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Abstract Constraints on gold and copper ore grades in
porphyry-style Cu–Au ± Mo deposits are re-examined, with
particular emphasis on published fluid pressure and
formation depth as indicated by fluid inclusion data and
geological reconstruction. Defining an arbitrary subdivision
at a molar Cu/Au ratio of 4.0×104, copper–gold deposits
have a shallower average depth of formation (2.1 km)
compared with the average depth of copper–molybdenum
deposits (3.7 km), based on assumed lithostatic fluid
pressure from microthermometry. The correlation of Cu/
Au ratio with depth is primarily influenced by the variations
of total Au grade. Despite local mineralogical controls
within some ore deposits, the overall Cu/Au ratio of the
deposits does not show a significant correlation with the
predominant type of Cu–Fe sulfide, i.e., chalcopyrite or
bornite. Primary magma source probably contributes to
metal endowment on the province scale and in some
individual deposits, but does not explain the broad
correlation of metal ratios with the pressure of ore
formation. By comparison with published experimental
and fluid analytical data, the observed correlation of the Cu/
Au ratio with fluid pressure can be explained by dominant
transport of Cu and Au in a buoyant S-rich vapor,

coexisting with minor brine in two-phase magmatic
hydrothermal systems. At relatively shallow depth (approx-
imately <3 km), the solubility of both metals decreases
rapidly with decreasing density of the ascending vapor
plume, forcing both Cu and Au to be coprecipitated. In
contrast, magmatic vapor cooling at deeper levels (approx-
imately >3 km) and greater confining pressure is likely to
precipitate copper ± molybdenum only, while sulfur-
complexed gold remains dissolved in the relatively dense
vapor. Upon cooling, this vapor may ultimately contract to
a low-salinity epithermal liquid, which can contribute to the
formation of epithermal gold deposits several kilometers
above the Au-poor porphyry Cu–(Mo) deposit. These
findings and interpretations imply that petrographic inspec-
tion of fluid inclusion density may be used as an
exploration indicator. Low-pressure brine + vapor systems
are favorable for coprecipitation of both metals, leading to
Au-rich porphyry–copper–gold deposits. Epithermal gold
deposits may be associated with such shallow systems, but
are likely to derive their ore-forming components from a
deeper source, which may include a deeply hidden
porphyry–copper ± molybdenum deposit. Exposed high-
pressure brine + vapor systems, or stockwork veins
containing a single type of intermediate-density inclusions,
are more likely to be prospective for porphyry–copper ±
molybdenum deposits.
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Introduction

Cu/Au ratios as well as bulk metals, specifically Au grade,
in porphyry-style Cu–Au ± Mo deposits are at least in part
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controlled by the magmatic fluid source (Sillitoe 1997;
Halter et al. 2002; Heinrich et al. 2005), but the wide range
of actual Cu and Au grades of the deposits (Kesler 1973;
Singer et al. 2005) is affected by at least two additional
factors. First, fluid phase separation into brine and vapor
leads to selective Cu–Au fractionation into the vapor and
possibly to partial separation of the two ore metals
(Heinrich et al. 1999; Simon et al. 2005, 2007; Pokrovski
et al. 2008). Second, the final ore grades are controlled by
the precipitation efficiency of Cu–sulfides and native gold
upon fluid cooling (e.g., Ulrich et al. 2001), which in turn
can be influenced by selective gold enrichment in primary
auriferous Cu–sulfides such as bornite (Simon et al. 2000;
Kesler et al. 2002).

Previous compilation studies (e.g., Sutherland Brown
1976; Cox and Singer 1988; Sillitoe 1997) have indicated
that the Au grade of porphyry-style ore deposits increases
with decreasing depth of ore deposition. Relationships
between Au grade and tectonic setting, magnetite content
in the potassic alteration zone, deposit morphology, and
associated rock types have also been investigated (Kesler
1973; Sinclair et al. 1982; Sillitoe 1979, 1982). These
results indicate that porphyry-style ore deposits range
between two end-member types. The most Au-rich porphy-
ry Cu–Au deposits, which commonly tend to be associated
with relatively mafic intrusive rocks, are emplaced at
around 1 km and usually contain abundant magnetite in
the potassic alteration zone. Au-poor porphyry Cu ± Mo
deposits occur with intermediate to felsic monzogranite and
granodiorite emplaced at 3 km or greater depth and contain
little or no hydrothermal magnetite (Cox and Singer 1988).
In these studies, the estimated depths of deposits were
based mainly on qualitative geological features and gener-
ally involve large uncertainty.

This paper re-examines the empirical relationships of
formation depth and fluid pressure with varying Au and Cu
ore grades of major porphyry-style Cu–Au ± Mo deposits
in several provinces worldwide, using published geological
information as well as fluid inclusion studies supported by
microthermometry.

Evaluation methods and data sources

A total of 50 porphyry-style Cu–Au ± Mo deposits
covering the full range of Cu/Au ratios were compiled in
this study (Table 1). The deposits are characterized by the
presence of porphyritic intrusive rocks and a potassic
alteration zone associated with the main Cu–Au ± Mo
mineral assemblages, indicating coprecipitation of Cu–Fe–
sulfides and gold, with or without molybdenite, which is
commonly late in the paragenesis. Cu–Au deposits with a
major epithermal overprint on porphyry mineralization

(e.g., Rosario, Chile: Masterman et al. 2005) where it is
unclear how much Au may have been added after potassic
alteration were omitted. Total tonnage and bulk metal
grades of Cu, Au, and occasionally Mo and Ag in the
deposits were taken from published compilations (Singer et
al. 2005, http://pubs.usgs.gov/of/2005/1060/; Camus 2003).
The Cu/Au ratio of the resulting 50 deposits ranges over
four orders of magnitude from 2×103 to 2.8×106 on a
molar scale (weight ratio from 7×10−6 to 9×10−3). Original
data were taken from the references cited in Table 1.
Estimates of formation depths are based on two data types.

