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Abstract The Au-Ag (±Pb-Zn) Apacheta deposit is
located in the Shila district, 600 km southeast of Lima in
the Cordillera Occidental of Arequipa Province, south-
ern Peru. The vein mineralization is found in Early to
Middle Miocene calc-alkaline lava flows and volcanic
breccias. Both gangue and sulfide mineralization express
a typical low-sulfidation system; assay data show element
zoning with base metals enriched at depth and higher
concentrations of precious metals in the upper part of the
veins. Three main deposition stages are observed: (1)
early pyrite and base-metal sulfides with minor electrum
1 and acanthite; (2) brecciation of this mineral assem-
blage and cross-cutting veinlets with subhedral quartz
crystals, Mn-bearing calcite and rhombic adularia
crystals; and finally (3) veinlets and geodal filling
of an assemblage of tennantite/tetrahedrite + colorless
sphalerite 2 + galena + chalcopyrite + electrum 2.
Fluid inclusions in the mineralized veins display two
distinct types: aqueous-carbonic liquid-rich Lw-c inclu-

sions, and aqueous-carbonic vapor-rich Vw-c inclusions.
Microthermometric data indicate that the ore minerals
were deposited between 300 and 225 �C from relatively
dilute hydrothermal fluids (0.6–3.4 wt% NaCl). The
physical and chemical characteristics of the hydrother-
mal fluids show a vertical evolution, with in particular a
drop in temperature and a loss of H2S. The presence of
adularia and platy calcite and of co-existing liquid-rich
and vapor-rich inclusions in the ore-stage indicates a
boiling event. Strong H2S enrichment in the Vw-c in-
clusions observed at –200 m, the abundance of platy
calcite, and the occurrence of hydrothermal breccia at
this level may indicate a zone of intense boiling. The
vertical element zoning observed in the Apacheta deposit
thus seems to be directly related to the vertical evolution
of hydrothermal-fluid characteristics. Precious-metal
deposition mainly occurred above the 200-m level below
the present-day surface, in response to a liquid/vapor
phase separation due to an upward boiling front.

Keywords Epithermal gold-silver Æ Peru Æ Andes Æ
Boiling

Introduction

Hydrothermal processes linked to mineralization and
alteration are relatively well understood in epithermal
deposits, especially in the low-sulfidation type which
formed in a similar environment to that of active geo-
thermal systems (Henley and Ellis 1983). Numerous
papers dealing with this type of deposit are well compiled
in Hedenquist’s (1996) review volume. In spite of their
various volcanic and tectonic settings, a general scheme
has been proposed and recognized in many low-sulfida-
tion epithermal deposits (Buchanan 1981; Berger and
Eimon 1983; Silberman and Berger 1985; Clarke and
Govett 1990; Pirajno 1992; Sherlock et al. 1995). A zoning
between base- and precious metals is recognized in both
low-sulfidation epithermal deposits and geothermal
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areas, with precious-metal mineralization tending to be
more abundant in the upper part of the deposits (Ewers
and Keays 1977; Hedenquist and Henley 1985a; Hollister
and Silberman 1995; Simmons and Browne 2000).

The Arequipa-Orcopampa area is located about
600 km southeast of Lima in the Cordillera Occidental
of southern Peru (Fig. 1). Several base- and precious-
metal epithermal deposits in Neogene volcanic rocks,
such as Arcata, Cailloma, Madrigal, Suyckutambo,
Orcopampa, and Shila, characterize this region (Fig. 1).
The overall mineralogy of these deposits is consistent

with low-sulfidation epithermal mineralization, except
for the Chipmo area (Orcopampa district) where veins of
the high-sulfidation epithermal type were recognized by
Jannas (1998). Vertical and lateral zoning of Pb, Sb, Cu,
As, and Ag concentrations and of the base to precious-
metal ratio have been described from the Orcopampa
(Gibson et al. 1990; Petersen et al. 1990) and Arcata
mines (Candiotti et al. 1990).

Mine-assay data from the Shila veins show a general
base-metal enrichment at depth and higher concentra-
tions of precious metals in the upper parts. A detailed

Fig. 1 A Geographic position
of the epithermal district of
Shila. B Geologic map of the
Shila district with location of
the main deposits (modified
from a Cedimin S.A. docu-
ment). C Location and orienta-
tion of the different mineralized
veins of the Apacheta deposit
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mineralogical and fluid-inclusion study was thus carried
out on the Apacheta vein system in the Shila district, to
document and study this vertical zoning and to explain
why economic mineralization is limited to the uppermost
200 m below the present-day erosion surface.

