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Abstract: In this study, the application of adaptive fuzzy inference systems (ANFISs) and artificial
neural networks (NNs) for grade and reserve estimation of a copper deposit was studied. More
specifically, a feedforward NN with backpropagation and two Sugeno- type ANFIS were developed
for grade and reserve estimation. Borehole assay data were used for training, validation, and testing
of the NN and ANFIS. Grade estimates and tonnage–grade curves were produced and compared to
those obtained using a geostatistical approach (Kriging).

Keywords: mineral resources; reserve estimation; artificial neural networks; adaptive neuro-fuzzy
inference systems

1. Introduction

Accurate mineral resource estimation is an essential step in evaluating the feasibility
of any mining operation. The estimation of the quantity and quality of a mineral resource is
traditionally performed using a model of selected deposit attributes, created by discretizing
the deposit area into small blocks. The existing estimation methods include different tech-
niques such as inverse distance weighing, kriging, and its various versions and stochastic
simulations. These methods require an assumption in relation to the spatial correlation
between samples to be estimated at non-sampled locations. In many cases, due to the
complex relationships between the quality distribution and spatial pattern variability, the
above-mentioned methods may not provide good estimation results.

Machine learning, and more specifically artificial neural networks (NNs) and adaptive
neuro fuzzy inference systems (ANFISs), provide an approach for the estimation of mineral
reserves. Since NNs and ANFISs are not only trainable nonlinear dynamic systems, but
also adaptive model-free estimators, no assumption concerning the spatial variation of the
deposit attributes need to be made. The basic approach for developing NN and ANFIS
models for mineral reserves estimation is to train them using an existing borehole dataset
of a mineral deposit and appropriate learning methods [1–5].

In this study, the application of NN and ANFIS and the issues involved with using
them for reserve estimation were elaborated with the help of a drill-hole dataset of a copper
deposit. The estimation of the grade and reserves of a copper deposit was conducted by
using a feedforward with backpropagation NN and Sugeno type ANFIS. Borehole assay
data were regularized into composites of equal length and then used for grade and reserves
estimation. These data formed the set used for the training, validation, and testing of NNs
and ANFISs, while the early stopping technique (described in Section 3.3) was used to
avoid overtraining.

The resulting cooper concentration maps and tonnage–grade curves were estimated
and compared to those obtained by using the geostatistical approach (kriging).
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2. Artificial Neural Networks (NNs) and Adaptive Neuro-Fuzzy Inference
Systems (ANFISs)
2.1. Artificial Neural Networks (NNs)

An artificial neural network is a computational structure inspired by the study of
biological neural processing. It exhibits certain brain-like capabilities including perception,
pattern recognition, and prediction in a variety of situations. As in the brain, information
processing is conducted in parallel using a network of ‘neurons’. Therefore, neural net-
works have capabilities that go beyond algorithmic programming and work very well for
nonlinear input–output mapping. It is this property of nonlinear mapping by the neural
network, which can be explored for ore grade estimation.

Basically, three entities characterize a neural network: the characteristics of the in-
dividual neuron, the network topology, and the learning strategy. Each processing unit
(neuron) receives one or more inputs and delivers a single output. The neuron consists
of an input function (a summation function), the result of which is fed to the activation
function, which in turn determines the output. The topology of the network is the manner
in which neurons are organized and connected. Neurons are combined to form layers that
can be connected fully or partially. When the output from every neuron of a particular layer
is connected to every neuron in the next layer, the network is fully connected, otherwise, it
is partially connected. Associated with each connection between these processing units,
there is a weight value defined to represent the connection strength. Each network has an
input layer, which accepts the input data to the network, an input layer that delivers the
network response, and the intermediate layers that represent the hidden features of the
problem [6].

Feedforward networks are those in which the output from a neuron can only feed
forward, while feedback networks are those in which the output from a neuron can be
directed back as an input to any neuron. Learning methods for neural networks can be
classified into supervised and unsupervised. The most commonly used supervised method
for feedforward neural networks is backpropagation.

The final output is compared to the desired value from the training set. The error is
computed as the difference between the desired and actual output. This error is propagated
backward through the network and weight changes are made throughout, according to an
algorithm to minimize error.

The process of modifying weights in response to sets of input and desired outputs
is called learning. Training a network involves this iterative process until the error either
converges to a predetermined threshold or stabilizes [6]. At this point, input data never
seen by the ANN can be presented to observe the output generated.

