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Abstract Recent studies have suggested the involvement
of highly saline deep formation waters that modified
preexisting Cu assemblages to form atacamite during
supergene oxidation of Cu deposits in the Atacama region.
In this report, we document the occurrence of (Ag–I)
inclusions hosted by supergene chalcocite from Mantos de
la Luna, an argentiferous Upper Jurassic stratabound Cu
deposit in the Coastal Range of northern Chile. The
presence of this unusual mineral assemblage indicates that
iodargyrite precipitated from reducing iodine-rich waters,
suggesting that the fluids involved in supergene enrichment

of Cu deposits in the Coastal Range were more complex
than previously thought. This suggests the prevalence of
hyperarid conditions during the latest stages of supergene
enrichment of the Mantos de la Luna Cu deposit in the
Atacama region, supporting the notion that supergene
enrichment processes in hyperarid areas are dynamic in
nature and do not exclusively require the presence of
meteoric water.

Introduction

Argentiferous stratabound Cu ore deposits are typically
found in volcano-sedimentary formations of Mesozoic age
in the Coastal Range of the Atacama Desert, northern Chile
(Fig. 1). These high-grade, low-tonnage deposits normally
host 1–40 million metric tons of ore with 1–4% Cu and up
to 30 g per ton of Ag (Maksaev et al. 2007). One of the
most enduring questions about these deposits is the
mineralogical form of Ag, as well as the time-scale
relations between Ag precipitation and deposition of Cu
ore. Recent studies show that this “invisible” Ag is present
in solid solution, as well as in micro- to nanoinclusions of
Ag minerals in the Cu and Cu–Fe sulfide hosts, although
little knowledge exists about the nature of the process(es)
that concentrate Ag (Reich et al. 2008a).

In this report, we document the occurrence of inclusions
of a (Ag,I)-rich mineral, most probably iodargyrite, in
supergene chalcocite from the Mantos de la Luna argentif-
erous stratabound Cu deposit in the Coastal Range of
northern Chile. Iodargyrite (AgI) is highly insoluble, and its
occurrence is restricted to Ag-bearing deposits in extremely
arid environments such as desert areas of Nevada, Arizona,
New Mexico, Kazakhstan, Australia, and Chile (Boyle
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1997; Millsteed 1998). We explore the close association of
iodargyrite and chalcocite in supergene zones and provide
new constraints on the nature and source of the waters
involved in supergene enrichment of Cu deposits in the
Atacama region.

Geologic background, materials, and methods

Most of the stratabound Cu–(Ag) deposits in northern Chile
are hosted by Jurassic basaltic to andesitic lavas from the
La Negra Formation, and are commonly associated with
unmineralized gabbroic to andesitic intrusive bodies inter-
preted as feeder conduits of Jurassic volcanism (Maksaev et
al. 2007). The stratiform deposits occur as numerous
tabular orebodies or “mantos” in the La Negra Formation,
and primary Cu mineralization occurs preferentially in the
porous parts of the host rocks such as amygdale fillings,
veinlets, and disseminations, and they generally exhibit
epigenetic features (Kojima et al. 2003). The mineral
paragenesis in these deposits is relatively simple. The
hypogene sulfide mineralization consists of chalcocite,

digenite, bornite, and chalcopyrite that can contain up to
~2,000 ppm of “invisible” Ag (Kojima et al. 2003; Reich et
al. 2008a). Supergene enrichment of these minerals has
produced secondary, Ag-bearing chalcocite and covellite,
and later oxidation has led to the replacement of hypogene
and supergene sulfides by Cu-oxide minerals such as
atacamite and chrysocolla.