Geological setting

The Shila-Apacheta vein system is part of the Shila-
Paula district hosted by Neogene volcanic rocks (Fig. 1).
The area is underlain by a folded sedimentary basement,
comprising Jurassic sandstone, shale and limestone of
the Yura Group, and Cretaceous limestone (Murco and
Arcurquina Formations), unconformably overlain and/
or intruded by a complex unit of Neogene volcanic
rocks. Precious-metal ores are found within Early to
Middle Miocene calc-alkaline volcanic rocks that
include lava flows and volcanic breccia. The Shila dis-
trict, which went into production in 1990, includes the
Apacheta, Pillune, Sando Alcalde, Puncuhuayco, Ticlla,
Tocracancha, and Colpa deposits, each consisting of
several mineralized veins (Fig. 1). Only Apacheta, Pill-
une, and Sando Alcalde have been mined so far.

The mineralized veins generally trend E–W (Pillune,
Sando Alcalde, Ticlla, Puncuhuayco), NW–SE (Apach-
eta, Colpa, Tocracancha), and exceptionally NE–SW
(Apacheta, Puncuhuayco) (Chauvet et al. 1999; Cassard
et al. 2000). They are generally thin (0.2–2.5 m), steeply
dipping (>75�) to the north or south, and about 100 m
long and 150–200 m high. Cassard et al. (2000) published
K/Ar radiometric measurements on host rocks and veins,
giving ages of 10.94±0.13 and 10.56±0.12 Ma for
Sando Alcalde and Pillune, respectively (Table 1). The
Shila district appears to be about 5–7 Ma younger than
the neighboring Orcopampa (Gibson et al. 1995) and

Cailloma (Silberman et al. 1985) vein systems, and is
similar in age to the Suyckutambo deposit (Petersen et al.
1983). The Shila gold-bearing veins and especially the
veins of the Sando Alcalde and Pillune areas show a
systematic association between first-order structures,
mainly E–W to ENE–WSW oriented, and second-order
ones trending NE–SW. Chauvet et al. (1999) and Cassard
et al. (2000) recently proposed a two-stage tectonic
model: the first event was a left-lateral shearing from the
effects of NE- to SW-trending horizontal compression,
the second one being a re-opening of the previously
formed structures under the effects of a N120�E-oriented
tectonic force. At this stage, it is difficult to definitively
integrate the Apacheta system, with its different vein
orientations, into this general structural model.

Mineralogy

Mineralized samples from different veins and levels of the
Apacheta vein system (Table 2) were examined in order
to reconstruct the paragenetic succession. Three main
deposition stages are observed in each vein (Fig. 2):

Stage 1

The earliest sulfide mineral is invariably pyrite, with
extensively fractured sub-euhedral crystals that are
locally replaced by other base-metal sulfides (Fig. 3A).
This pyrite is followed by light-yellow sphalerite-1
crystals (Fig. 3D), characterized by low to moderate
Fe (0.34–1.70 wt%), Mn (0–0.37 wt%), and Cd
(0.51–1.58 wt%) contents. Galena commonly occurs as
inclusions in pyrite and as large independent crystals,
and acanthite is also observed as inclusions in pyrite.
Scarce electrum-1 grains with an Au content of
62.9–71.6 wt% (Fig. 4) occur as inclusions in pyrite
(Fig. 3B), and more rarely in sphalerite 1 and as free
grains in gangue quartz.

Stage 2

The stage-1 mineralogical assemblage is crosscut and
brecciated by veinlets containing subhedral quartz

Table 1 K/Ar age determinations of volcanic rocks from the Shila
area. (Modified from Cassard et al. 2000)

Deposit – rock/vein Material K/Ar ages
(Ma±1r)

Pillune – vein 21 Adularia 10.56±0.12
Sando Alcalde – vein 74 Adularia 10.94±0.13
Dacitic flow Whole rock 13.0±0.6
Dacitic flow Whole rock 12.9±0.6

Table 2 Structural position of studied samples from the Apacheta deposit. Italics indicates samples on which fluid-inclusion studies were
conducted

Altitude Depth Veta 1 Veta 2 Veta 5 Veta 22 Veta 50 Veta 51 Veta 54 Veta 57
(m) (m)

5,250 0 SHA 10 SHA 29
5,220 –30 SHA 3
5,150 –100 SA 30, 32 SA 33 SHA 30
5,100 –150 SHA 25 SHA 26
5,050 –200 SHA 12 SA 35 SHA 20, 21 SHA 22, 31
5,020 –230 SA 40
5,000 –250 SHA 28
4,975 –275 SHA 23, 24
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crystals, Mn-bearing calcite, and rhombic adularia
crystals. Quartz dominates in the higher part of the vein,
whereas calcite – commonly presenting a bladed habit
(Fig. 3C) – occurs in the deeper part of the mineralized
zone.

