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U-Pb Zircon Geochronology and Nd Isotopic Signatures of the Pre-
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Accretionary Orogen on the Northwest Margin of Gondwana
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A B S T R A C T

This study integrates U-Pb zircon geochronology (from LAM-ICP-MS, SHRIMP, and TIMS) with Nd isotopic data
from orthogneisses and metasedimentary rocks of the pre-Mesozoic basement of the eastern Peruvian Andes to provide
new information on the tectonic evolution and Neoproterozoic-Paleozoic paleogeography of this segment of the proto-
Andean margin. A high-grade orthogneiss unit yields U-Pb zircon protolith crystallization ages of ∼613 Ma. It was
metamorphosed and intruded by an Early Ordovician granitoid. Subsequently, two different volcano-sedimentary
sequences were laid down and metamorphosed, probably as a consequence of terrane accretion. The older sequence
was deposited and metamorphosed between 450 and 420 Ma, and the younger one was deposited after 320 Ma and
metamorphosed at 310 Ma. U-Pb detrital zircon age patterns from the two sequences are within the age intervals
315–480, 480–860, 960–1400, and 11400 Ma. These data strongly suggest geological and spatial links between the
different units, implying the existence of active magmatism contemporaneous with the reworking of previously formed
orogenic complexes. Mesoproterozoic and older ages suggest that the detrital sources are on the western margin of
Gondwana, near the Amazonian Craton and/or other Grenvillian-type domains, such as those found within the Andean
belt. Neoproterozoic to Ordovician zircons suggest that this crustal segment was formed on an active margin along
the western side of the Amazonian Craton. Whole-rock Nd isotope data from metasedimentary rocks of the two
younger units yield �Nd (450 Ma, 310 Ma) values between �6.3 and �13.2 and Sm-Nd TDM model ages between 1.6 and 2.1
Ga. The comparison of the Nd isotope record with the U-Pb detrital zircon data suggests that recycling of older crust
was an important factor in the growth of the central Peruvian segment of the proto-Andean margin during the
Proterozoic and the Early Paleozoic. Different tectonic and paleogeographic models are discussed in light of the new
data presented here.

Online enhancements: appendix tables.

Introduction

The Neoproterozoic to Late Paleozoic tectonic evo-
lution of the proto-Andean margin has been in-
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cluded within the large-scale Terra Australis orogen
(Cawood 2005), a major tectonic belt that extends
more than 18,000 km along the Pacific margin of
Gondwana, from South America to Australia. The
growth of this orogen is related to continuous ocean
convergence following breakup of Rodinia and the
formation of the paleo-Pacific and Iapetus oceans,
and culminates with the assembly of Pangaea and
the Gondwanide-Alleghenian orogenic event.

Despite considerable advances in the understand-
ing of several elements of this margin, the timing
and episodes of arc formation and oceanic plate
convergence versus terrane accretion or dispersion
are issues that are not fully resolved. The tectonic
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Figure 1. Geochronological provinces of the Amazonian Craton and pre-Mesozoic Andean inliers, including the Mar-
añon Complex (modified from Cordani et al. 2000). Published Paleozoic and Precambrian U-Pb crystallization ages from
Peru are after Dalmayrac et al. (1988); Wasteneys et al. (1995); Loewy et al. (2004); Chew et al. (2007b).

evolution of the proto-Andean margin has impli-
cations for paleogeographical reconstructions, re-
gional correlation of orogenic phases, and the evo-
lution of ancient margins in general (Pankhurst and
Rapela 1998; Keppie and Ramos 1999; Ramos 1999,
2004; Lucassen and Franz 2005).

Along the eastern Peruvian Andes, between 6�S
and 12�S a major pre-Mesozoic metamorphic and
magmatic province crops out (fig. 1). This segment

of the proto-Andean margin has been the focus of
recent research (Cardona et al. 2006, 2007; Chew
et al. 2007b; Ramos 2008a). It has major implica-
tions for the Neoproterozoic paleogeography of the
western Amazonian Craton during Rodinia
breakup (Chew et al. 2008), the formation and drift
of para-autochthonous Gondwanide terranes, and
the Late Paleozoic transition from Laurentia-Gond-
wana tectonic interactions in the northern Andes
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and the major Gondwanide orogenic cycle to the
south (Bahlburg 1993; Ramos and Aleman 2000;
Cawood 2005; Murphy et al. 2004; Ramos 2008a).

Detrital U-Pb zircon geochronology and Sm-Nd
whole-rock isotopic analyses from sedimentary
rocks are valuable tools for tectonic, stratigraphic
and provenance studies (see McLennan et al. 1993;
Dickinson and Gehrels 2001; Fedo et al. 2003).
When integrated with U-Pb zircon magmatic and
metamorphic crystallization ages, they provide a
robust tectonostratigraphic framework to trace the
evolving nature of an orogen.

