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a b s t r a c t

Knowing the potential of natural resources associated with mining activity is critical to decision-
making especially at the exploration stage, this allows organizations to assess whether the area of
interest is viable, to continue with post-exploration processes of mining deposits. So, it is important
to get new exploration processes that cover very wide surfaces, be low-cost and reveal high reliability,
one of these alternatives is the use of satellite imagery based on the principles of spectral responses.
Therefore, The objective of the research was to search for a technique that considers the quantitative
criteria to relate and identify the objects by using the spectral response values whose spectral response
patterns are different, in an area whose cutting law for exploitation is feasible (zones of epithermal
alteration), with the spectral response values of compounds associated with alteration zones of the
United States Geological Survey (USGS), using two statistical criteria, correlation analysis and quadratic
mean error, which have revealed good performance in identifying objects from the comparison of spec-
tral responses.
� 2020 National Authority for Remote Sensing and Space Sciences. Production and hosting by Elsevier B.
V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
1. Introduction cover large areas and are available at low cost and others are free
The inhabitants of the Andean region of Peru have been engaged
in tasks related to goldsmithing since approximately 1700 years B.
C. (Aldenderfer et al., 2008). This indicates that exploration and
mining activities have developed since the Spanish invasion in
the Inca Empire, increasing production significantly. Between
2006 and 2015, the production of this mineral has increased and
now represents 5\% of world production and it is an important eco-
nomic contribution for Peru (OSINERMING, 2017). In addition, the
National Society of Mining, Petroleum and Energy (SNMPE) of Peru,
reported a production of approximately 149.85 tons of gold in the
year 2017. Moreover, mining is currently the economic sector that
contributes most to Peru’s gross domestic product.

On the other hand, the Peruvian Andes have scarce vegetation,
which leaves the outcrops and the soil exposed. This allows the
components of the soil surface to be assessed using indirect meth-
ods, the most applied method being the use of satellite images,
specifically for mining exploration, agriculture applications and
other purposes (Ninomiya, 2003; Sabbaghi & Moradzadeh, 2018).
This method offers optimal results at this stage, since these data
of charge. Furthermore, it is focused on the identification of areas
with epithermal and hydrothermal alterations (Ninomiya, 2003;
Sabbaghi & Moradzadeh, 2018; Sheikhrahimi et al., 2019).

In the last fifteen years, investigators have become interested in
using satellite images for activities associated with mining explo-
ration, as they have produced important results, especially hyper-
spectral and multispectral images such as the Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER),
launched in December 1999. This program captures surface data
with fourteen bands in different spectral regions: three bands in
the visible and near-infrared region, six in the mid-infrared region
and five in the thermal region (Abrams et al., 2002). The bands in
the mid-infrared and thermal regions have performed best in
assessing geological resources, and in identifying areas with
epithermal and hydrothermal alterations (Ninomiya, 2003; Pour
& Hashim, 2012; Testa et al., 2018).

At the same time, some investigations have been focused on
confirming and searching for new digital image processing tech-
niques, using multispectral data to locate and explore hydrother-
mal and epithermal zones using various methods. In this sense,
the Ratio Analysis, Mineralogical Indices, Band Combination, Prin-
cipal Component Analysis (PCA), Minimum Noise Fraction, Pair-
wise Filter Processes, Spectral Profiling, have proven to be the
most convenient methods (Gabr et al., 2010; Ji et al., 2011; Pour
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& Hashim, 2011). In addition, the ACP method, initially developed
and applied for biophysical assessments, has also shown significant
results in the mining exploration process (Loughlin, 1991; Zhang &
Zhou, 2017).

On the other hand, the presence of clay minerals, associated
with zones of hydrothermal and epithermal alteration, have shown
certain features. For example, alunite [KAl3(SO4)2(OH)6] and jaro-
site [KFe33+(SO4)2(OH)6] are agglomerated within the group of
sulphate minerals, where alunite formation occurs in volcanic
environments as a result of intense leaching. It is also possible to
find these compounds in the fumaroles and in areas of high sulfi-
dation (Pirajno, 2009). The clay minerals associated with jarosite
are usually formed due to the alteration of aluminum oxide
(Al2O3) and silica (SiO2) compounds, which are found in felsic
rocks —such as feldspars— after contact with acidic fluids
(Dutrizac & Jambor, 2000).