Stage 3

Sulfide deposition continued with the precipitation
as veinlets and geodal fillings of a tennantite/tetrahe-
drite + colorless sphalerite 2 + galena + chalcopyrite
+ electrum 2 assemblage (Fig. 3E, F). Myrmekitic tex-
tures between tennantite/tetrahedrite and galena as well
as between galena and chalcopyrite are common. Tet-
rahedrite shows variable Ag content, in places reaching
over 17 wt%. The same range of tennantite/tetrahedrite
composition is observed regardless of the vertical loca-
tion of the sample. Iron content in sphalerite 2 is rarely
significant and consistently below 0.6 wt%. Grains of
electrum 2 with an Au content of 72–81 wt% appear as
inclusions in tennantite/tetrahedrite, in galena, and more
rarely in chalcopyrite (Fig. 4). Above level 5,150 m up
to the surface, tennantite/tetrahedrite coexist with
polybasite/pearceite, partially replaced by acanthite. The
scarce electrum grains in polybasite/pearceite have a
gold content of 46–56 wt% (Fig. 4).

Average Au/Ag ratios for each level (whole rock
analyses) increase toward the surface (Fig. 5), essentially
through an increase in Ag. All veins of the Apacheta
system show the same mineralogical assemblage, with
the same chemical composition and paragenetic succes-
sion, suggesting similar and contemporaneous deposi-
tional processes.

Fluid-inclusion studies

In order to reconstruct the physico-chemical evolution
of the hydrothermal fluids from stage 1 to stage 3, and
from bottom to top of the mineralized columns, a
fluid-inclusion study was conducted on mineralized

samples taken from different veins (Table 2) and at
depths of –250 m (SHA 28), –230 m (SA 40), –200 m
(SHA 12), –150 m (SHA 30), and –30 m (SHA 3). The
studied fluid inclusions are hosted by light-yellow
sphalerite 1 (stage 1), quartz and calcite (stage 2), and
colorless sphalerite 2 (stage 3) from mineralized veins
and also in quartz phenocrysts of the host rock
adjacent to the veins. The studies consisted of micro-
scopic, microthermometric, and Raman-spectroscopic
observations, and were done on thick wafers using a
Chaixmeca heating–freezing stage (Poty et al. 1976).
The stage was calibrated with melting-point standards
at T>25 �C and natural and synthetic fluid inclusions
at T<0 �C. Salinity expressed in wt% NaCl was cal-
culated from microthermometric data using equations
from Bodnar (1993). The presence and molar fraction
of gas (CO2, H2S, N2) were determined in individual
fluid inclusions by Raman analyses on a Dilor X-Y
multi-channel modular Raman spectrometer (Dubessy
et al. 1984).

Petrography of fluid inclusions

The fluid inclusions analyzed were either primary or
secondary in origin, using the criteria of Roedder (1984)
and Bodnar et al. (1985). Two fluid-inclusion types are
identified at room temperature and include (Fig. 6),
using the convention of Boiron et al. (1992):

• Aqueous-carbonic liquid-rich inclusions (Lw-c; w for
water; c for carbonic) commonly with 10–20 vol%
vapor phase are observed as primary and secondary
inclusions in sphalerite 1, quartz and calcite of stage 2,
and sphalerite 2, and as secondary-plane inclusions in
host-rock quartz. The size of these inclusions ranges
from 3–200 lm with a majority between 10 and
20 lm.

• Aqueous-carbonic vapor-rich (Vw-c) fluid inclusions
with more than 90 vol% vapor phase and a small rim
of liquid water occur as primary and mainly as sec-
ondary inclusions in the stage-2 ore-vein quartz and
always as secondary-plane inclusions in the host-rock

Fig. 2 Generalized paragenetic
sequence of the different veins
in the Apacheta area
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quartz. In some rare inclusion planes, the vapor phase
is highly variable, from 10–100 vol% vapor. The
size of these inclusions is constant between 3 and
30 lm.

Microthermometric and Raman results

Microthermometric and Raman studies were conducted
on these various types of fluids, and the main results are
presented in Tables 3, 4 and Figs. 7 and 8.

Aqueous-carbonic liquid-rich fluids (Lw-c)

Primary inclusions in sphalerite 1 show melting tem-
peratures of ice (Tmice) ranging from –4.0 to –6.3 �C
(6.4–9.5 wt% NaCl), with homogenization temperatures
(Th) in the liquid field ranging from 258–271 �C.
The secondary inclusions in the same sphalerite 1 show
lower salinity (3.4–1.6 wt% NaCl) for similar Th
(248–270 �C).