In this article, we integrate U-Pb laser ablation–
multicollector–inductively coupled plasma–
mass spectrometry (LAM-ICP-MS) and SHRIMP
measurements on detrital zircons, whole-rock Sm-
Nd analyses from metasedimentary rocks, and U-
Pb SHRIMP and TIMS zircon crystallization ages
from gneisses and granitoids from the pre-Triassic
metamorphic basement of the eastern Peruvian An-
des at ∼10�S (fig. 2). These data are used to constrain
the sedimentary, magmatic, and metamorphic evo-
lution of this segment of the proto-Andean margin.

Geological Setting of the Peruvian Andes. The cen-
tral Peruvian Andes between 6�S and 14�S (fig. 2)
correspond to one of the present-day flat-slab sub-
duction segments below the Andean chain. Its geo-
logical framework includes a prominent Late Me-
sozoic to Cenozoic volcano-sedimentary and
plutonic belt in the Western Cordillera and adja-
cent coastal regions (Pitcher and Cobbing 1985; Be-
navides-Cáceres 1999). Controversy remains about
the nature of the basement within this region.
Some authors favor the absence of continental base-
ment (Polliand et al. 2005), while others suggest
that the available geological and geophysical evi-
dence points to a sialic substrate (Ramos 2008a).

Sedimentary, plutonic, and metamorphic units
attributed to Paleozoic or older pre-Andean cycles
are confined to the Eastern Cordillera (fig. 2). The
sedimentary units include fossiliferous Ordovician,
Mississippian, and Late Permian sequences (Dal-
mayrac et al. 1988; Zapata et al. 2005), whereas
magmatic rocks range in age between the Ordovi-
cian to Early Triassic (Macfarlane et al. 1999; Mis-
kovic et al. 2005; Cardona 2006; Chew et al. 2007b).
An extensive but discontinuous series of meta-
morphic units is also exposed in the core of the
Eastern Cordillera. Commonly referred to as the
Marañon Complex (Wilson and Reyes 1964), this
belt was initially considered pre-Ordovician (prob-
ably Neoproterozoic) based on local exposures of
undeformed Ordovician rocks and a Neoprotero-
zoic U-Pb zircon lower intercept age from a mig-
matitic paragneiss (Wilson and Reyes 1964; Dal-

mayrac et al. 1988). However, the results presented
here, combined with recently published geological
constraints from other segments of the Eastern Cor-
dillera (Chew et al. 2007b), demonstrate the exis-
tence of a more complex Paleozoic tectonic
evolution.

Other Proterozoic, Paleozoic, and Triassic plu-
tonic and metamorphic domains, such as the Illes-
cas Massif and the Arequipa-Antofalla terrane, are
exposed in the coastal region of Peru (fig. 2; Was-
teneys et al. 1995; Loewy et al. 2004; Chew et al.
2007a; Cardona et al. 2008). Late Mesoproterozoic
granulite-facies rocks, which are probably part of
the Amazonian Craton, have also been reported
from the Picharı́ river in the Amazon region of Peru
(fig. 2; Dalmayrac et al. 1988).

The Marañon Complex. The term “Marañon
Complex” has been commonly used in the geolog-
ical literature to include all metamorphic basement
rocks of the Eastern Cordillera (Wilson and Reyes
1964; Dalmayrac et al. 1988). This composite unit
discontinuously extends for more than 500 km be-
tween 6�S and 12�S (fig. 2) and includes various low-
to middle-grade metamorphic belts of volcano-
sedimentary origin. Higher-grade domains are
restricted in extent. Stratigraphic relations include
local unconformities with overlying Ordovician,
Carboniferous, or Permian sediments and intrusive
contacts with Late Paleozoic granitoids (Wilson and
Reyes 1964; Dalmayrac et al. 1988; Cardona 2006;
Chew et al. 2007b).

Previous temporal constraints for the geologic
evolution of this metamorphic basement were
based on regional extrapolation of local unconfor-
mities with the Early Ordovician fossiliferous sed-
iments, and the previously mentioned Neoprote-
rozoic U-Pb zircon lower intercept age from a
migmatitic paragneiss. This loosely constrained ca.
630–610-Ma age was considered as evidence for a
Neoproterozoic orogeny on this segment of the
proto-Andean margin (Dalmayrac et al. 1988).
However, as discussed here and also presented by
Cardona et al. (2007) and Chew et al. (2007a), this
metamorphic basement include several units with
a more complicated Neoproterozoic to Late Paleo-
zoic geological record.

Local Geology and Sampling Constraints. The
Marañon Complex was sampled close to the towns
of Huánuco and La Unión at ∼10�S, (fig. 3). This
region is where the unconformable relationships
with fossiliferous Paleozoic rocks as well as the
610–630-Ma U-Pb zircon age of Dalmayrac et al.
(1988) were originally reported. Zircons from 10
samples of metasedimentary and metaigneous
rocks were selected for U-Pb analysis by different
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Figure 2. Pre-Mesozoic plutonic and metamorphic rocks of the Peruvian Andes.

techniques (fig. 3), while 18 metasedimentary
whole-rock samples were analyzed for Sm-Nd iso-
topes (fig. 3).