(1) Depths based on geological features are available for
42 deposits, estimated from stratigraphic relations, erosion
level, and alteration sequence (e.g., Sutherland Brown
1976; Vila and Sillitoe 1991) as cited in the original papers.
Where a depth range is given, the mean value was adopted
and the extremes were used to denote uncertainty.

(2) Fluid pressures are mostly based on microthermom-
etry of “boiling assemblages,” i.e., coexisting brine and
vapor inclusions in the potassic alteration zone of 17
deposits, using the temperature of homogenization of brine
inclusions with reference to the two-phase coexistence
surface in the NaCl–H2O model system (Driesner and
Heinrich 2007 and earlier references). At the early stage of
a fluid-producing intrusive magma, fluids in the potassic
zone are likely to be trapped at near-lithostatic pressures
(Driesner and Geiger 2007). Where several boiling assemb-
lages are documented indicating a range of pressures, we,
therefore, selected the one giving maximum pressure
(which mostly corresponds with the highest temperature)
because it is most likely to represent fluid trapping under
lithostatic conditions close to the conditions of initial
hydrofracturing and stockwork veining (Fournier 1999). It
is also reasonable to assume lithostatic conditions before
the downward retraction of the fluid-producing melt
(Burnham 1979). Where a range of fluid pressures is
published without further detail, we adopted the maximum
value and half of the cited range as an estimate of
uncertainty (error bars). All fluid pressures were interpreted
as lithostatic on the basis of evidence in the cited references
(Table 1), which allows their conversion to depth below
surface, using a rock density of 2.5 g/cm3 (2.85 g/cm3 for
Butte, USA: Rusk et al. 2008).

Where no indication of uncertainty is available in either
of the two estimation methods, a minimum range of
±0.5 km (or +0.5 km only for the estimated depths of less
than 0.5 km) is indicated as error bars in Figs. 1 and 2. This
is reasonable because economic mineralization in most
porphyry-style ore deposits extends over about 1 km
vertically. The estimated depths from geological features
and microthermometry vary over the same range, from 1.1
to 7.5 km and from 1.1 to 7.0 km, respectively. However,
for nine deposits where both types of estimates are
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available, individual discrepancies are greater and appar-
ently systematic, as discussed below.

Results

Table 1 summarizes the grade, tonnage, Cu/Au ratio,
abundance of bornite, and estimated depth of the deposits
together with the data sources. Figure 1 shows the
relationships among estimated depths by the two methods
and the Cu/Au ratio, as well as the individual Au, Cu, and
Mo grades of the deposits.

The Cu/Au ratio of the ore deposits generally increases
with increasing depth for both types of depth estimations
(Fig. 1a). This is mainly due to the Au grade showing a
distinct decrease with mineralization depth (Fig. 1b).
Copper grade for the whole range of depths varies less,
partly reflecting economic grade limits, with a mean value

of 0.50% and a standard deviation (1σ) of ±0.21%, whereas
the range of Au grades is much larger (average 0.29±
0.29 g/t, excluding the Au-rich but Cu-poor porphyry-style
deposits in the Maricunga belt; Vila and Sillitoe 1991;
Muntean and Einaudi 2000). Molybdenum grade tends to
have a wide variation among shallow deposits, but most of
the deeper deposits are relatively Mo-rich. Neither element
ratio nor estimated depth shows any significant correlation
with the abundance of bornite in the deposits.

Based primarily on their Cu/Au ratio, porphyry-style ore
deposits are generally classified into copper–gold deposits
and copper–molybdenum deposits (e.g., Kirkham and
Sinclair 1995; Kesler et al. 2002; Fig. 1a). Splitting the
continuous range at a molar Cu/Au ratio of 4.0×104 (Kesler
et al. 2002), the copper–gold deposits have a shallower
average depth by microthermometry (average 2.1 km) than
the copper–molybdenum deposits (3.7 km). Deposits
containing more than 0.2 g/t Au mainly occur at depths of
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Fig. 1 Relationships between Cu/Au ratio (a), Au (b), Cu (c), and Mo
(d) ore grades and depth of formation of porphyry-style deposits,
derived from geological estimation on the left vertical axes. Fluid
pressure from microthermometry on the right vertical axes corre-
sponds to formation depth if lithostatic conditions and a rock density
of 2.5 g/cm3 are assumed. Formation pressure and estimated depth of

porphyry-style deposits decrease with decreasing Cu/Au ratio or total
Au grade. Solid lines showing fitted trends, excluding the data from
the Maricunga belt, for geological depth estimates (blue) and fluid
inclusion microthermometry (red). Dotted line showing a molar Cu/
Au ratio of 4.0×104 as defined in Kesler et al. (2002) to separate
copper–gold deposits from copper ± molybdenum deposits
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less than about 3 km (corresponding to a lithostatic fluid
pressure of about 0.75 kb).

The relatively large scatter in depth estimates from
geological features (Fig. 2) arises from difficulties in the
reconstruction of overlying geology in environments with
rapidly evolving topographic relief (e.g., Sillitoe and
Hedenquist 2003). Nevertheless, Figs. 1a and 2 show a
clear tendency for shallower depth estimates from geology,
compared with those derived from fluid inclusion pressures.
A small part of this discrepancy may be due to supra-
lithostatic fluid pressure (~100 bar limited by rock strength;
Kirby 1985) but the greater difference (approximately 1–
2 km) may reflect rapid erosion or gravitational collapse of
the paleosurface during the Cu ± Mo ± Au mineralization
process (Sillitoe 1994; also Agua Rica: Landtwing et al.
2002; Lihir: Carman 2003). The discrepancy is definitely
not related to the transition from early lithostatic to later
hydrostatic pressures, as observed in many deposits (e.g.,
for Bingham Canyon: Redmond et al. 2004) and expected
in an overall cooling and progressively brittle vein system
(Fournier 1999).