The reflectance values for alunite and jarosite in the visible and
near-infrared region are high, i.e. in bands 1, 2 and 3 of the ASTER
image, and in bands 5 and 8 the reflectance values are low (Pour &
Hashim, 2012; Modabberi et al., 2017; Rajendran & Nasir, 2017).
Kaolinite has high values of reflectance in the near-infrared region,
including the 1.4 um region, and reflectance is low in the mid-
infrared region (Ninomiya, 2003; Modabberi et al., 2017;
Masoumi et al., 2017). Also, compounds with predominant cations
or positive ions (OH) or hydroxyl ion index (IHO) —mainly kaolin-
ite, alunite and montmorillonite— show high absorption in band 6
of the ASTER image (Baldridge et al., 2009; Pour & Hashim, 2012).
Furthermore, the reflectance of these clay minerals is high in band
4 and band 7 in the ASTER sensor images (Ninomiya, 2003;
Baldridge et al., 2009; Pour & Hashim, 2012). In contrast, calcite
in band 5 and band 8 of the ASTER image is highly absorbed
(Ninomiya, 2003; Baldridge et al., 2009; Zhang & Zhou, 2017).
Propylic-type mineralizations have high reflectance values in the
2.20 mm spectral region and high absorption in the 2.17 mm. This
phenomenon occurs due to the high electron vibration in the min-
erals with predominance of (Fe-O-H), (Mg-O-H) and (CO3), making
the absorption values also high in band 6 and band 8 of the ASTER
image (Zhang & Zhou, 2017).

Some investigations have carried out interpretation based on
the bands of the mid-infrared region, which has produced signifi-
cant results (Ninomiya, 2003; Baldridge et al., 2009; Zhang &
Zhou, 2017). However, few investigations have considered the par-
ticipation of the mid-infrared and near-infrared bands, and these
data also have a high potential to predict or identify objects from
spectral responses. In this sense, the purpose of the research was
to assess three comparison criteria. Quantitative data was used
to identify the objects at the mining site, through spectral
responses of different patterns captured by the ASTER image. Also,
the spectral response of some components associated with epither-
mal and hydrothermal alteration zones from the United States
Geological Survey (USGS) spectral library was used.

To reduce the levels of uncertainty in this process, a known area
was chosen, where a mining company has been carrying out explo-
ration and exploitation since 2008. This company has reported that
the research area on average presents concentrations varying
between 0.54 and 0.67 g of gold per ton (Seers et al., 2018). There-
fore, this area is a strategic place to test algorithms and develop
mining exploration methodologies using satellite images.
2. Materials and methods

2.1. Location

The area where the research was conducted is located in the
Andean mountains. It shares borders with the states of Lima, Junín
and Huancavelica, Peru, Fig. 1 sub-figure (a). Its geographical coor-
dinates are 12�33059,1000 S; 75� 34013,8700 W and it is located at an
average altitude of 4800 m above sea level (masl). The study zone
is composed of Caudalosa (Nm-qua) geological formations, which
are composed of interspersed andesitic flows, with andesitic brec-
cias and tuffs; andesitic domes (N-dmand) formations originated
by slow volcanic eruption processes; sacsaquero (P-s) formations,
composed of gray porphyritic andesite, pinkish to brownish crystal
tuffs and subordinate sandstones; glacier-type formations (Q-gl),
composed of moraine deposits, angular blocks filled with clays,
silts and sands; castrovirreyna formation (PN-cas), composed of
andesites, agglomerates, tuffs and red sandstones. In the surround-
ing areas there are formations of this type: Goyllarisquizga group
(Ki-g), Glacial deposit, fluvial (Q-glfl), Huayta volcanic center -
andesite lava (N-huay-and); Huayta volcanic center - undifferenti-
ated tuff (N-huay-tb) and others; image (b) of Fig. 1 (GEOCATMIN,
2019).