Based on lithostratigraphic correlation and local
relationships with Paleozoic sedimentary rocks, we
divide the Marañon Complex into four main units

(fig. 3). (1) A small inlier of amphibolite-facies
gneisses yields peak metamorphic temperatures of
590�–615�C (Cardona et al. 2007) and is intruded
by a mylonitized granitoid. This inlier is enclosed
within unit (2), a belt of micaceous schists with
sporadic intercalations of metabasite and calc-sil-



Journal of Geology G R O W T H O F A G O N D W A N A N A C C R E T I O N A R Y O R O G E N 289

Figure 3. Geological map of the Marañon Complex in the Huánuco–La Unión regions (modified from Cobbing and
Sanchez 1996a, 1996b; De la Cruz and Valencia 1996; Quispesivana 1996; Martinez et al. 1998).

icate rocks, defined here as the Eastern Schist Belt
(ESB). Metamorphic grade varies from lower green-
schist to amphibolite facies, with calculated PT
conditions ranging from 3–5 kbar and 350�–450�C

to 7–10 kbar and 540�–660�C. These peak meta-
morphic assemblages are in turn affected by a
lower-grade greenschist-facies crenulation cleavage
(Cardona et al. 2007). Mafic and ultramafic rocks
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crop out as discontinuous lenses along the eastern
margin of this belt (Grandin and Navarro 1979).
Fossiliferous Carboniferous sedimentary rocks un-
conformably overlie the eastern schists (Dalmaryac
et al. 1988). (3) A series of isolated migmatite bodies
is spatially linked to some undeformed granitoids
that outcrop within the ESB. (4) A western belt of
mica schists, referred to here as the Western Schist
Belt (WSB), is characterized by significant interca-
lations of metabasite. Metamorphic grade is mainly
in the greenschist facies, with peak metamorphic
conditions of 3–4 kbar and 350�–400�C (Cardona et
al. 2007). This belt is covered by Permian sedi-
mentary rocks. Minor remnants of ultramafic rocks
with associated phyllites and slates that crop out
on the eastern margin of the western schists are in
thrust contact with Carboniferous sediments of the
Ambo Group (Grandin and Navarro 1979).

Triassic granitoids clearly intrude both eastern
and western schist belts (Cardona 2006). The west-
ern belt is separated from the eastern belt by un-
deformed Carboniferous sedimentary rocks of the
Ambo Group and remnants of weakly deformed
fossiliferous Ordovician rocks (Dalmayrac et al.
1988). Geochemical constraints from the metavol-
canic units combined with Ar-Ar and Rb-Sr geo-
chronology suggest that the protoliths of the two
belts were deposited in an arc-related setting and
that they experienced major metamorphic events
during the Silurian (eastern schists, ∼420 Ma) and
Late Carboniferous (western schists, 300–310 Ma;
Cardona 2006; Cardona et al. 2007). A garnetiferous
gneiss associated with a banded migmatite body in
the ESB sampled at the the same locality where
Dalmayrac et al. (1988) report their Neoproterozoic
metamorphic age yielded a Sm-Nd garnet-whole-
rock isochron of ca. 295 Ma (Cardona 2006).

Analytical Techniques. Zircon separates and
whole-rock powders were prepared following stan-
dard procedures at the laboratories of the Geochro-
nological Research Center of the University of São
Paulo (CPGeo-USP) and also following Basei et al.
(1995) and Sato et al. (1995). All radiometric data
used the decay constants listed in Steiger and Jäger
(1977). U-Pb concordia ages and relative probability
diagrams were calculated using the program Iso-
plot/Ex 3.0 of Ludwig (2003). Tables A1 and A2,
available in the online edition or from the Journal
of Geology office, show the U-Pb analytical results
and the Sm-Nd isotopic data, respectively.

U-Pb LAM-ICP-MS Analyses

U-Pb analyses were undertaken at the University
of Arizona LaserChron laboratory following the

procedures described by Gehrels et al. (2006). Un-
knowns and standard zircons were mounted in the
central portion of the mount area to reduce possible
fractionation effects. The grains analyzed were se-
lected randomly from the zircon population on the
sample mount. In detrital samples, grain cores were
analyzed to avoid possible thin metamorphic over-
growths. Zircon crystals were analyzed with a VG
isoprobe multicollector ICP–MS equipped with
nine Faraday collectors, an axial Daly collector, and
four ion-counting channels. The isoprobe is
equipped with an ArF excimer laser ablation sys-
tem, which has an emission wavelength of 193 nm.
The collector configuration allows measurement of
204Pb in the ion-counting channel while 206Pb, 207Pb,
208Pb, 232Th, and 238U are simultaneously measured
with Faraday detectors. All analyses were con-
ducted in static mode with a laser beam diameter
of 35–50 m, operated with an output energy of ∼32
mJ (at 23 kV) and a pulse rate of 8 Hz. Each analysis
consisted of one 20-s integration on peaks with no
laser firing and 20 1-s integrations on peaks with
the laser firing. Hg contribution to the 204Pb mass
position was removed by subtracting on-peak back-
ground values. Interelement fractionation was
monitored by analyzing an in-house zircon stan-
dard, which has a concordant TIMS age of