Interpretation and discussion

The Cu/Au ratio of porphyry-style ore deposits is likely to
be controlled by a combination of magma source character-
istics and the subsequent physical–chemical evolution of

the ore-forming hydrothermal fluids. The positive correla-
tion of Cu/Au ratio with depth, confirming and further
specifying previous observations (Sutherland Brown 1976;
Cox and Singer 1988; Sillitoe 1997), indicates that magma
source is not the sole factor determining the bulk metal ratio
of the deposits, even though gold and molybdenum
availability in the source magma is an essential prerequisite.
We propose that the density evolution of cooling magmatic–
hydrothermal fluids holds the key to explaining the
systematic variation of Au/Cu ratios of porphyry-style ore
deposits with depth and pressure of ore formation. Fluid
pressure controls the extent of fluid phase separation into
brine and vapor, resulting in fractionation of ore-forming
components, and fluid density together with temperature
also affects the differential solubility and selective precip-
itation of ore minerals.

Magma source control is emphasized by Sillitoe (1997)
who suggested, on the basis of the occurrence of large Au-
rich porphyry-style deposits containing over 200 t of Au in
the circum-Pacific region, that Au-rich magmatic–hydro-
thermal ore deposits are genetically related to the combined
effects of (1) oxidized magmatism induced by postsubduc-
tion partial melting of a stalled slab of oceanic lithosphere
(Oyarzún et al. 2001) or the uppermost mantle wedge,
which favors the development of (2) a high-K calc-alkaline
to shoshonitic petrochemical affiliation. In addition, Sillitoe
(1997) pointed out the empirical evidence (3) of relatively
shallow depth of ore deposition, indicated by comagmatic
extrusive and subvolcanic activity in gold-mineralized
igneous centers. The suggestion of partial melting of
an oxidized slab is debated in the broader context of
geochemical evidence for an “adakite-like” signature
of many porphyry–Cu–Au mineralizing magmas (e.g.,
Oyarzún et al. 2001; Reich et al. 2003). However, the
typical high Sr/Y ratio commonly associated with ore-
producing magmas can also be explained by amphibole-
dominated and plagioclase-suppressed fractionation of
normal subduction-zone magmas at high water fugacity in
the upper mantle or lower crust (Kay and Mpodozis 2002;
Richards 2003), which is favored by a compressional stress
state of the converging lithospheric plates (Rohrlach and
Loucks 2005; Sillitoe and Perelló 2005). K-rich calc-
alkaline magmatism does not seem to be essential for the
formation of Au-rich porphyry deposits, even though some
giant Au–(Te)-rich epithermal deposits are clearly associat-
ed with alkalic magmas (e.g., Cripple Creek: Lindgren and
Ransome 1906; Porgera: Richards 1992). Among the Au-
rich porphyry–copper deposits, only 45% are associated
with high-K calc-alkaline to shoshonitic suites (Sillitoe
1997), and some, particularly Au-rich porphyry deposits,
are associated with distinctly low-K but sodic magmas
(e.g., Batu Hijau: Garwin 2002). The correlation between
the bulk Au/Cu ratio of the Bajo de Alumbrera deposit with
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that of high-temperature hydrothermal fluids (Ulrich et al.
1999) and also with magmatic sulfide melt inclusions in
associated fresh igneous rocks (Halter et al. 2002) indicates
that a magmatic source controls the proportions of available
ore metals. Thus, the giant Cu–Mo deposit of El Teniente is
Au-poor despite its relatively shallow emplacement (Fig. 6
in Klemm et al. 2007), probably because its primary
magmatic–hydrothermal input fluid had an inherently lower
Au/Cu ratio compared with the fluids at Bajo de la
Alumbrera (L. Klemm, unpublished data). The same may
apply to the demonstrably shallow but Au-free Yerington
deposit (Proffett 1979; Dilles and Proffett 1995). Magma
source is also likely to control the abundance of Mo in
porphyry deposits, at least in the world’s primary molyb-
denum province of the western USA (Carten et al. 1988), as
reflected by the poor correlation of Mo/Cu with depth of
mineralization (Fig. 1c, d). However, magmatic source
control does not explain the correlation of Au/Cu with
depth and the empirical observation that deeply formed
deposits are generally less gold-rich than shallow ones.

A crystal–chemical control has been suggested as the
decisive factor for the formation of Au-rich porphyry copper
deposits with high Au/Cu ratio, based on experiments
showing a greater tendency for gold to be incorporated in
bornite solid solution at high temperature (>600°C), in
preference over chalcopyrite (Simon et al. 2000), allowing
the possibility of gold extraction from fluids that are
undersaturated with the native metal (Kesler et al. 2002).
Although the distribution of Au is commonly correlated
with a bornite-dominant mineralogy within individual ore
bodies (e.g., Bingham: Redmond et al. 2004), our
compilation does not indicate a general correlation of the
bulk Au/Cu ratio in porphyry deposits with the presence
or the predominance of bornite over chalcopyrite (Fig. 1).
This observation implies that the bulk Au/Cu endowment
of porphyry deposits does not result primarily from the
selective precipitation of auriferous bornite. This conclu-
sion is also supported by the observation that the
temperature of Cu–Fe–sulfide (± gold) precipitation is
much lower than the >600°C required for initial incorpo-
ration of gold as a solid solution in bornite (Landtwing et
al. 2005; Klemm et al. 2007).