In quartz and calcite of stage 2, the Lw-c fluids have a
Tmice from –0.1 to –1.6 �C (0.2–2.6 wt% NaCl) and Th,
always to the liquid phase, ranging from 224–299 �C.

Fig. 3A–F Photomicrographs
showing the three stages of
mineralization with typical ore
and gangue mineral assemblag-
es. A Early fractured pyrite
(Py); B inclusions of electrum
(El) in pyrite; C gangue assem-
blage of stage 2 with subhedral
quartz (Qz) and platy calcite;
D light-yellow sphalerite crys-
tals – sphalerite 1 (Sph1), stage
1 – and colorless sphalerite –
sphalerite 2 (Sph2), stage 3;
E zoned tennantite (dark part)
and tetrahedrite (clear part);
F main mineral assemblage of
stage 3 with a geodal filling of
tennantite-tetrahedrite, galena
(Gn), and chalcopyrite (Cpy).
A, B, and F were taken in
reflected light, C and D in
transmitted light; E is an SEM
backscatter image
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Slight differences exist between the primary and sec-
ondary inclusions (Tables 3, 4), the latter generally
having a lower salinity than the former, for similar Th
from samples at the same structural level. The low
eutectic temperature (<–30 �C) indicates the presence of
bivalent cations. Presence of minor CO2 in the gaseous
phase was detected by Raman spectroscopy, but with a
too low concentration to be quantified. No clathrate
formation and melting were observed during micro-
thermometric tests.

Primary fluid inclusions in sphalerite 2 have salinity
(0.6–0.9 wt% NaCl) and Th (275–285 �C) values that
are similar to those of the secondary inclusions in quartz
and calcite 2 for the same structural level.

Aqueous-carbonic vapor-rich fluids (Vw-c)

Microthermometric investigation of vapor-rich fluid
inclusions was hindered by the small volume of the liquid
phase. Thus, freezing and heating experiments were
restricted to larger inclusions with good optical proper-
ties. The Vw-c inclusions show TmCO2

ranging from –57.9
to –59.3 �C. Rare ThCO2

values, between –1.3 and
+6.5 �C (in vapor phase), indicate a low fluid density.
The clathrate fusion temperatures range from –4.3 to
+6.5 �C. Gas analyses show CO2 (62.9–100 mol%) with
less N2 (0–37.1 mol%) and H2S (0.7–6.7 mol%) (Fig. 8).
The rare Th values, always to the vapor phase, are
between 250 and 300 �C. No differences were noted
between primary and secondary inclusions in vein
quartz, and for secondary inclusions in quartz from the
host rock.

Temporal and vertical evolution of physico-chemical
fluid characteristics

Constraints from Lw-c fluids

A clear decrease in both salinity and homogenization
temperature is observed from stage 1 (sphalerite 1) to
stage 3 (sphalerite 2). Microthermometric data on pri-
mary Lw-c fluid inclusions trapped in stage-2 quartz

Fig. 4A–C Distribution of Au content of electrum in vein 2 (wt%,
electron microprobe analyses). A Electrum grains included in
polybasite/pearceite above level 5,150 m; B electrum grains
associated with stage 1 base-metal sulfides; C electrum grains
associated with stage 3 base- and silver-metal sulfides. N Number
of measurements

Fig. 5 Vertical evolution of the Ag/Au ratio in vein 2 between
levels 5,150 and 5,050 m (whole-rock analyses). N Number of
measurements

Fig. 6A–D Photomicrographs of the different fluid types observed
in the Apacheta deposit. A Aqueous-carbonic liquid-rich inclusion
in quartz (Lw-c); B aqueous-carbonic vapor-rich inclusion (Vw-c):
L liquid; V vapor; C homogeneous fluid-inclusion planes of Vw-c
fluid; D primary fluid inclusions in sphalerite 1
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plotted against depth (Fig. 9) show a decrease of the
homogenization temperature from the deepest sample
(SHA 28, –250 m actual depth; average Th: 290 �C) to
the highest sample (SHA 3, –50 m actual depth; average
Th: 235 �C).

The average salinity value of 2.1 wt% NaCl is similar
for all vertical profiles (Fig. 7), and is comparable to
those described for gold–silver-dominated epithermal
systems (Hedenquist and Henley 1985a). The exception
are primary inclusions in sphalerite (SHA 12), even if the
presence of trace CO2, detected by Raman spectroscopy,
can contribute to the final ice melting and thus may
slightly increase the apparent salinity of the inclusions
(Bozzo et al. 1973; Collins 1979; Ramboz 1980;
Hedenquist and Henley 1985b).