Ma (2j; Gehrels et al. 2008). This stan-563.5 � 3.2
dard was analyzed once for every five unknowns
in detrital grains. U and Th concentrations were
monitored by analyzing a standard (NIST 610
Glass) with ∼500 ppm Th and U. The Pb isotopic
ratios were corrected for common Pb, using the
measured 204Pb, assuming an initial Pb composition
according to Stacey and Kramers (1975).

The uncertainties on the age of the standard, the
calibration correction from the standard, the com-
position of the common Pb, and the decay constant
uncertainty are grouped together and are known as
the systematic error. For the zircon analyses in this
study, the systematic errors range between ∼1.0%
and 1.4% for the 206Pb/238U ratio and ∼0.8% and
1.1% for the 207Pb/206Pb ratio.

U-Pb SHRIMP Analyses

U-Pb determinations on single zircon grains were
carried out using the SHRIMP I instrument at the
Australian National University. Cathodolumines-
cence (CL) images were obtained to select zircon
domains for each analysis. Because of effects such
as the differential yield of metal and oxide species
between elements during sputtering, interelement
ratios were calibrated with a standard whose iso-
topic ratios are known by isotope dilution thermal
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ionization mass spectrometry (ID-TIMS). Details of
the analytical procedures, including calibration
methods, were presented by Williams (1998) and
Stern (1998). 206Pb/238U ratios have an analytical un-
certainty of typically 1.5%–2.0% from calibration
of the measurements using standard zircons. U
abundance was calibrated with fragments of the
single crystal SL13 zircon standard (238 ppm U).
All errors also take into account nonlinear fluc-
tuations in ion counting rates beyond that expected
from counting statistics (Stern 1998).

U-Pb ID-TIMS. Analyses were undertaken at the
CPGeo-USP, following Basei et al. (1995). Zircons
were mechanically abraded with pyrite for 15 min
in a steel capsule, leached with hot HNO3, rinsed
with deionized water, and cleaned in an ultrasonic
bath. Isotopic dilution analyses followed standard
procedures and employed a mixed Pb-U spike (after
Krogh 1973, with minor modification by Basei et
al. 1995). The CPGeo uses a VG 354 TIMS with
five Faraday cup collectors and a Daly detector.

Sm-Nd Isotopes. Sm-Nd whole-rock analyses
were also undertaken at the CPGeo-USP using a
Finnegan 262 multicollector mass spectrometer
and following the procedures described by Sato et
al. (1995). 143Nd/144Nd ratios have an analytical un-
certainty of 0.014% (2j). Analytical uncertainty on
the 147Sm/144Nd ratio is estimated at 0.5%. The La
Jolla and BCR-1 standards respectively yielded
143Nd/144Nd ratios of (1j) and0.511849 � 0.000025

(1j). Sm-Nd depleted mantle0.512662 � 0.000027
model ages (TDM) were calculated following De Pao-
lo et al. (1991).

U-Pb Geochronological Results

Analytical results are listed in table A1 and sample
locations are included on fig. 3. Analyses of detrital
zircons with LAM-ICP-MS followed a quantitative
approach, and zircons were randomly selected
(Gehrels et al. 2006). In order to review metamor-
phic overgrowths, we obtained CL images of the
zircons before the SHRIMP analysis. For zircons
with ages 11.0 Ga, 207Pb/206Pb ages were preferred,
whereas for the younger grains, 206Pb/238U ages were
preferred. Analyses with discordant values 110%
were discarded.

Orthogneiss and Mylonitic Granitoid. This com-
posite unit is part of a high-grade metamorphic in-
lier within the ESB. It crops out in the high moun-
tains between the towns of Ambo and Huánuco (fig.
3). The granitoid intrudes gneissic rocks, whereas
its relationship with the ESB is probably tectonic.
Both lithologies were subsequently affected by
greenschist-facies mylonitic fabric that is presum-

ably correlative with the foliation in the adjacent
ESB.