2.2. Adaptive Neuro-Fuzzy Inference Systems (ANFISs)

Adaptive neuro-fuzzy inference system, which was proposed by Jang (1993) [7], Jang
and Sun (1995) [8], Jang et al. (1998) [9], is a combination of a fuzzy inference system (FIS)
and neural network and has the advantages of both techniques. This combination employs
a fuzzy system to represent knowledge in an interpretable way and a neural network to
adjust the membership function parameters and linguistic rules directly from data in such
a way that the system’s performance will be enhanced [10].

While in common fuzzy inference systems the membership functions and rule struc-
ture are chosen initially somewhat arbitrarily and then are tuned by utilizing the experts’
knowledge, in adaptive neuro-fuzzy inference systems, a given input/output dataset is
used to construct a fuzzy inference system. ANFIS membership function parameters are
selected and adjusted using either a backpropagation algorithm alone, or in combination
with a least squares type of method [11]. This allows ANFIS to learn from the data and
have a structure similar to that of a neural network. ANFIS maps inputs through mem-
bership functions and associated parameters to outputs. The parameters associated with
the membership functions change through the learning process. The adjustment of these
parameters is facilitated by a gradient vector, which provides a measure of how well the
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fuzzy inference system is modeling the input/output data for a given set of parameters.
Since ANFIS is more complex than common fuzzy inference systems, a zero- or first order
Sugeno-type system with a single output is preferred rather than higher order. Higher
order Sugeno type fuzzy models introduce significant complexity with little obvious merit.
Sugeno type inference systems of zero- and first-order have the following general form [11]:

IF x is A and y is B THEN z = k (zero order)

IF x is A and y is B THEN z = ax + by + c (first order)

where x and y are the fuzzy input variables; A and B are the fuzzy sets in the antecedent;
z is the output; and k, a, b, c are all constants. Output is obtained using the weighted
average defuzzification method [11].

3. Model Development, Training and Testing
3.1. NN Development

In this study, the estimation of the grade and reserves of a copper deposit was con-
ducted by using a fully interconnected feedforward NN. As shown in Figure 1, the de-
veloped NN had an input layer with three neurons, a hidden layer of m neurons, and an
output layer with one neuron. The coordinates of each drill hole composite sample were
used as inputs, while the logged value of content (%) in Cu was used as the output. The
optimal number m of hidden layer neurons was evaluated during training while the bias
(ao, bo,j) was used to improve the accuracy of the estimation.

Figure 1. Structure of NN and ANFIS used for ore reserve estimation. (left) Multiple-layer feedfor-
ward neural network, (center) ANFIS generated by grid partition, and (right) ANFIS generated by
sub clustering.

3.2. ANFIS Development

The strategy for the development of an ANFIS model was similar to that of the NN.
The system was first designed using a first-order Sugeno fuzzy inference system. A first-
order Sugeno fuzzy model can capture the variability in the data better than a zero-order
Sugeno fuzzy model. It is a three input–one output system where the input variables are
X, Y, and Z coordinates, while the log-transformed % Cu content is taken as the output
variable. The final output of both NN and ANFIS was obtained by back-transforming the
estimated log-transformed % Cu values.

Two different ANFIS models were developed using MATLAB software: the first
was generated using the grid partition method and the second using the sub-clustering
method (Figure 1). The method generates a Sugeno-type FIS structure used as the initial
conditions (initialization of the membership function parameters) [12]. The subtractive
clustering algorithm is another approach to generate ANFIS, which estimates the cluster
number and the cluster location automatically [13]. The adjustment of membership function
parameters (training) was performed by a hybrid method based on least squares and
backpropagation algorithm.
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3.3. Training, Validation, and Testing

One of the most common problems that may arise during training of a neural network
is overtraining. Overtraining occurs when models are very well trained in the details and
noise of all data, but cannot generalize the acquired knowledge and thus their performance
is low when checking their reliability with new data not used in education. To solve this
problem, a commonly used technique, known as early stopping, is to stop the training
on time by using an additional dataset (validation set) that is used to control the training
without having its data participating in it. During the training process, the estimation error
gradually decreases with the passing of the epochs for the whole training data. In contrast
the validation dataset error decreases to a minimum value and then increases. At this point,
the minimum error for the validation dataset, the neural network training stops to avoid
overtraining. Finally, a third dataset, named testing, is presented to the trained model to
test the accuracy of the prediction for unknown data not involved in training [11].