Constraints from Vw-c fluids

Raman-microprobe analyses of the volatile phase
of Vw-c inclusions in homogeneous planes with more
than 90 vol% of vapor indicate that CO2 is the domi-
nant component (>72 mol% of the vapor phase) and is
present throughout the profile (Fig. 8). N2 content
decreases upward from more than 20 mol% of the vapor
phase at depth to 0 mol% in the upper part of the sys-
tem. H2S, only detected as traces at –250 m, is very well
expressed at –200 m where it can represent more than
6 mol% of the vapor phase. The molar CO2/H2S ratio,
controlled by a matrix of redox equilibria (Giggenbach
1980, 1981), varies from 13–95; values falling within the
range 10–100 are typical of many modern geothermal

Table 3 Microthermometric data for fluids observed in the Apacheta deposit. Abbreviations for the different microthermometric pa-
rameters are defined in the text. n Number of measurements

Inclusion
type

Sample
(level, actual
depth)

Mineral Tmice

(�C) (n)
Th
(�C) (n)

Salinity
(wt%
NaCl)

TmCO2

(�C) (n)
ThCO2

(�C) (n)
Tfc
(�C) (n)

Lw-c SHA 3
(5,220 m,
–30 m)

Quartz
calcite

Primary –0.3 to
0.9 (42)

224–243 (42) 0.5–1.6 – – –

Secondary –0.1 to
0.6 (66)

220–239 (59) 0.2–1.0 – – –

SHA 12
(5,050 m,
–200 m)

Sphalerite 1 Primary –4.0 to
–6.3 (13)

254–271 (10) 6.4–9.5 – – –

Secondary –0.9 to
–2.0 (29)

248–270 (25) 1.6–3.4 – – –

Quartz
calcite

Primary –0.4 to
1.5 (33)

234–275 (28) 0.7–2.6 – – –

Secondary –0.1 to
0.8 (47)

246–275 (39) 0.2–1.4 – – –

SA 40
(5,020 m,
–230 m)

Sphalerite 2 Primary –0.3 to
–0.5 (5)

275–285 (5) 0.6–0.9 – – –

SHA 28
(5,000 m,
–250 m)

Quartz
calcite

Primary –0.6 to
–1.4 (29)

260–299 (24) 1.0–2.4 – – –

Secondary –0.3 to
–0.8 (50)

255–290 (47) 0.5–1.4 – – –

Vw-c All levels Qz Primary
Secondary

– 250–300 (37) – –57.9 to
–59.3 (20)

–1.3 to
+6.5 (15)

–4.3 to
+6.5 (7)

Table 4 Raman data for fluids
observed in the Apacheta
deposit. Qz quartz

Inclusion
type

Sample (level,
actual depth)

Mineral CO2

(mol%)
H2S
(mol%)

N2

(mol%)

Vw-c SHA 3 (5,220 m, –30 m) Qz 100 – –
100 – –
100 – –
100 – –

SHA 12 (5,050 m, –200 m) Qz 97.7 1.3 1.0
77.5 20.5 2.0
95.1 4.0 0.9
85.5 7.8 6.7
88.9 7.8 3.3
95.7 3.6 0.7
79.4 15.3 5.3
84.3 10.9 4.8

SHA 28 (5,000 m, –250 m) Qz 72.0 27.1 0.9
62.9 37.1 –
65.3 33.9 0.8
69.9 31.1 –
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systems (Hedenquist and Henley 1985b). No temporal
evolution can be described for this fluid, which was only
observed in stage 2 of the paragenetic sequence.

In epithermal deposits, CO2 is rarely observed as a
liquid phase in fluid inclusions and its presence is usually
only indicated by the presence of clathrate. The presence
of liquid CO2 in these Vw-c inclusions is unusual, even if
such inclusions have already been observed in low-sulf-
idation deposits (McInnes et al. 1990; Van Leeuwen et al.
1990; McEwan et al. 1996).

Discussion and conclusions

Boiling and mixing appear as the most efficient of many
processes that can lead to the deposition of ore and
gangue minerals in an epithermal system. They effec-
tively control compositional changes such as pH and the
mineral solubilities of hydrothermal fluids in open
channels during the last 1–2 km of ascent, thus con-
straining mineral deposition. This assumption is cor-
roborated by direct observations of geothermal wells
(Simmons and Browne 2000), the geochemistry of metal
complexes (Seward 1973; Giggenbach and Stewart 1982;
Gammons and Barnes 1989), and numerical modeling
(Drummond 1981; Reed and Spycher 1984, 1985;
Drummond and Ohmoto 1985; Seward 1989; Spycher
and Reed 1989). Simple cooling of hydrothermal fluids
(Drummond and Ohmoto 1985), dilution by cold
groundwater (Spycher and Reed 1989; Hedenquist
1991), or interaction with surrounding wall rock
(Spycher and Reed 1989) seem to be of less importance
in governing ore deposition.