Zircons from sample CM-80 (9�56�32�S,
76�4�19�W) of the gneissic unit were analyzed by
the U-Pb SHRIMP method. This rock contains
muscovite and biotite, with strong banding and a
mylonitic fabric, and relict magmatic zoned pla-
gioclase porphyroclasts. Estimated metamorphic
peak temperatures for the gneissic unit are ∼615�C
(Cardona et al. 2007). Crystals are euhedral and
prismatic. Cathodoluminescence images display
variable internal structures of the crystals, includ-
ing fully oscillatory and homogenous crystals, or
homogenous rims surrounding oscillatory cores.
Some of the zircons are slightly metamict. A total
of 16 analyses were undertaken and yielded con-
cordant ages (fig. 4A). Eight homogenous rims, in-
cluding two spots with a single crystal, yield an age
of Ma ( ) with Th/U ratios484 � 12 MSWD p 0.81
lower than 0.1 and are interpreted as metamorphic
zircon “overgrowths” (Vabra et al. 1999). Six pris-
matic crystals with oscillatory cores present a
206Pb/238U mean age of Ma (613 � 35 MSWD p

), which is related to the magmatic protolith,0.51
whereas another grain, with a lower Th/U ratio and
an age of ca. 990 Ma, is interpreted as a premag-
matic xenocryst.

The mylonitized granitoid CM-131A (9�58�41�S,
76�6�20�W; fig. 4B) exhibits a strong fabric defined
by small muscovite crystals, with associated re-
crystallized quartz bands that suggest deforma-
tional temperatures lower than 400�C (cf. Passchier
and Trouw 1996). Five multigrain zircon popula-
tions were selected for U-Pb TIMS analysis. Three
of the analyzed fractions are strongly concordant,
with a 206Pb/238U age of Ma (468 � 5 MSWD p

) that we interpret as the magmatic crystalli-0.29
zation age, whereas the other two fractions are dis-
cordant. They present older 206Pb/238U ages of 1478
Ma, which point to the presence of an older inher-
ited component.

ESB. Detrital zircons from two schist samples
collected near the town of Huánuco (fig. 3) were
analyzed by the U-Pb LAM-ICP-MS. Sample CM-
116 (9�47�7�S, 76�4�19�W) is a greenschist-facies
calc-silicate schist, and sample CM-228 (9�49�16�S,
76�1�19�W) is a garnet-mica schist that has yielded
PT conditions of 600�C and 7 kbar (Cardona et al.
2007).

In general, the zircon crystals are prismatic to
rounded, with U/Th ratios !12 that can be related
to a former magmatic origin (Rubatto 2002). The
104 dated zircon grains from sample CM-116 yield
predominantly concordant ages, with a prominent
207Pb/206Pb age population between 960 and 1400
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Figure 4. U-Pb concordia diagrams from samples CM-80 (A) and CM-131A (B).

Ma ( ), with 66 of these grains concordant inn p 86
the 1120–1280-Ma age range (fig. 5A). A smaller
group of six analyses ranges between 1800 and 1900
Ma, whereas two groups of four grains each yield
ages of 800 and 1480 Ma.

Zircons from sample CM-228 are also concor-
dant, with the youngest and oldest ages of 465 �

Ma (206Pb/238U) and Ma (207Pb/206Pb),6 2714 � 16
respectively (fig. 5B). The dominant zircon popu-
lation ranges between 460 and 860 Ma ( ),n p 71
with most grains yielding ages younger than 620
Ma. Twenty-one grains with Early Neoproterozoic
to Mesoproterozoic ages (960–1240 Ma) were also
obtained. Two grains have 207Pb/206Pb ages of

and Ma, while two additional1365 � 20 1929 � 27
grains are concordant with 207Pb/206Pb ages of

and Ma. Along with some dis-2150 � 26 2532 � 17
cordant old grains, this shows the presence of a
Paleoproterozoic and Archean detrital component.

ESB Migmatites. Two migmatite bodies spatially
associated with the eastern schists were sampled
(fig. 3). An apparent metamorphic break is observed
between the schists and the migmatites, with the
lower-grade greenschist facies changing abruptly to
a banded and nebulitic migmatite. Concordant and
discordant granite injections crosscut the schists.

Eighteen zircons from the banded migmatite
CM-35 (9�34�17�S, 76�0�54�W) that transitionally
grade to a micaceous granite and a series of peg-
matites were dated by SHRIMP. This sample comes
from the same area where Dalmayrac et al. (1988)
reported a Neoproterozoic U-Pb zircon lower in-
tercept age from a garnetiferous paragneiss. The
grains are prismatic to weakly rounded, with CL
images characterized by cores with oscillatory zon-
ing and homogenous rims. The rims have Th/U

ratios !1 and yield a well-defined 206Pb/238U age of
Ma (fig. 6A). Oscillatory zoned cores yield325 � 8

ages between 400 and 650 Ma.
Zircons from migmatite CM-222 (9�51�50�S,

75�58�32�W) exhibiting nebulitic structure were
also analyzed by SHRIMP. Two main zircon pop-
ulations were observed, a prismatic equidimen-
sional population and a fragmented, ovoid popu-
lation. Internal structures seen in CL images
include oscillatory and homogenous domains.
Twleve zircons were analyzed and revealed highly
variable ages (fig. 6B). Oscillatory zoned cores show
a concordant age spectrum between 520 and 650
Ma, with some isolated grains with ages of 890 and
1790 Ma. Rims yield early Ordovician ages as well
as younger ages of 350 and 400 Ma. Although some
of these analyses are highly discordant due to the
small size of the crystals, these data loosely con-
strain migmatite development to the Early
Carboniferous.