Brine–vapor separation leads to preferential partitioning
of Cu, Au, and S into the vapor phase, relative to chloride-
complexed salt components like Na, K, and base metals
partitioning into the hypersaline liquid (Ulrich et al. 1999;
Heinrich et al. 1999; Pokrovski et al. 2005, 2008; Nagaseki
and Hayashi 2008; Seo et al. 2009). Ulrich et al. (1999)
reported that the Au/Cu ratio of many vapor inclusions
trapped above 600°C at Grasberg is higher than the average
Au/Cu ratio of the coexisting brines, which have a similar
Au/Cu ratio to the bulk ore body. These observations might
indicate that gold has a greater tendency than copper to

fractionate into a dense magmatic vapor rather than the
coexisting brine (consistent with high Au solubility in
S-rich low-salinity fluids; Loucks and Mavrogenes 1999),
but published experimental data do not yet define the
relative tendencies of Au and Cu partitioning during brine–
vapor separation.

Density-dependent precipitation of Cu–Fe–sulfides and
gold is proposed as the main explanation for the observed
correlation between metal ratio and formation depth of
porphyry deposits. Ore minerals in porphyry deposits
dominantly precipitate at the lower end of the temperature
range of stockwork vein formation, typically between
~450°C and ~ 320°C (Crerar and Barnes 1976; Bodnar
and Beane 1980; Hedenquist et al. 1998; Hezarkhani et al.
1999; Redmond et al. 2004; Landtwing et al. 2005; Kojima
2005; Klemm et al. 2007). We suggest that the density of
low-salinity magmatic fluids in this cooling interval is
decisive for selective mineral precipitation and thereby
controls the final Au/Cu ratio of a porphyry deposit.
Pressure release at the lithostatic to hydrostatic transition
promotes fluid phase separation into a minor quantity of
brine and a vapor phase. This vapor predominates in total
volume, fluid mass, and contained sulfur, copper, and gold
(Henley and McNabb 1978; Landtwing et al. 2005;

Fig. 3 Representative photomicrographs of fluid inclusions to
illustrate that simple petrographic inspection alone allows distinction
between low-density vapor inclusions associated with highly salt-
packed brine inclusions characterizing shallow gold-rich porphyry
Cu–Au ± Mo deposits (a and b Bajo de la Alumbrera), in contrast to
high-density vapors associated with brine inclusions containing small
salt crystals typical for deep high-pressure porphyry deposits, which
are typically Cu ± Mo-rich but Au-poor (c and d Butte; brine and
vapor assemblages postdating intermediate-density pre-ore fluids;
Rusk et al. 2008). Scale bars are 10 µm
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Williams-Jones and Heinrich 2005; Klemm et al. 2007) but
can have greatly variable density.

Low fluid pressure in shallow porphyry systems will
lead to progressive expansion to a low-density vapor and
the greatest predominance of vapor over brine. Recent
experiments on metal transport by vapor show that
decreasing density of a water-rich vapor leads to
destabilization of all dissolved ore metal complexes,
when the water fugacity becomes too low for maintain-
ing the hydration sphere required for the formation of
volatile metal complexes (Williams-Jones et al. 2002;
Pokrovski et al. 2005). Strong and rapid fluid decompres-
sion occurring in a shallow porphyry system will,
therefore, result in coprecipitation of both copper and
gold (e.g., the Bingham Au–Cu ore body formed at
<200 bar; Redmond et al. 2004; Landtwing et al. 2005).
In the most extreme case, only gold may precipitate (±
oxides ± halite) if the pressure is too low even for the
stabilization of any Cu–sulfide minerals. This process is
exemplified by the gold-only porphyry deposits of the
Maricunga belt, which formed within less than 1 km from
the surface, within volcanoes (Vila and Sillitoe 1991;
Muntean and Einaudi 2000)

If fluid pressure is higher in a relatively deep-seated
porphyry deposit, phase separation is less extreme and a
relatively dense vapor or a single-phase fluid of near-
critical density will predominate. At high temperature, such
a fluid is able to carry all metals in high concentrations.
Cooling of this fluid at elevated pressure tends to further
increase its density towards a liquid-like state (vapor to
liquid contraction; Heinrich et al. 2004). Such fluids will
readily precipitate Cu–Fe–sulfides and molybdenite upon
cooling (Hezarkhani et al. 1999; Klemm et al. 2007), but
they can retain a significant or even dominant proportion of
their gold in solution. The fraction of gold remaining in
solution depends on the fluid density as well as the
concentration of sulfur, which acts as an essential complex-
ing ligand for gold at lower temperature (Gammons and
Williams-Jones 1997; Stefánsson and Seward 2004;
Heinrich 2005). Deep-seated porphyry copper ± Mo
deposits are, therefore, expected to be deficient in Au,
relative to the Au/Cu ratio of their primary magmatic–
hydrothermal input fluid. The fraction of gold that is lost
from the environment of such a deep porphyry ore body is
available for the formation of separate gold deposits at
lower temperature, typically several kilometers higher up in
the system. Epithermal gold deposits can form where the
liquid derived from contracted vapor starts to boil again or
where it mixes with shallow groundwater (e.g., Hedenquist et
al. 1998; Ronacher et al. 2004; Pudack et al. 2009). Carlin-
type gold deposit may be formed where the gold-rich
contracted vapor encounters reducing or Fe-rich sedimentary
rocks (Kesler et al. 2003; Heinrich 2005; Su et al. 2009).