In the Apacheta deposit, boiling of an ascend-
ing Au–Ag-bearing hydrothermal fluid is proposed to
explain the vertical changes in physico-chemical
parameters of hydrothermal fluids, and thus the zona-
tion and vertical extent of the resulting mineralization.

Evidence of boiling

Mineralogical evidence

Studies of active geothermal systems (Browne and Ellis
1970; Browne 1978; Henley and Hedenquist 1986; Keith
and Muffler 1978; Simmons and Christenson 1994) and
thermodynamic studies (Drummond and Ohmoto 1985;
Reed and Spycher 1985; Simmons and Browne 2000)
have shown that the presence of adularia and platy
calcite, commonly pseudomorphosed by quartz as is the
case here (Fig. 3C), is a strong indicator for boiling.
The release of CO2 to the vapor phase during boiling
leads to a pH increase in the solution, causing a shift
from the illite stability domain to that of adularia, and
the precipitation of calcite and adularia [Eqs. (1)
and (2)].

Ca2þþ2HCO�
3 ¼ CaCO3þCO2ðgÞþH2O ð1Þ

Fig. 7 Homogenization
temperatures versus melting
temperature of ice for the
four structural levels studied
in the Apacheta deposit
(–250 m, SHA 28; –230 m,
SA 40; –200 m, SHA 12;
–30 m, SHA 3). In each
level, distinctions are made
for the nature of mineral
hosting the fluid inclusions
and for occurrence as
primary or secondary inclu-
sion

Fig. 8 Ternary CO2-H2S-N2 diagram showing composition of the
gaseous phase for the Vw-c fluids at three depth levels (–250 m,
SHA 28; –200 m, SHA 12; and –30 m, SHA 3)
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KAl3Si3O10ðOHÞ2þ6SiO2þ2HCO�
3 þ2Kþ

¼ 3KAlSi3O8þ2CO2ðgÞþ2H2O ð2Þ

Simmons and Browne (2000) show that platy calcite is
restricted to a vertical zone near the site of first boiling.
At Apacheta, platy calcite is mainly observed around
the –250 to –200 m depth levels, which corresponds
approximately to the maximum depth of precious-metal
mineralization and suggests the proximity of first boil-
ing.

Fluid evidence

Apart from mineralogical evidence, boiling is also
demonstrated by direct fluid-inclusion studies. The
presence of many fluid-inclusion planes containing only
Vw-c inclusions of similar size and Rv ratio is a strong
indicator of boiling as such filling cannot be linked to
necking-down phenomena (Bodnar et al. 1985).
Moreover, the coexistence of liquid-rich (Lw-c) and
vapor-rich (Vw-c) primary and secondary inclusions in
quartz from stage 2 suggests that boiling is not
restricted to this stage, but occurs repeatedly during
vein formation and probably during the main mineral-
deposition stage 3.

The vertical trend of the Th-Tm diagram (Fig. 10)
also suggests boiling (Hedenquist and Henley 1985b;
Simeone and Simmons 1999). During the boiling of a
gas-rich fluid, a small temperature drop involves a high

CO2 loss. The rapid loss of CO2, contributing strongly
to the apparent salinity (Bozzo et al. 1973; Collins
1979; Ramboz 1980; Hedenquist and Henley 1985a),
implies a near-vertical trend in the Tm-value evolution
(Hedenquist and Henley 1985b). Indeed, the vertical
pattern of the Tm-Th diagram in each sample at dif-
ferent depths (black arrow in Fig. 10) strongly suggests
a progressive boiling of the fluid with gas loss, implying
a gas-rich parent fluid of unknown composition. The

Fig. 9 Evolution of different parameters versus depth for SHA 28
(–250 m), SHA 12 (–200 m), and SHA 3 (–30 m) with from left to
right: type of mineralization, homogenization temperature (Th),
pressure and paleo-depth deduced from Th, and evolution of gas
contents of the volatile phase of the Vw-c fluids with the
logarithmic ratio of CO2/N2 and H2S/CO2

Fig. 10 Evolution of Tmice and Th for the Lw-c primary inclusions
for three depth levels. Black arrow shows the evolution within a
depth level, whereas grey arrow represents the global evolution of
fluids with depth
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more widely spaced Tm values for sample SHA 12
(–200 m actual depth) may indicate a zone of more
intense boiling.