More detailed studies have found evidence of acidic volcanic
rock formations, cylindrical volcanic breccias, pyroclasts and tuffs,
typical zones of epithermal mineralization, composed by associa-
tion of native silica sulphide minerals - porous alunite. In the
higher parts there are silica outcrops (vuggy silica). There is a high
probability of concentrations of alunite, jarosite, kaolinite, pyro-
phyllite and pyrite. These outcrops are aligned in a northwest-
southwest direction. In addition, there is evidence of hydrothermal
fluid systems, which are responsible for mineralization. They are
located at the intersection of regional geological formations, specif-
ically on fault lines running northwest to southwest and east to
west (Seers et al., 2018).

2.2. Data

The data used in the investigation were satellite images from
the ASTER sensor, which corresponds to the granule
ASTB070608152833 captured on June 8, 2007. These data have
14 bands in different spectral regions, of which three bands in
the infrared region and six bands in the near and mid-infrared
region were used, even though mining activities had not yet
started in the area of interest. These images were downloaded from
the Japanese’s Ministry of Economy, Trade and Industry (METI)

satellite file system website, which is available at: https://gbank:

gsj.jp/madas/map/index.html.
In addition, spectral response data was downloaded for some

clay minerals highly associated with epithermal and hydrother-
mal alteration zones belonging to the sulphate group, such as
kaolinite CM 511,846 (CAOL); alunite (ALU); muscovite GDS
107; (MUSCO); altered volcanic rock (AVR); alunite, kaolinite
and muscovite (ACM) with proportions of 33% for each compo-
nent; alunite (KNa) composed of potassium (K) and sodium
(Na), with proportions of 35% and 65% respectively; alunite, mus-
covite and pyrollite (AMP) with proportions of 30%, 40% and 30%
respectively; alunite and kaolinite (AC) with proportions of 50%
for each component; ammonium and jarosite (AMJA) with
proportions of 50% for each component; from the United States
Geological Survey (USGS) spectral library, which is available at:
https://pubs. usgs.gov/of/2003/ofr-03–395/datable.html as shown
in image (c) of Fig. 2.
3. Method

3.0.1. Process from images

The satellite image data were initially in digital values, so it was
necessary to convert them into reflectance values. The process con-
sists of the transformation from digital level to radiance level, and

https://gbank%3agsj.jp/madas/map/index.html
https://gbank%3agsj.jp/madas/map/index.html
https://pubs


Fig. 1. (a) Indicates the location of the study area; (b) shows the map of geological units of the research area.
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from radiance values to reflectance values (Abrams et al., 2002;
Arai et al., 2010). This process was conducted using the program
R Package, in order to obtain values of the pixels associated to
the intrinsic property of the objects at surface level.

After confirming the correct conversion process of the reflec-
tance values on the images, the RGB combination processes were
performed using the bands (4, 3 and 2) respectively. This is due
to the fact that this combination has made it possible to expose a
greater number of tones to differentiate the objects, so that they
can be differentiated visually more easily, as shown in image (a)
in Fig. 2. Then, 50 pixels with similar spectral responses were
selected. They were called patterns since they have similar spectral
behaviors, image (a) of Fig. 2. Based on the data of each spectral
region, the average value in each region of the spectrumwas calcu-
lated, obtaining the average spectral response of each zone as
shown in image (b) of Fig. 2.



Fig. 2. Behavioral patterns of spectral responses of objects associated with epithermal and hydrothermal zones: a) indicates the location of the pixels selected for the
evaluation of spec-tral responses; b) presents the patterns of spectral response behavior of the selected areas; c) the spectral response of some minerals of clay associated
with epithermal and hydrothermal areas, source: USGS; d) present the pattern of simplified behavior of spectral responses de-rived from the USGS, of some clay minerals
associated with epithermal and hydrothermal areas, which corresponds to the Average wavelength of the ASTER sensor bands.
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3.0.2. Process from spectral signatures

The spectral response data from the USGS library were initially
composed of very high spectral resolution values. Therefore,
approximately 480 values of reflectance were generated between
0.205 mm and 2.976 mm, which allows the generation of a very
detailed spectral response as shown in image (c) in Fig. 2. However,
ASTER images between the mentioned region only show 9 values
of reflectance. Thus, in order to compare these spectral responses,
it was necessary to perform some previous operations.