For the exploration of a new porphyry system, where at
an early stage only weathered or even transported vein
quartz may be available for petrographic inspection, our
results could be used for a first-order prediction about the
likely Au/Cu ratio of a potential porphyry deposit. Low-
density vapor inclusions (Fig. 3a, almost “empty” looking)
observed together with highly saline brine inclusions
(Fig. 3b, “packed” with salt crystals; e.g., Grasberg or
Alumbrera: Ulrich et al. 1999, 2001; Dizon: Imai, 2005)
indicate low fluid pressure, characteristic of gold-rich
porphyry Cu–Au ± Mo deposits. On the other hand, the
presence of high-density vapor (Fig. 3c) coexisting with
brine inclusions of moderate salinity (Fig. 3d) or the
predominance of a single type of intermediate-density
inclusions indicate high fluid pressure and would predict
that an associated Cu ± Mo porphyry is likely to be gold-
poor (e.g., Butte: Rusk et al. 2008). Gold-rich epithermal
deposits may have formed in such a system, but they are
likely to be eroded unless they were selectively protected
by faulting and differential uplift. These qualitative explo-
ration predictions can later be followed up by micro-
thermometry and direct analysis of the Au/Cu ratio of the
fluid inclusions by laser ablation inductively coupled
plasma mass spectrometry.

Acknowledgments An earlier version of the manuscript was
considerably improved by detailed comments and criticism by Jane
Hammerstrom of the U.S. Geological Survey. John H. Dilles is
particularly acknowledged for his detailed comments of the manu-
script; his constructive criticism is greatly appreciated. AIST is
thanked for funding the research of the first author at ETH Zurich.
The authors also acknowledge the financial support from the Arai
Science Technology Development Foundation and the Japan Mining
Promotive Foundation. We are particularly grateful for the reviews by
Richard Sillitoe and John Mavrogenes, which further helped to
improve this manuscript.

References

Arancibia ON, Clark AH (1996) Early magnetite–amphibole–plagio-
clase alteration–mineralization in the Island Copper porphyry
copper–gold–molybdenum deposit, British Columbia. Econ Geol
91:402–438

Audétat A, Pettke T, Dolej D (2004) Magmatic anhydrite and calcite
in the ore-forming quartz–monzonite magma at Santa Rita, New
Mexico (USA): genetic constraints on porphyry–Cu mineraliza-
tion. Lithos 72:147–161

Bauer HL Jr, Breitrick RA, Cooper JJ, Anderson JA (1966) Porphyry
copper deposits in the Robinson mining district, Nevada. In:
Titley SR, Hicks CL (eds) Geology of the porphyry copper
deposits, southwestern North America. University of Arizona
Press, Tucson, pp 233–244

Bodnar RJ, Beane RE (1980) Temporal and spatial variations in
hydrothermal fluid characteristics during vein filling in preore
cover overlying deeply buried porphyry copper-type mineraliza-
tion at Red Mountain, Arizona. Econ Geol 75:876–893

18 Miner Deposita (2010) 45:11–21



Burnham CW (1979) Magma and hydrothermal fluids. In: Barnes HL
(ed) Goechemistry of hydrothermal ore deposits, 2nd edn. Wiley,
New York, pp 71–136

Camus F (2003) Geología de los sistemas porfíricos en los Andes
de Chile. Servicio Nacional de Geologia y Mineria, Santiago,
p 267

Carman GD (2003) Geology, mineralisation and hydrothermal
evolution of the Ladolam gold deposit, Lihir Island, Papua New
Guinea. Soc Econ Geol Spec Publ 10:247–284

Carten RB, Geraghty EP, Walker BM, Shannon JR (1988) Cyclic
development of igneous features and their relationship to high-
temperature hydrothermal features in the Henderson porphyry
molybdenum deposit, Colorado. Econ Geol 83:266–296

Cox DP (1985) Geology of the Tanama and Helecho porphyry copper
deposits and their vicinity: professional paper no. 1327, US
Geological Survey. Government Printing Office, Washington,
p 59

Cox DP, Singer DA (1988) Distribution of gold in porphyry copper
deposits, U.S. Geological Survey Open File Report 88-46

Crerar DA, Barnes HL (1976) Ore solution chemistry, part 5. Econ
Geol 71:772–794

Dilles JH, Proffett JM (1995) Metallogenesis of the Yerington
batholith, Nevada. In: Pierce FW Bolm JG (eds) Porphyry
copper deposits of the American Cordillera, Tucson. Arizona
Geol Soc Digest 20:306–315

Driesner T, Geiger S (2007) Numerical simulations of multiphase fluid
flow in hydrothermal systems. In: Liebscher A, Heinrich CA
(eds) Fluid–fluid interactions. Rev Mineral Geochem 65:187–212

Driesner T, Heinrich CA (2007) The system H2O–NaCl. Part I:
correlation formulae for phase relations in temperature–pressure–
composition space from 0 to 1000°C, 0 to 5000 bar, and 0 to 1
XNaCl. Geochim Cosmochim Acta 71:4880–4901

Eastoe CJ (1978) A fluid inclusion study of the Panguna porphyry
copper deposit Bougainville, Papua New Guinea. Econ Geol
73:721–748

Eastoe CJ (1982) Physics and chemistry of the hydrothermal system at
the Panguna porphyry copper deposit, Bougainville, Papua New
Guinea. Econ Geol 77:127–153

Fournier RO (1999) Hydrothermal processes related to movement of
fluid from plastic into brittle rock in the magmatic–epithermal
environment. Econ Geol 94:1193–1211

Gammons CH, Williams-Jones AE (1997) Chemical mobility of gold
in the porphyry–epithermal environment. Econ Geol 92:45–59