3.4. Dataset

The examined Andina copper deposit is located 80 km northeast of Santiago in Chile’s
Region V and is described in detail by Hustrulid and Kuchta (2006) [14]. The Andina
Division operates two mines: Rio Blanco, a panel caving operation, and Sur Sur, an open
pit. The Sur Sur orebody represents a hydrothermal breccia complex. Several breccia
types can be defined based upon clast size and composition, matrix and/or cement type,
clast to matrix ratio, mineralization, and alteration. The orebody was explored through
76 boreholes of varying depth and their locations are shown in Figure 2a. Borehole assay
data were regularized into composites of equal length and then used for grade and reserves
estimation. The main statistical parameters and the histogram of Cu% values of the
composite samples are shown in Figure 2b. Since the observed distribution of Cu% values
was highly skewed, the logarithmic transformation was used. This transformation helped
us to obtain a distribution very close to normal (Figure 2d) and to avoid the estimation of
negative values of Cu % content (with NN and ANFIS) that have no natural meaning in
this case. The experimental omnidirectional variogram of the log-transformed % Cu values
of the composites samples, shown in Figure 2c, was modeled by an exponential model with
parameters Co = 0.3 (nugget effect), C = 0.9 (sill), and range of influence a = 150 ft.

Figure 2. (a) Location of drill holes for the exploration of the Andina cooper deposit. (b) Statistical
parameters and distribution of Cu% values of the composite samples. (c) Omnidirectional experimen-
tal variogram of the log-transformed values of % Cu with the fitted exponential model. (d) Statistical
parameters and distribution of the log-transformed values of Cu %.
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For the development of NN and ANFIS, MATLAB software was implemented. The
set of data used for training, validation, and testing consisted of 640 composite samples of
Cu. Of these, 70% of the samples were used for the training, 15% for validation, and 15%
for testing. Their separation was conducted in a random way.

4. Results and Discussion

The training results are summarized in Table 1, where the correlation coefficient R2 and
the RMS error between actual and predicted values of Cu% content are shown. R2 values
were relatively high, indicating that the developed models effectively captured the spatial
variability of Cu % content. NN and ANFIS generated by grid partition were performed
similarly and were slightly better compared to the ANFIS generated by sub-clustering.

Table 1. Correlation coefficients and RMS errors between the actual and predicted values of Cu % for
the NN and ANFIS models.

Parameter NN ANFIS (Grid Partition) ANFIS (Sub Clustering)

R2 0.83 0.82 0.77
RMSE (%Cu) 0.19 0.20 0.23

Next, the orebody was divided into small blocks (50 × 50 × 25 ft3) and for each
block, the Cu % content was estimated by the trained NN and ANFIS. For comparison, the
same calculations were carried out by using the ordinary kriging method. In all cases, the
logarithmic transformation was applied to Cu % values.

The comparison of the results obtained from the different methods was based on the
estimation of the correlation coefficients R2 among the estimated values of Cu % as well as
on the calculated grade–reserves curves. The correlation coefficients (R2) shown in Table 2
indicate that the NN and the ANFIS (generated by grid partition) performed similarly.
Additionally, the ANFIS generated by grid partition and NN had the strongest correlation
with kriging. Regarding the grade–reserves curves, as shown in Figure 3, NN and ANFIS
seemed to overestimate the reserves with Cu % content less than 0.5% and to underestimate
the reserves with Cu % content greater than 0.5%.

Table 2. R squared of Cu % values of blocks estimated by different methods (kriging, ANFIS,
and NN).

Kriging ANFIS (Grid Partition) ANFIS (Sub Clustering) Neural Networks (NN)

Kriging 1
ANFIS (grid partition) 0.67 1
ANFIS (sub clustering) 0.50 0.68 1
Neural net-works (NN) 0.61 0.73 0.91 1

Figure 3. Grade–reserves curves for the different applied estimation methods.
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5. Conclusions

The results obtained from this study indicated that both NN and ANFIS have the
potential to be used as ore reserve estimators. The observed overestimation of low grade
blocks was associated with the large number of low grade borehole samples used during
the training of the NN and ANFIS. Since NN and ANFIS are trainable data-driven systems,
emphasis should be placed on the development of effective training methods capable of
effectively capturing the spatial variability of the orebody grade.
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