Figure 9 shows the variation of different gas ratios
with depth for Vw-c inclusions. The continuous increase
of the CO2/N2 ratio towards the surface is commensu-
rate with the loss of N2 in the deeper levels. The H2S/
CO2 ratio is highest at the –200 m level; this gas content
variation can also be a sensitive indicator of boiling,
since the volatiles are fractionated into the vapor phase
according to their solubility (Giggenbach 1980; Henley
et al. 1984). H2S is the most soluble in liquid water,
followed by CO2, CH4, and N2 (Giggenbach 1980;
Drummond 1981; Drummond and Ohmoto 1985), and
during boiling the ratio between gases will change. The
evolution of different gas ratios with varying depth
(Fig. 9) is also consistent with the boiling origin of such
Vw-c fluids. The strong H2S enrichment observed at –
200 m (sample SHA 12) may indicate a level of intense
liquid-vapor separation, corroborating the more widely
spread Tm values (Fig. 10) and the fact that platy calcite
is found at this same level.

Environment of mineralization

Temperature

In view of the shallow formation depth of epithermal
deposits and the evidence of boiling, the temperature
corrections due to pressure are negligible and the trap-
ping temperatures of the hydrothermal fluids can be
considered as roughly similar to the homogenization
temperatures. The temperature conditions, given by
both the Lw-c and Vw-c fluids, are thus constrained
between 235 and 300 �C, with a decreasing temperature
from the deepest sample (–250 m actual depth) to the
shallowest sample (–30 m actual depth) (Fig. 9). This
upward temperature decrease reflects a steep thermal
gradient in the near-surface environment.

A gas geothermometer (Giggenbach 1981) was used
to confirm the equilibration temperature of the hydro-
thermal fluid at depth. For Giggenbach, the reactions
involving the breakdown of plagioclase to clay, calcite,
pyrite, and chlorite exert a temperature-dependent con-
trol on the CO2/H2S ratio in a geothermal system. The
temperature can also be calculated by the formula:

Tcs ¼� 6; 630= log XCO2
=XH2S

� �
� 14:1

� �
ð3Þ

where XCO2
and XH2S

are the mole fractions of CO2 and
H2S, and Tcs is the fluid temperature in degrees Kelvin.

The Tcs will vary with boiling since the gas ratios
will vary. However, such effects are partially offset by
the comparable solubility of these two gases and the
logarithmic term of the gas ratio (Hedenquist et al.
1992). Application of this geothermometer to several
H2S-rich Vw-c inclusions of level 5,050 m gives tem-
peratures in good agreement with the measured Th

(Table 5) as well as agreeing with similar values for
aqueous Lw-c fluids at the same depth level. As shown
by Sherlock et al. (1995), this implies that the Tcs
geothermometer is an efficient tool even in a boiling
system.

Pressure conditions

Pressure conditions were estimated with the Lw-c fluid
inclusions. The total fluid pressure is a function of the
vapor pressure of water and the partial pressure of gas,
since dissolved gases contribute to the total vapor
pressure of the system (Hedenquist and Henley 1985b;
Hedenquist et al. 1992; Barton and Chou 1993). Raman
spectroscopy detected only CO2 in the Lw-c inclusions,
and the fact that no clathrates are observed by mic-
rothermometry indicates that the CO2 content is below
3.7 wt% (Hedenquist and Henley 1985b). The maximum
contribution pressure of the gases is thus equivalent to
10.4 bars.

Based on this maximum value for the CO2 contri-
bution pressure, using the boiling curves provided by
Haas (1971) and assuming a 2 wt% NaCl fluid, the
maximum hydrostatic fluid pressures in this hydrother-
mal system were 84, 57, and 40 bars for, respectively,
present-day depth levels –250 m (SHA 28, average
Th: 290 �C), –200 m (SHA 12; average Th: 260 �C), and
–30 m (SHA 3; average Th: 235 �C).

Representative isochores have been drawn for the
Vw-c fluids using equations of state from Bowers and
Helgeson (1983), modified by Bakker (1999). However,
the lack of some microthermometric data (Tmice, Tfc,
ThCO2

), combined with the high vapor content and low
density of the volatile phase (ThCO2

<6 �C) of the
inclusions, requires some approximations in estimating
the global composition of the inclusions, thus leading to
more uncertainty for the pressure calculation than is
acceptable.

Paleo-depth estimates

Using the hydrostatic fluid pressures obtained above and
considering a hydrostatic pressure, we obtain estimated
paleo-depths of –860, –580, and –410 m below the paleo-
water table for the three samples. The calculated dif-
ference in paleo-depth between the two highest levels

Table 5 Temperatures (in �C) given by the Tcs geothermometer
(Giggenbach 1981) applied to several Vw-c fluid inclusions in the
H2S-rich level (5,050 m, sample SHA 12, –200 m actual depth)

CO2 H2S Log(CO2/H2S) Tcs (�C) Th

97.7 1.03 1.9899 274 253
85.5 6.70 1.1059 237 280
88.9 3.30 1.4304 250 278
95.7 0.7 2.1358 281 ?
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(580–410 m=170 m) agrees with the actual position of
these two samples in the mine (200–30 m=170 m), even
though the studied samples SHA 3 and SHA 12 are
not from the same vein. Once again, it validates the
assumption based on mineralogical work suggesting
identical mineralizing processes for most of the Apach-
eta veins (see above).