Garwin S (2002) The geology of intrusion-related hydrothermal
systems near the Batu Hijau porphyry copper–gold deposit,
Sumbawa, Indonesia. In: Goldfarb R, Nielsen R (eds) Global
exploration 2002: integrated methods for discovery. Rev Econ
Geol Spec Publ 9:333–366

González-Partida E, Levresse G (2003) Fluid inclusion evolution at
the La Verde porphyry copper deposit, Michoacan, Mexico. J
Geochem Explor 78–79:623–626

Gustafson LB, Hunt JP (1975) The porphyry copper deposit at El
Salvador, Chile. Econ Geol 70:857–912

Halter WE, Pettke T, Heinrich CA (2002) The origin of Cu/Au ratios
in porphyry-type ore deposits. Science 296:1844–1846

Hedenquist JW, Arribas A Jr, Reynolds TJ (1998) Evolution of an
intrusion-centered hydrothermal system: Far Southeast–Lepanto
porphyry and epithermal Cu–Au deposits, Philippines. Econ
Geol 93:373–404

Heinrich CA (2005) The physical and chemical evolution of low-
salinity magmatic fluids at the porphyry to epithermal transition:
a thermodynamic study. Miner Depos 39:864–889

Heinrich CA, Günther D, Audétat A, Ulrich T, Frischknecht R
(1999) Metal fractionation between magmatic brine and vapor,
determined by microanalysis of fluid inclusions. Geology
27:755–758

Heinrich CA, Driesner T, Stefánsson A, Seward TM (2004)
Magmatic vapor contraction and the transport of gold from
the porphyry environment to epithermal ore deposits. Geology
32:761–764

Heinrich CA, Halter WE, Landtwing MR, Pettke T (2005) The
formation of economic porphyry copper(–gold) deposits: con-
straints from microanalysis of fluid and melt inclusions. Geol Soc
Lond Spec Publ 248:247–263

Henley RW, McNabb A (1978) Magmatic vapor plumes and
groundwater interaction in porphyry copper emplacement. Econ
Geol 73:1–20

Herrington RJ, First DM, Kozelj D (2003) Copper porphyry deposits
in Hungary, Serbia, Macedonia, Romania and Bulgaria. In: Kelly
JG, Andrew CJ, Ashton JH, Boland MB, Earls G, Fusciardi L,
Stanley G (eds) Europe’s major base metal deposits. Irish
Association for Economic Geology, Dublin, pp 303–321

Hezarkhani A, Williams-Jones AE, Gammons CH (1999) Factors
controlling copper solubility and chalcopyrite deposition in the
Sungun Porphyry Copper Deposit, Iran. Miner Depos 34:770–
783

Imai A (2001) Generation and evolution of ore fluids for porphyry
Cu–Au mineralization of the Santo Tomas II (Philex) deposit,
Philippines. Resour Geol 51:71–96

Imai A (2005) Evolution of hydrothermal system at the Dizon
porphyry Cu–Au deposit, Zambales, Philippines. Resour Geol
55:73–90

Kay SM, Mpodozis C (2002) Magmatism as a probe to the Neogene
shallowing of the Nazca Plate beneath the modern Chilean flat-
slab. J South Am Earth Sci 15:39–57

Kesler SE (1973) Copper, molybdenum and gold abundances in
porphyry copper deposits. Econ Geol 68:106–112

Kesler SE, Chryssoulis SL, Simon G (2002) Gold in porphyry copper
deposits: its abundance and fate. Ore Geol Rev 21:103–124

Kesler SE, Fortuna J, Ye ZJ, Alt JC, Core DP, Zohar P, Borhauer J,
Chryssoulis SL (2003) Evaluation of the role of sulfidation in
deposition of gold, Screamer section of the Betze–Post Carlin-
type deposit, Nevada. Econ Geol 98:1137–1157

Kirby SH (1985) Introduction and digest to the special issue on
chemical effects of water on the deformation and strength of
rocks. J Geophys Res 89:3991–3995

Kirkham RV, Sinclair WD (1995) Porphyry copper, gold, molybde-
num, tungsten, tin, silver. In: Eckstrand OR, Sinclair WD, Thorpe
RI (eds) Geology of Canadian mineral deposit types. Geological
Survey of Canada, Geology of Canada 8:421–446

Klemm LM, Pettke T, Heinrich CA, Campos E (2007) Hydrothermal
evolution of the El Teniente deposit, Chile: porphyry Cu–Mo ore
deposition from low-salinity magmatic fluids. Econ Geol
102:1021–1045

Kojima S (2005) Copper minerals occurring in Chilean porphyry
copper deposits and their formational environments. Shigen
Chishitsu 55:77–85 (in Japanese with English abstract)

Koukharsky M, Mirré JC (1976) Mi Vida prospect: a porphyry
copper-type deposit in northwestern Argentina. Econ Geol
71:849–863

Lang JR, Eastoe CJ (1988) Relationships between a porphyry Cu-Mo
deposit, base and precious metal veins, and Laramide intrusions,
Mineral Park, Arizona. Econ Geol 83:551–567

Lang JR, Stanley CR, Thompson JFH (1995) Porphyry copper–gold
deposits related to alkalic igneous rocks in the Triassic–Jurassic
arc terranes of British Columbia. In: Pierce FW Bolm JG (eds)
Porphyry copper deposits of the American Cordillera, Tucson.
Arizona Geol Soc Digest 20:219–236

Landtwing MR, Dillenbeck ED, Leake MH, Heinrich CA (2002)
Evolution of the breccia-hosted porphyry Cu–Mo–Au deposit at
Agua Rica, Argentina: progressive unroofing of a magmatic
hydrothermal system. Econ Geol 97:1273–1292