Silver-bearing chalcocite samples were taken from the
supergene enrichment zone of the argentiferous Mantos de
la Luna deposit (Fig. 1). This deposit, located 30 km south
of Tocopilla, consists of three small orebodies (Bloques
Norte, Central, and Sur) that occur within a monoclinal
volcanic sequence (N10°E, 30°E dip). The orebodies are
delimited by the NWW- and EW-trending Sur and
Albornoz faults, respectively (Kojima et al. 2003). At
Mantos de la Luna, Cu mineralization occurs preferen-
tially in the lower levels of amygdaloidal and porphyritic
horizons. Mineral paragenesis is simple and composed
exclusively of Ag-bearing supergene chalcocite (digenite),
atacamite, and chrysocolla. The fine-grained aggregates
of chalcocite and minor covellite occur disseminated and
in veinlets, and are locally replaced by the oxide
alteration assemblage (atacamite and chrysocolla). In
contrast to other stratabound Cu deposits of the Coastal
Range (e.g. Susana-Lince and Buena Esperanza), hypo-
gene sulfides are not observed in this deposit, and
extraction is exclusively reduced to the thick (~300 m)
supergene/oxide zone.

Chalcocite samples from Mantos de la Luna were
analyzed using a Cameca SX-100 electron microbe analyz-
er (EMPA) at electron microprobe analytical laboratory of
the University of Michigan. The analytical conditions were
accelerating voltage of 20 kV and a beam current of 20–
40 nA. No beam-induced damage was observed during the
sulfide analysis.

Results

EMPA observations reveal the presence of discrete, micron-
sized inclusions of a Ag iodide mineral in 10 out of 13
supergene chalcocite samples analyzed. Figure 2a shows a
backscattered electron image of a representative chalcocite
grain containing two inclusions of 1 and 10 μm size,
identified as iodargyrite by means of wavelength dispersive
spectroscopy (WDS) elemental mapping (Fig. 2b–e, sample
ML-1-08, see caption for sample details). The small size
and the beam sensitivity of the Ag–I inclusions precluded
the precise description of its chemical formula. The Ag
concentrations in the inclusions vary from 1.0 to 67.6 wt%,
and they are contaminated by Cu and S from chalcocite.
However, the Ag and I elemental maps strongly correlate
with the inclusions, whereas the WDS maps of Cu and S
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Fig. 1 Map of the Atacama Desert in northern Chile showing the
distribution of Cu deposits. Triangles: stratabound Cu deposits,
including Mantos de la Luna; circles: porphyry-like Cu deposits;
squares: porphyry Cu deposits. The major structural features shown
are the Atacama Fault System (AFS), the Antofagasta-Calama
Lineament (ACL), and the Domeyko Fault System (DFS)
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correlate well with the chalcocite sulfide host (formula
Cu1.85S, digenite, as determined by EMPA analysis)
(Fig. 2a–e). The chalcocite (digenite) grain shows evi-
dence of supergene oxidation to Cu-chloride [probably,
atacamite, Cu2Cl(OH)3] in its rim, as noted in the WDS
maps (Fig. 2a, f). No Ag-chloride or Ag-sulfide was
observed in the analyzed samples.

Involvement of iodine-rich waters during supergene
enrichment

The occurrence of iodargyrite inclusions in supergene
chalcocite suggests the involvement of iodine-rich waters
during supergene enrichment at the Mantos de la Luna Cu
deposit. Iodine concentrations are typically low in the

Earth’s crust, and its distribution is dominated by accumu-
lation in marine sediments (Muramatsu and Wedepohl
1998; Muramatsu et al. 2001). Iodine has concentrations
in the low parts-per-billion range in igneous and metamor-
phic rocks, and its concentrations in fresh water and
seawater are also exceedingly low, less than 50 ppb (Moran
et al. 1999). However, iodine is strongly enriched in deep
brines and pore waters, commonly exceeding 100 ppm
(Muramatsu et al. 2001).