WSB. Four samples from the WSB (fig. 3) were
analyzed by the U-Pb zircon LAM-ICP-MS (two
samples) and by SHRIMP (two samples). Three of
the samples, CM-112 (9�32�34�S, 76�38�34�W), CM-
116U (9�47�07�S, 76�4�19�W), and CM-133
(9�49�16�S, 76�34�17�W) are muscovite-albite-
quartz schists. The other sample, CM-158
(9�51�22�S, 76�24�26�W) is a meta-arenite, with por-
phyroclasts of K-feldspar, muscovite and biotite,
and a foliation defined by small white micas.

Zircons from the four samples are mainly pris-
matic, with some abrasion on the rim tips, probably
due to sedimentary transport. CL imaging on some
of the samples show predominantly oscillatory
zoned zircons with lesser homogenous and sector
zoned ones. U/Th ratios of most of these zircons



Figure 5. U-Pb detrital zircon histograms from metasedimentary rocks of the eastern and western schist belts. A, CM-
116; B, CM-228; C, CM-112; D, CM-158; E, CM-116U; F, CM-133.
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Figure 6. U-Pb concordia diagrams from migmatite samples CM-35 (A) and CM-222 (B).

are !12 suggesting a typical magmatic origin (Vabra
et al. 1999; Rubatto et al. 2002).

LAM-ICP-MS analysis of 123 zircons from sam-
ple CM-112 exhibits a quasi-continuous age spectra
between 500 and 2800 Ma (fig. 5C). There is a prom-
inent 206Pb/238U age population between 500 and
660 Ma ( ) and a lesser one at 1700–2400 Man p 63
( ). Older Archean zircons were also found,n p 26
including four grains that yield a weighted mean
average age of (2j).2670 � 61

Sample CM-158 ( ), dated by the samen p 93
method, yields mostly concordant zircon ages (fig.
5D) in two continuous intervals from between 310
and 800 Ma and between 900 and 1420 Ma (n p

). The youngest concordant zircon has a 206Pb/85
238U age of Ma. Although older zircons are317 � 7
apparently less concordant, they point to the pres-
ence of Paleoproterozoic and Archean material in
the source region. The most abundant subpopula-
tion ( ) yields ages between 480 and 640 Ma,n p 44
whereas there is another minor population of 13
grains with ages in the 310–480 Ma range. There
are also age groups of 640–800 Ma ( ) andn p 15
900–1420 Ma ( ).n p 22

Zircons from sample CM-116U were analyzed by
SHRIMP, and CL images were obtained in order to
select specific spots on the grains. Five of the zir-
cons show concordant Late Paleozoic 206Pb/238U
ages between 324 and 356 Ma (fig. 5E), whereas the
other 19 define an age interval between 432 and
591 Ma, (with small peaks at 477, 539, and 582 Ma).
Another group of 14 zircons yields Mesoproterozoic
ages between 1000 and 1370 Ma, and the last two

zircon analyses yield concordant 207Pb/206Pb ages of
and Ma.1936 � 19 1442 � 14

Sample CM-133 was also analyzed by SHRIMP.
The youngest three zircons from this sample yield
concordant ages, with two grains defining a mean
206Pb/238U age of Ma (2j) and the third337.2 � 2.3
yielding Ma. (fig. 5F). The dominant pop-385 � 4
ulation includes 22 zircons with ages in the 460–
720-Ma time interval, with peaks at 468, 530, and
645 Ma. Eleven zircons yield single ages between
850 and 1300 Ma. Finally, there is a minor sub-
population that yields Paleoproterozoic ages of

and Ma.2461 � 28 2081 � 22
Nd Isotopes. Whole-rock samples for Sm-Nd iso-

topic analysis were selected to cover the spectrum
of lithologies in the ESB and the WSB. Twelve sam-
ples from the eastern belt and six from the western
belt were analyzed (table A2; fig. 3). All samples
were thoroughly screened for weathered portions
and veining.

In order to check for possible postdepositional
alteration, fSm/Nd versus �Nd was evaluated for the
time of deposition of the sedimentary protolith
(Bock et al. 1994; Cullers et al. 1997). Both belts
yield values typical of a sedimentary trend (fig. 7,
left), with just one of the samples (CM-83) yielding
an fSm/Nd of 0.19, suggesting some fractionation dur-
ing metamorphism. Therefore, the results are con-
sidered to reveal significant information on the
provenance of the sedimentary protoliths.