Miner Deposita (2010) 45:11–21 19



Landtwing MR, Pettke T, Halter WE, Heinrich CA, Redmond PB,
Einaudi MT, Kunze K (2005) Copper deposition during quartz
dissolution by cooling magmatic–hydrothermal fluids: the Bing-
ham porphyry. Earth Planet Sci Lett 235:229–243

Lindgren W, Ransome FL (1906) Geology and gold deposits of the
Cripple Creek District, Colorado. Professional paper no. 54. US
Geological Survey. Government Printing Office, Washington,
p 516

Loucks RR, Mavrogenes JA (1999) Gold solubility in supercritical
hydrothermal brines measured in synthetic fluid inclusions.
Science 284:2159–2163

MacDonald GD, Arnold LC (1994) Geological and geochemical
zoning of the Grasberg Igneous Complex, Irian Jaya, Indonesia. J
Geochem Explor 50:143–178

Masterman GJ, Cooke DR, Berry RF, Walshe JL, Lee AW, Clark AH
(2005) Fluid chemistry, structural setting, and emplacement
history of the Rosario Cu–Mo porphyry and Cu–Ag–Au
epithermal veins, Collahuasi District, Northern Chile. Econ Geol
100:835–862

Muntean JL, Einaudi MT (2000) Porphyry gold deposits of the
Refugio district, Maricunga belt, northern Chile. Econ Geol
95:1445–1473

Nagaseki H, Hayashi K (2008) Experimental study of the behavior of
copper and zinc in a boiling hydrothermal system. Geology
36:27–30

Ossandon GC, Freraut RC, Gustafson LB, Lindsay DD, Zentilli M
(2001) Geology of the Chuquicamata Mine: a progress report.
Econ Geol 96:249–270

Oyarzún R, Marquez A, Lillo J, Lopez I, Rivera S (2001) Giant versus
small porphyry copper deposits of Cenozoic age in northern
Chile: adakitic versus normal calc-alkaline magmatism. Mineral
Depos 36:794–798

Padilla-Garza RA, Titley SR, Eastoe CJ (2004) Hypogene evolution of
the Escondida porphyry copper deposit, Chile. Soc Econ Geol
Spec Publ 11:141–165

Perello J, Cox D, Garamjav D, Sanjdorj S, Diakov S, Schissel D,
Munhbat T-O, Oyun G (2001) Oyu Tolgoi, Mongolia: Silurian–
Devonian porphyry Cu–Au–(Mo) and high-sulfidation Cu min-
eralization with a Cretaceous chalcocite blanket. Econ Geol
96:1407–1428

Pokrovski GS, Roux J, Harrichoury J-C (2005) Fluid density control
on vapor–liquid partitioning of metals in hydrothermal systems.
Geology 33:657–660

Pokrovski GS, Anastassia Yu, Borisova AY, Harrichoury J-C (2008)
The effect of sulfur on vapor–liquid fractionation of metals in
hydrothermal systems. Earth Planet Sci Lett 266:345–362

Proffett JM (1979) Ore deposits of the western United States: a
summary: Nevada Bureau of Mines and Geology Report 33,
IAGOD 5th Quadrennial Symposium Proceedings 11:13–32

Pudack C, Halter WE, Heinrich CA, Pettke T (2009) Evolution of
magmatic vapor to gold-rich epithermal liquid: the porphyry to
epithermal transition at Nevados de Famatina, Northwest
Argentina. Econ Geol 104:449–477

von Quadt A, Peytcheva I, Fanger L, Heinrich CA (2005) The
Elatsite porphyry Cu–Au deposit, Bulgaria. Ore Geol Rev
27:128–129

Recharsky VI (1980) Geochemistry of copper–molybdenum deposits
of the Lesser Caucasus. In: Janković S, Sillitoe RH (eds)
European copper deposits: Proceedings of the International
Symposium held at Bor, Yugoslavia, Sept. 1979, Belgrade,
Department of Economic Geology, Faculty of Mining and
Geology, Belgrade University, pp 104–108

Redmond PB, Einaudi MT, Inan EE, Landtwing MR, Heinrich CA
(2004) Copper deposition by fluid cooling in intrusion-centered
systems: new insights from the Bingham porphyry ore deposit,
Utah. Geology 32:217–220

Reich M, Parada MA, Palacios C, Dietrich A, Schultz F, Lehmann B
(2003) Adakite-like signature of Late Miocene intrusions at the
Los Pelambres giant porphyry copper deposit in the Andes of
central Chile: metallogenic implications. Miner Depos 38:876–
885

Richards JP (1992) Magmatic–epithermal transitions in alkalic
systems: Porgera gold deposit, Papua New Guinea. Geology
20:547–550

Richards JP (2003) Tectono-magmatic precursors for porphyry Cu–
(Mo–Au) deposit formation. Econ Geol 98:1515–1533

Roedder E (1981) Natural occurrence and significance of fluids
indicating high pressure and temperature. Phys Chem Earth
13:9–39

Rohrlach BD, Loucks RR (2005) Multi-million-year cyclic ramp-up of
volatiles in a lower crustal magma reservoir trapped below the
Tampakan Cu–Au deposit by Mio-Pliocene crustal compression
in the Southern Philippines. In: Porter TM (ed) Super porphyry
copper and gold deposits, a global perspectives 2. PGC, Linden
Park, pp 369–407

Ronacher E, Richards JP, Reed MH, Bray CJ, Spooner ETC, Adams
PD (2004) Characteristics and evolution of the hydrothermal
fluid in the north zone high-grade area, Porgera gold deposit,
Papua New Guinea. Econ Geol 99:843–867