However, the estimated paleo-depth for the deepest
sample SHA 28 disagrees with its actual depth (860 m,
instead of the 630 m expected from the actual spatial
relationship of these three samples in the mine) (Fig. 9).
Three hypotheses can be proposed for explaining this
difference in height: (1) a later fault has affected the
mineralized system, with down-throw of the bottom of
the column that displaced the sample sites relative to
each other; (2) a local fluid overpressure has lead to an
erroneous and over-evaluated depth value; and/or (3) a
change has occurred in the pressure regime between the
top and bottom of the mineralized column, from litho-
static to hydrostatic fluid pressure during the mineral-
izing event. Based on our field experience and fluid
knowledge, the preferred interpretation for explaining
this 230-m height discrepancy is this last hypothesis of a
change in the pressure regime. Abundant hydrothermal
breccias, observed between 220 and 240 m actual depth
(Fig. 9), may express this change of pressure regime
from lithostatic to hydrostatic conditions.

Boiling and mineralizing processes

In most epithermal settings, gold and silver are most
efficiently transported as bisulfide complexes (Seward
1973, 1989; Romberger 1988; Shenberger and Barnes
1989; Hayashi and Ohmoto 1991), whereas base
metals are transported mainly as chloride complexes
(Seward 1973; Henley et al. 1984; Gammons and
Barnes 1989).

When boiling occurs in the deeper part of the system,
the pH will first increase due to CO2 loss [Eq. (1)],
leading to the destruction of chloride complexes and the
precipitation of base-metal sulfides [Eq. (4); Drummond
and Ohmoto 1985; Cole and Drummond 1986]:

MeCl2ðaqÞ þ H2SðaqÞ ¼ MeS þ 2Hþþ2Cl� ð4Þ

However, the first boiling cannot be the prime cause of
gold precipitation, because gold solubility initially
increases during this deep boiling (Fig. 11) due to the pH
and fO2 increases. H2S, more soluble than CO2 and N2,
is lost proportionally less than CO2. The first net effect
of boiling is thus a slight increase in gold solubility
(Fig. 11; Brown 1989; Seward 1989). Only when the loss
of H2S in the vapor phase becomes dominant over the
pH increase will gold precipitate. Gold deposition thus
occurs mainly in response to boiling through the loss of
H2S in the vapor phase and a drop in temperature
[Eq. (5); Brown 1989; Seward 1989; Hedenquist 1996;
Simmons and Browne 2000]:

AuðHSÞ�2 þ1
2H2ðgÞ¼ Au þHS�þH2SðgÞ ð5Þ

During a similar boiling event, sulfur-complexed species
will precipitate paragenetically later than chloride-
complexed sulfides, due to the slower loss of sulfur to the
vapor phase and the resulting decrease in sulfur fugacity
of the solution.

The variation in gas composition due to the differ-
ential fractionation of volatiles during boiling accounts
for the observed metal zoning in the Shila Apacheta
deposit. Phase separation (boiling) may start in the
deepest part of the system at about 250 m actual depth.
Overpressure at 200 m actual depth may occur, resulting
in rupture and hydrothermal brecciation. Rupture,
accompanied by a rapid drop in pressure, causes a
hydrothermal eruption and a catastrophic liquid-vapor
phase separation involving a very rapid and total loss of
volatiles from the liquid to the vapor phase. The high
H2S content of the vapor inclusions at the –200 m level
(Figs. 8 and 9) corroborates its depletion in the liquid
phase; this depletion will decrease the solubility of pre-
cious metals, which then can precipitate downstream in
the (ascending) fluids. The precious-metal mineralization
observed above –200 m actual depth at Shila Apacheta
is thus linked to physical and chemical changes in
the hydrothermal fluid, associated with liquid-vapor
separation in an upward boiling front.
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Fig. 11 Evolution of Au solubility, dissolved gas, and silica
solubility as a function of temperature and depth in geothermal
areas. Initial boiling and CO2 loss cause a pH increase, which
increases Au solubility as a bisulfide complex. However, in the end
the loss of H2S, the main Au ligand, overcomes the pH increase,
causing a rapid decrease in Au solubility and thus gold deposition
(Brown 1986)
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composition des fluides carboniques complexes, à l’aide des
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