Depositional ages for the two metasedimentary
belts were estimated based on the youngest detrital
zircon ages, stratigraphical relationships with ov-
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Figure 7. Left, fSm/Nd versus �Nd diagram for evaluation of postdepositional alteration (Bock et al. 1994). Right, Sm-Nd
envelopes from the eastern and western schist belts compared with other provinces and tectonic domains.

erlying Paleozoic sedimentary units, intrusive re-
lationships, and constraints on the timing of meta-
morphism. For the ESB, the youngest detrital zircon
has a 206Pb/238U age of 440 Ma, Ar-Ar muscovite
metamorphic ages are ca. 420 Ma, and the oldest
intrusive rock has yielded K-Ar amphibole ages of
ca. 360 Ma (Cardona et al. 2007). For the WSB, the
youngest detrital zircon age is ca. 320 Ma, and K-
Ar muscovite ages are ca. 300 Ma (Cardona 2006).
Lower Permian sediments are deposited over the
western schists. Taking all this into account, 430
Ma and 310 Ma are considered to be close to the
probable depositional ages of the eastern and west-
ern belts, respectively. Variations up to �30 Ma
will be practically negligible for the calculated �Nd

values.
The lower- and higher-grade metasediments of

the ESB schists yield negative �Nd (430 Ma) values be-
tween �6.3 and �12.5 (fig. 7, right), whereas sam-
ples from the WSB also yield similar �Nd(320Ma) values
in the �7.1 to �13.2 interval. Sm-Nd TDM model
ages were calculated after De Paolo et al. (1991) to
account for minor Sm/Nd fractionation, and they
yield values between 1.7 and 2.1 Ga for the ESB
and 1.6–2.0 Ga for the WSB (fig. 4B).

The negative �Nd values from both metasedimen-
tary belts suggest the presence of old, highly dif-
ferentiated source areas. Moreover, the variations
in TDM model ages and �Nd values reflect the exis-
tence of mixed components of different age (cf.
Goldstein et al. 1997; Bock et al. 2000). The great
similarity of the Nd isotopic signature of the two
belts together with the detrital zircon data also sug-
gests that they shared the same sources. Values in
the same range were obtained by Macfarlane (1999)

and Haeberlin (2002) at close to latitude 8�S, within
metamorphic rocks also ascribed to the Marañon
Complex.

The Nd isotopic evolution trend of the Marañon
Complex (fig. 7, right) overlaps with that of the
southwest Amazonian Craton (Cordani et al. 2000).
Sm-Nd model ages of the Marañon Complex are
similar to crystallization ages of igneous rocks of
the Rondonian San Ignacio and Sunsas provinces
of the Amazonian Craton that were formed be-
tween 1.0 and 1.5 Ga (Tassinari et al. 2000). Such
an isotopic signature is also similar to the one of
the Paleozoic sequences of the Bolivian and Chi-
lean Andes (fig. 7, right), which yield Sm-Nd TDM

model ages of 1.6–2.2 Ga and �Nd values between
�6 and �11 (Lucassen et al. 2000; Egenhoff and
Lucassen 2003).

Grenvillian-age basement from the coastal Are-
quipa massif in southern Peru presents slightly
older TDM values, between 1.9 and 2.3 Ga (Loewy
et al. 2004), whereas the basement inliers of the
northern Colombian Andes yield consistent Sm-Nd
model ages of 1.6–1.9 Ga (Cordani et al. 2005).

Tectonostratigraphic Constraints. The geochro-
nology results reported above provide a new tec-
tonostratigraphic framework for the Marañon
Complex at 10�S (fig. 8). U-Pb zircon dating implies
a ∼613-Ma magmatic event within Grenvillian-
type basement. This basement was affected by an
amphibolite-facies metamorphic episode at 484 �

Ma, as indicated by the crystallization of over-12
growths of metamorphic zircon, and was intruded
by granitoids at Ma. Subsequently two vol-468 � 2
cano-sedimentary basins were laid down. The first
was metamorphosed in the Middle Paleozoic, and
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Figure 8. Schematic tectonic evolution of the Marañon Complex. ESB p Eastern Schist Belt, WSB p Western Schist
Belt.

the second one was in the Late Paleozoic. Their
depositional history is constrained by their youn-
gest detrital zircons, the timing of metamorphism
in both units, and their stratigraphic relationships
with the overlying strata. Sedimentation is con-
strained to 450–420 and 318–300 Ma for the ESB
and WSB, respectively.

We attribute the greenschist-facies mylonitic
event affecting the Ordovician granitoid and ortho-
gneiss to the early Paleozoic deformational event
of the ESB. A younger (Late Carboniferous to Early
Permian) deformational event is also recorded in
the ESB. It is related to the formation of a crenu-
lation cleavage and partial resetting of the isotopic
systems (Cardona et al. 2007) as well as the gen-
eration of migmatites spatially related to granitoid
intrusions.