First, the central value of the spectral region of each ASTER sen-
sor band in the near and mid-infrared regions was calculated. After
knowing the central values, those spectral regions were located in
the spectral library of each selected compound to obtain the reflec-
tance values of the compounds in nine spectral regions. In this way,
simplified spectral responses derived from these compounds were
obtained, from the spectral response of the USGS library as shown
in image (d) of Fig. 2, with the purpose of comparing the reflec-
tance values of the selected patterns in the ASTER image with
the reflectance values of the USGS library, again showing this pro-
cess in the ENVI academic version software.

3.0.3. Data comparison analysis

For the process of comparing reflectance values three compar-
ison criteria were developed: first, the correlation analysis; second,
the calculation of the mean squared error; and third, the equation
of the Spectral Angle Mapper proposed by Kruse et al. (1993).

With this in mind, the processes for the calculation of the cor-
relation analysis were carried out, applying equation (1). The mean
spectral response values of the objects named (zones) were used
with the spectral response values of the selected compounds from
the USGS spectral library, see Fig. 2. This process was executed in
the R Packages program. Prior to the above process, standardiza-
tion tests were carried out, as the data analyzed did not have a nor-
mal distribution. Once the normalized data were obtained, the
correlation analysis was performed by applying the following
expression:

r ¼ n
P

XiYi�PðXiÞPðYiÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

X2
i � ðPX2

i Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
P

Y2
i � ðPY2

i Þ
q ð1Þ

where: r is the value of the correlation coefficient, Xi and Yi are the
values of the variables and n is the amount of data in the sample.

After having concluded the correlation analysis of the spectral
response of the training zone against the spectral response of the
compounds associated with epithermal and hydrothermal zones,
the second statistical test, the Root Mean Square Error (RMSE),
was carried out. This method has produced important results in
the application of spatial data to assess the accuracy of proximity
from one point to another (Perez et al., 1997; Michishita et al.,
2012). The following expression was used:

D ¼ ½
X
i

ðXi� XÞ�2 þ ½
X
i

ðYi� YÞ�2
( )0:5

ð2Þ

where: D, is the average distance of the training data set from the
test data set; Xi, Yi are the mean values, X is the data set associated
with wavelength values and Y is the data set associated with spec-
tral response values.
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To strengthen the interpretation of the results, the sum of the
acute angles of the extremes, plus the sum of the lesser angles of
the 360� turn of the vertices of the spectral responses of the pixels
in the training area, was calculated and compared with the angles
of the vertices of the spectral response of the objects associated
with the test. This method has similar criteria to the algorithm
developed by Kruse et al. (1993). This process was performed con-
sidering the criterion of Euclidean n-dimensional space (Marsden
et al., 1991), which is expressed as follows:
Fig. 3. Methodological scheme to identify patterns by spec
X
h ¼

X
ArCos

v � l
vj j lj j ð3Þ
where: h, is the acute angle of the complement of the vertices that
are located at the ends of the line of the spectral profile. In addition,
h is the lesser angle of the full 360-degree turn of the vertices that
are located in the intervals of the spectral response; m ⁄ m is the pro-
duct of the vectors; and || v || y || m ||, are the length of the vectors
(Fig. 3).
tral responses in epithermal and hydrothermal areas.
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4. Results and discussions

The following are the most important results of the assessment
for the identification of objects associated to epithermal alteration
zones and their comparison with the spectral response of the train-
ing zones obtained from the ASTER image.
4.1. Spectral response analysis

The behavior of the spectral responses of the selected objects
(zone 1, zone 2, zone 3 and zone 4) have different profile patterns,
see image (b) in Fig. 2. In band 1 and band 2, the objects corre-
sponding to zone 1 have a positive spectral slope; the objects in
zone 2 have a slightly positive slope; and the reflectance values
of zone 2 are high. This means that objects associated with the
set of pixels have higher reflectivity (Rockwell, 2009). However,
objects in zone 3 and zone 4 in the above-mentioned bands have
negative spectral slopes.

