physical ↔ digital system). 

At the same time, the SGS proposed approach relies 
on considering the MPP as a physical twin of the 
industrial plant (emulation of flotation circuit 
configuration). The connectivity between the industrial 
operation and the MPP is assured through a robust 
scale-up methodology. The latter allows the MPP 
conditions to be implemented to achieve the optimized 
metallurgical performance (validated by MPP 
digitalization) at industrial scale. 

 

Figure 9 also indicates a potential two-way 
communication route between industrial plant and 
Digital Twin. This interaction is possible due to Digital 
Twin training, and the understanding of the scale-up 
methodology. Knowledge generation and transfer of it 
may help adjust and control equipment variables at 
industrial scale based on the learning embedded on the 
Digital Twin. It is believed that the triangle established 
among the MPP, Digital Twin, and Industrial Plant 
represents an advanced approach to capture ore 
metallurgical performance variability in context with 
plant flowsheet configuration and assess in the Mini 
Pilot Plant at a low risk by means of the utilization of 
the Digital Twin. Consequently, this approach 
represents an advanced geometallurgical evaluation of 
process performance.  

 



 

 
 
Figure 9: Enhanced geometallurgical characterization. MPP 
leveraged by Digital Twin.   Advanced process optimization of an 
industrial flotation process. 

5. Observations and General Discussion 
 
The combination of geological and mineralogical 

information, and metallurgical performance create a 
geometallurgical based-predicted model.  

Ore metallurgical features have been historically 
captured through well-designed bench-scale tests (i.e., 
usually batch testing) (Amelunxen, P.A. and 
Amelunxen, R.L., 2013).  Nonetheless, these tests 
heavily rely on the ore representativity of the 
geological block being considered.  The idea behind this 
characterization approach is to determine the inherent 
metallurgical performance associated to the ore 
sample being studied.  Later, this information is 
geostatistically distributed through the geological 
model.   Many modelling approaches are used to 
populate the blocks with ore related information.  
However, the quality of the ore characteristic 
information depends on procedures utilized to acquire 
ore characteristics (i.e., proper mineralogical 
characterization, ore energy requirements, and ore 
kinetic response to separation process) (Michaux and 
O’Connor, 2019). 

In order to optimize a given ore processing 
configuration, the ore process performance variability 
must be accommodated in a contextual manner, i.e., 
high level of flexibility of flowsheet to be configured.  
Consequently, the use of a mobile equipment (Mini 
Pilot Plant, MPP), well-instrumented, and flexible in 
terms of accommodating different flowsheet 
configurations helps generate reliable process 
information which is dynamically used to produce a 
Digital Twin (DT).  Having obtained a DT, this can be 
interpellated and used to explore new and optimized 
processing scenarios which are then validated in the 
MPP.  Note that the MPP may become the “Physical 

Twin” of the Industrial Process if a robust well-
conceptualized scale-up methodology is in place. 
Finally, the integration of ore characteristic 
information, ore process response at pilot plant and 
industrial scale, and the Digital Twin provides a more 
sophisticated, but practical, approach to reduce 
operational risks (manage process uncertainty), and 
eventually optimize production. 
 
6. Conclusions 
 

This contribution addressed the use of a well-
instrumented Mini Pilot Plant and the digitalization of 
the information generated from it. By doing so, a digital 
representation of the Mini Pilot Plant is obtained, 
which allows the exploration of new and enhanced 
processing scenarios. In particular, the focus of this 
article is on the flotation separation carried out in the 
Mini Pilot Plant. It goes without saying that the 
digitalization refers to digitalize data coming from the 
Mini Pilot Plant instruments (i.e., smart 
instrumentation). The real-time information is 
deposited in a database to develop dynamic models. 

The Mini Plot Plant environment serves as a platform 
for testing different process design at low risk. A static 
and dynamic modelling/simulation of the mini pilot 
plant has been developed and tuned. Simulation of 
different process scenarios can be useful in process 
design and improvement, process knowledge, 
identification of key measurement, soft sensors, and 
control design. Last but not least, process simulation 
into a process Digital Twin allows model adaptation 
against unmodeled phenomena. Besides, real-time 
information integration enables the exploration of new 
scenarios 
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Appendix 
 

Figure 10 shows the mass balance and reconcile 
results for the open circuit configuration run in the 
MPP for a copper ore. It is observed that the treatment 
is approximately 9.5 (kg/h) at 0.94% of Cu. This open 
circuit represents a three-product configuration. 

 



 

 
Figure 10: Open circuit flotation configuration (Rougher-Cleaner). 

Figure 10 illustrates the type of real-time information 
generated out of the Mini Pilot Plant. 
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