At the Spence porphyry Cu deposit in the Atacama
Desert, Leybourne and Cameron (2006) have reported
substantially higher concentrations of iodine in saline
groundwaters (up to 65 ppm I) than in the meteoric waters
(<1 to 7.3 ppm I). Iodine, along with Cl and Br, has been
detected earlier in anomalies developed in gravels above Cu
deposits in the Atacama Desert, including Cu deposits from
the Coastal Range, suggesting the involvement of deep
formation waters that have been pumped to the surface
along active faults and/or fractures during seismic events
(Cameron et al. 2002; Palacios et al. 2005). A similar
source for iodine has been suggested for the iodine
components of nitrate deposits occurring along the eastern
slope of the Coastal Range in the Atacama Desert (Fehn et
al. 2007). The 129I isotopic signature of nitrate salts
indicates that iodine might be derived from the release of
iodine-rich fore-arc fluids along the continental margin
(Fehn et al. 2007).

Fig. 2 a Back-scattered electron image of a representative chalcocite
grain containing inclusions of iodargyrite (AgI), 1 and 10 μm in size
(sample ML-1-08). b–f Elemental maps show the spatial distribution
of Cu, S, Ag, I, and Cl in the selected area. The color scale indicates
the relative concentration of the element analyzed (red: high, blue:
low). The sample was taken from the southern wall of the main pit
(“Rajo Principal”) at the Mantos de la Luna deposit and corresponds
to a N3°S-trending subvertical chalcocite vein occurring in the
supergene enrichment zone (sample coordinates and altitude: 22°15′
19″S/70°11′29″W, h=1027 m above sea level)
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Fig. 3 Eh–pH stability diagram for Cu and Ag minerals and dissolved
species of Cu, Ag, S, Cl, CO2, and I, at 25 °C and 1 bar. Dashed lines
show the stability field of water. The hatched area shows the stability
field of the iodargyrite + chalcocite mineral association. The green-
colored area shows the stability field of atacamite. Data based on
McNeil and Little (1992), and Welham et al. (1993)
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Recent studies by Cameron et al. (2007) and Reich et al.
(2008b) have suggested the involvement of highly saline,
deep-formation waters that modified preexisting Cu
assemblages to form atacamite during supergene oxidation
of Cu deposits in the Atacama Desert. Chlorine-36 and U-
series disequilibrium ages in atacamite/gypsum assemb-
lages indicate that the formation of these products of
supergene oxidation is an ongoing process that has occurred
intermittently since the onset of modern hyper-aridity
(Reich et al. 2008b, 2009). In the context of this model,
we propose that saline, iodine-rich deep formation waters
and/or fore-arc fluids, forced to the surface by seismic
pumping along faults and fractures, passed up through the
argentiferous Cu deposit of Mantos de la Luna, leaching
preexisting Cu sulfides. After each pulse, Cu hydroxy-
chlorides such as atacamite formed under oxidizing
conditions in the upper parts of the system by replacement
of primary and secondary Cu assemblages (Fig. 3, green
field). The resulting chlorine-depleted, iodine-rich solutions
infiltrated and leached Cu and Ag from the previous
generations of Cu assemblages (e.g., formed during the
main peak of supergene enrichment, 14–21 Ma, Alpers and
Brimhall 1988; Sillitoe and McKee 1996; Mote et al. 2001),
to finally precipitate iodargyrite under near-neutral to acidic,
moderately reducing conditions (Fig. 3, hatched field).

Considering the fact that the occurrence of iodargyrite is
restricted to extremely arid environments (Boyle 1997), our
observations strongly suggest the prevalence of hyperarid
conditions during the latest stages of supergene enrichment
of the Mantos de la Luna argentiferous Cu deposit in
northern Chile. This suggests that supergene enrichment
processes of Cu deposits in the hyperarid Atacama Desert are
dynamic in nature and do not exclusively require the presence
of meteoric water. Further studies are needed not only to
address the isotopic signature (and age) of iodine-rich waters
involved in supergene enrichment of these deposits, but
also to constrain the origin of iodine in the extensive nitrate
deposits occurring in the eastern flank of the Coastal Range.
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