From the visual analysis, the behavior of the spectral response
of zone 1 shows some similarity with the spectral behavior of jar-
osite ammonium, where the slopes in band 1–2; band 2–3; band
3–4; band 4–5; band 7–8 and band 8–9 have values with the same
sign, i.e. positive or negative slope. Also, zones 2 and 3 show sim-
ilar slopes to the spectral response of ALU, AVR and AMP, between
band 1–2, band 4–5, band 5–6, band 6–7, band 7–8 and band 8–9
respectively. This is also consistent with the spectral response
reported by Rockwell (2009) in relation to clay minerals (alunite).

The absorption values of the training objects in the spectral
region corresponding to band 3 (0.76–0.86) mm, were high with
respect to band 1 (0.52–0.62) mm and band 2 (0.63–0.69) mm. This
differs from the spectral behavior of the test objects. However, the
spectral response patterns in the mid-infrared region of the objects
associated with training zones, with the test objects, had more
similarity considering the visual analysis criterion. That is, the
absorption values in band 4 (1.60–1.70) mm were low for all train-
ing zones, evidencing less absorption in zone 2.

In band 5 (2,145–2,185) mm and band 6 (2185–2225) mm the
absorption values were higher. This is consistent with the findings
of (Modabberi et al., 2017), who associate them to alunite and
kaolinite and montmorillonite. On the other hand, absorption val-
ues in band 7 (2235–2285) mm for all samples were high, evidenc-
ing less absorption in zone 2. In band 8 and band 9 the absorption
values were also high, confirming the findings of (Modabberi et al.,
2017; Masoumi et al., 2017), who associate them with muscovite,
kaolinite, montmorillonite and alunite.
Table 1
Correlation of spectral response values of some components that correspond to areas of e

CAOL. ALU. MUSCO RVA

Zona1 0.63 0.65 0.44 0.64
Zona2 0.71 0.75 0.28 0.69
Zona3 0.68 0.72 0.24 0.65
Zona4 0.16 0.12 0.37 0.10

Table 2
Presents the mean square error (RSME) values, calculated between the values of spectral re
of the selected areas.

Zonas CAOL. ALU MUSCO RVA

Zona 1 404.18 332.14 455.42 277.96
Zona 2 296.90 249.08 378.88 180.46
Zona 3 316.60 221.77 354.67 135.81
Zona 4 263.12 183.89 338.28 94.40
4.2. Correlation analysis

From the correlation analysis of the spectral responses of the
objects associated to zones 1, 2, 3 and 4, against the spectral
response of the objects associated to clay minerals —which have
a high probability of being located in epithermal and hydrothermal
zones— it was found that zone 2 has high correlation with the clay
minerals of AC, ALU and ACM, whose values are: 0.76 , 0.75 , 0.73
respectively. Likewise, zone 3 also shows a close relationship with
AC and ALU, this value being 0.72 for each compound, see Table 1.

Also, some training zones —such as zone 1, zone 2 and zone 3—
show relatively high or moderate correlation (Martínez Ortega
et al., 2009) with CAOL, AVR, and ACM clay minerals, as shown
in Table 1. Thus, it allows to confirm what was found (existence
of alunite and quartzite and high-sulphidation oxides on the sur-
face of the study area) in the technical report submitted by the
organization currently engaged in the mining process (Seers
et al., 2018).

4.3. Root mean square error (RMSE) analysis

Based on the RMSE assessment of the spectral response of the
objects associated with the training zones (zone 1, zone 2, zone 3
and zone 4), compared to the spectral response of the objects
associated with a high probability of clay minerals in epithermal
and hydrothermal alteration zones, the one with the least bias in
zone 1 corresponds to the minerals associated with jarosite
ammonium (sulphate group), and is probably related to a high
polymetallic mineralization (Gonzales, 2015). The same is true
for AMP compounds, which correspond to areas of advanced
argillic alteration, see Table 2. Similarly, characterization studies
have revealed the existence of gold and silver in the research area
(Seers et al., 2018).