Rui Z, Zhang L, Wu CY, Wang L, Su X (2005) Dexing porphyry
copper deposits in Jiangxi, China. In: Porter TM (ed) Super
porphyry copper and gold deposits, a global perspectives 2. PGC,
Linden Park, pp 409–422

Rusk BG, Reed MH, Dilles JH (2008) Fluid inclusion evidence for
magmatic-hydrothermal fluid evolution in the porphyry copper–
molybdenum deposit at Butte, Montana. Econ Geol 103:307–334

Schroeter TG (1995) Porphyry deposits of the Northwester Cordillera
of North America, vol 46. Canadian Institute of Mining,
Metallurgy and Petroleum, Montreal

Seo JH, Guillong M, Heinrich CA (2009) The role of sulfur in the
formation of magmatic–hydrothermal copper–gold deposits.
Earth Planet Sci Lett 282:323–328

Sillitoe RH (1979) Some thoughts on gold-rich porphyry copper
deposits. Miner Depos 14:161–174

Sillitoe RH (1982) Unconventional metals in porphyry deposits.
Society of Mining Engineers of AIME Preprint 82-63, pp 13

Sillitoe RH (1994) Erosion and collapse of volcanos: causes of
telescoping in intrusion-centered ore deposits. Geology 22:945–
948

Sillitoe RH (1997) Characteristics and controls of the largest porphyry
copper–gold and epithermal gold deposits in the circum-Pacific
region. Aust J Earth Sci 44:373–388

Sillitoe RH, Gappe IM Jr (1984) Philippine porphyry copper deposits:
geologic setting and characteristics. Committee for Co-ordination
of Joint Prospecting for Mineral Resources in Asian Offshore
Areas (CCOP), CCOP Technical Publication 14, p 89

Sillitoe RH, Hedenquist JW (2003) Linkages between volcanotectonic
settings, ore–fluid compositions, and epithermal precious metal
deposits. Soc Econ Geol Spec Publ 10:315–343

Sillitoe RH, Perelló J (2005) Andean copper province: tectonomag-
matic settings, deposit types, metallogeny, exploration, and
discovery. Society of Economic Geologists, Economic Geology
100th Anniversary Volume, pp 845–890

Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2005)
Gold partitioning in melt–vapor–brine systems. Geochim Cos-
mochim Acta 69:3321–3335

Simon AC, Pettke T, Candela PA, Piccoli PM, Heinrich CA (2007)
The partitioning behavior of As and Au in S-free and S-bearing
magmatic assemblages. Geochim Cosmochim Acta 71:1764–
1782

Simon G, Kesler SE, Essene EJ, Chryssoulis SL (2000) Gold in
porphyry copper deposits: experimental determination of the

20 Miner Deposita (2010) 45:11–21



distribution of gold in the Cu–Fe–S system at 400° to 700°C.
Econ Geol 95:259–270

Sinclair AJ, Drummond AD, Cater NC, Dawson KM (1982) A
preliminary analysis of gold and silver grades of porphyry-type
deposits in western Canada. In: Levinson AA (ed) Precious
metals in the Northern Cordillera. Association of Exploration
Geochemists, Rexdale, pp 157–172

Singer DA, Berger VI, Moring BC (2005) Porphyry copper deposits
of the world: database, map, and grade and tonnage models. U.S.
Geological Survey Open File Report 2005-1060

Stefánsson A, Seward TM (2004) Gold (I) complexing in aqueous
sulphide solutions to 500°C at 500 bar. Geochim Cosmochim
Acta 68:4121–4143

Su W, Heinrich CA, Pettke T, Zhang X, Hu R, Xia B (2009)
Sediment-hosted gold deposits in Guizhou, China: products of
wall–rock sulfidation by deep crustal fluids. Econ Geol 104:73–
93

Sutherland Brown A (1976) Porphyry deposits of the Canadian
Cordillera of North America, vol 15. Canadian Institute of
Mining, Metallurgy and Petroleum, Montreal, p 510

Takenouchi S, Imai H (1976) Fluid inclusion study of the Santo
Tomas II porphyry copper deposit. Philippines. Abstracts of

papers of the Fifth International Symposium on Fluid Inclusion
Research, Sydney, Australia, Aug. 1976. Fluid Inclusion Re-
search: Proceedings of COFFI 8:180–181

Ulrich T, Günther D, Heinrich CA (1999) Gold concentrations of
magmatic brines and the metal budget of porphyry copper
deposits. Nature 399:676–679

Ulrich T, Günther D, Heinrich CA (2001) The evolution of a porphyry
Cu–Au deposit, based on LA-ICP-MS analysis of fluid inclu-
sions: Bajo de la Alumbrera, Argentina. Econ Geol 96:1743–
1774

Vila T, Sillitoe RH (1991) Gold rich porphyry systems in the
Maricunga belt, northern Chile. Econ Geol 86:1238–1260

Williams-Jones AE, Migdisov AA, Archibald SM, Xiao Z (2002)
Vapor transport of ore metals. In: Hellmann R, Wood SA (ed)
Water–rock interactions, ore deposits, and environmental geo-
chemistry. Geochem Soc Spec Publ 7:279–305

Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals
and the formation of magmatic–hydrothermal ore deposits. Econ
Geol 100:1287–1312

Zvezdov VS, Migachev IF, Girfanov MM (1993) Porphyry copper
deposits of the CIS and the models of their formation. Ore Geol
Rev 7:511–549

Miner Deposita (2010) 45:11–21 21


	The relation between Cu/Au ratio and formation depth of porphyry-style Cu–Au ± Mo deposits
	Abstract
	Introduction
	Evaluation methods and data sources
	Results
	Interpretation and discussion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