Zone 2 and Zone 3 have less bias with the clay minerals associ-
ated with AC and ALU, whose values are 0.073 and 0.077 for Zone 2
and 0.085 and 0.090 for Zone 3, respectively. Similarly, there is less
deviation with compounds associated with ACM and RVA. This
again confirms the results of this statistical method, with results
that have been revealed in the detailed characterization studies
conducted by the organization currently performing the mining
processes (Seers et al., 2018).

4.4. Analysis of angle calculation through vectors

Based on the analysis of Table 3, the sum of the lesser angles of
the vertices, both of the complement and the conjugate, show
pithermal alteration, with values of spectral responses of areas of training.

ACM AKNa AMP AC AMJA

0.65 0.67 0.59 0.65 0.60
0.73 0.67 0.50 0.76 0.38
0.69 0.63 0.45 0.72 0.33
0.12 0.07 0.39 0.06 0.36

sponse derived from the spectral library, with respect to the response values spec-tral

ACM AKNa AMP AC AMJA

378.14 244.10 331.72 307.82 285.22
280.12 225.52 243.24 246.42 279.24
272.52 199.45 226.53 210.33 337.49
266.78 234.40 176.82 239.36 355.78



Table 3
Presents the values of the difference of the sum of the angles of the vertices of objects associated with test areas with training objects.

Zonas CAOL. ALU MUSCO RVA ACM AKNa AMP AC AMJA

Zona 1 404.18 332.14 455.42 277.96 378.14 244.10 331.72 307.82 285.22
Zona 2 296.90 249.08 378.88 180.46 280.12 225.52 243.24 246.42 279.24
Zona 3 316.60 221.77 354.67 135.81 272.52 199.45 226.53 210.33 337.49
Zona 4 263.12 183.89 338.28 94.40 266.78 234.40 176.82 239.36 355.78

Fig. 4. shows the spectral responses of the training objects called as (zones) and the spec-tral responses of objects called as evidence.
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greater similarity between zone 4, zone 3, zone 2 and RVA. Also,
there is a certain level of similarity between zone 4 and AMP, zone
3 and AKNa. The most biased are the spectral response angles of
zone 1 with muscovite and kaolinite, zone 3 with MUSCO and with
AMJA, and zone 4 with AMJA. However, there is no similarity
between the angles and the objects within the research area (alu-
nite) (Seers et al., 2018).

The inconsistency of the angles between the test objects and the
training objects is probably due to the definition of the inflection
point in a very sharp region of the spectrum (spectral region
defined as the inflection point, spectral response associated with
the central value of the wavelength of each ASTER sensor band).
This is because the spectral response of the objects captured by
the ASTER sensor, called training zones, are average values cap-
tured in relatively large regions (the width of the sections of the
spectral regions is greater than 40 nm). In contrast, the spectral
response of the test objects have values in very short sections of
the spectral regions, approximately every two nanometers (Figs. 3
and 4).
5. Conclusions

Statistical tests of Pearson’s correlation analysis and root mean
square analysis showed similar results, suggesting a high probabil-
ity of compounds associated with ALU, AC of proportions of 50% for
each component, in zone 2 and zone 3, respectively. This is consis-
tent with the information described in the studies conducted by
the organization that currently carries out the mining processes.

Angle comparison analysis in band 1 and band 9 and conjugate
angles in the regions of the bands located in the intermediate did
not produce significant results in the identification of objects
through comparison. On the contrary, it creates a greater uncer-
tainty regarding the comparison of spectral responses.

This technique has produced important results in the process of
identifying epithermal and hydrothermal alteration zones. In this
sense, it is convenient to carry out the validation in other areas,
where the features of the object being studied are similar to the
evaluated area.
The data captured by the ASTER sensor comprise an important
source for mining exploration studies, since they allow efficient
identification of areas with high potential for epithermal and
hydrothermal alteration. Likewise, they allow the recognition of
large areas, making the exploration processes associated with min-
ing and geological management more efficient and cost-effective
from a technical approach.
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