U-Pb detrital zircon results provide additional
tectonostratigraphic constraints: (1) both eastern
and western belts contain zircon grains that can be
temporally related to the immediately preceding
geological events; (2) the youngest detrital zircon

age is marginally older than the inferred deposi-
tional age; (3) a subpopulation of the zircon age
spectra correlates with the crystallization ages of
the orthogneisses and mylonitised plutonic rocks;
(4) zircons are of predominantly magmatic char-
acter as evidenced by the U/Th ratios and the pre-
dominance of oscillatory zoning in CL images; and
(5) there is a gap in the Paleozoic detrital record
between 440 and 390 Ma. Such data suggest that
some of these tectonomagmatic events are region-
ally widespread and that the growth of both youn-
ger basins was contemporaneous with magmatic
activity. The continuous cannibalism within this
orogenic belt, together with the presence of Me-
soproterozoic and older detrital zircon ages within
the schists, and inherited zircon ages within plu-
tons, as well as the similar Nd isotopic signatures
(negative �Nd and Paleoproterozoic Sm-Nd TDM

model ages) of the two schist belts, indicate that
they formed on an active continental margin de-
posited over old continental crust.

When the U-Pb detrital zircon data are compared
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Figure 9. Paleogeography of the western margin of the Amazonian Craton (including the Marañon Complex) between
600 and 300 Ma (modified from Cawood et al. 2001; Murphy et al. 2004a; Cordani et al. 2005.)

with the Sm-Nd whole-rock results, only 16% of
the analyzed zircons yield crystallization ages older
than the Proterozoic whole-rock Sm-Nd model
ages. This trend may reflect a detrital contribution
of siliciclastic particles other than zircon, possibly
including rare earth element–rich phases such as
epidote or monazite (Goldstein et al. 1997; Dickin
2000). However, we consider that it is more feasible
that the younger Paleozoic and Neoproterozoic
magmatic sources formed in a magmatic arc setting
characterized by substantial contamination by
older crust during its formation, as has been shown
to be a common feature within the central Andes
(Lucassen et al. 2004).

In the case of the Neoproterozoic to Ordovician
geological record, the existence of well-defined
phases of magmatic activity, together with contin-
uous zircon detrital input between 660 and 450 Ma,
is compatible with an active margin setting (figs.
8, 9A). The 480-Ma zircon overgrowths in the
orthogneiss are probably also linked to phases of
magmatism in such a continental arc environment

(fig. 9B). This tectonomagmatic event has been re-
corded along most of the eastern Peruvian Andes,
including the northern and southern segments of
the Marañon Complex (Chew et al. 2007b) and the
Arequipa massif in southern Peru, where syn- and
post-tectonic granitoids were emplaced between
472 and 460 Ma (Loewy et al. 2004). Additionally,
in the southern segment of the Eastern Cordillera
of Peru, close to the city of Cuzco, Bahlburg et al.
(2006) have demonstrated the existence of an Or-
dovician back-arc setting. A similar Paleozoic tec-
tonic configuration apparently exists along much
of the proto-Andean margin, as seen by the pres-
ence of the Puna and Famatinian magmatic arcs in
the Chilean and Argentinean Andes (Bahlburg and
Hervé 1997; Pankhurst and Rapela 1998; Ramos
2000), and by the presence of Ordovician-Silurian
magmatic and deformational events in the north-
ern Andes (Burkley 1976; Restrepo-Pace 1995; Ra-
mos and Aleman 2000).

The next major tectonomagmatic activity cor-
responds to the Silurian regional metamorphic



298 A . C A R D O N A E T A L .

event recorded by the ESB and by the reworked
Ordovician magmatic basement. It also coincides
with a major gap in the magmatic record between
440 and 390 Ma, a feature that has been docu-
mented in other segments of the Eastern Cordillera
of Peru (Chew et al. 2007b) as well as in northern
Chile (Bahlburg and Hervé 1997; Bahlburg and
Vervoort 2007). Recently Ramos (2008a) reviewed
the available evidence for possible terrane accre-
tion along the Peruvian margin. He considered that
the Paracas terrane was accreted to the Peruvian
margin during the Ordovician. Alternatively, we
suggest that this event may be slightly younger
and may be represented by the Silurian medium-
pressure, Barrovian-type regional metamorphism
within the ESB (fig. 9C).

The restricted Silurian and the Devonian mag-
matic activity that followed the mentioned accre-
tionary event may be related to a change in plate
vectors, or to an oblique convergent margin with
restricted magmatic activity (fig. 9C). In contrast,
several terrane-related accretionary events have
been documented in other segments of the Andean
belt in Argentina, Chile, and Colombia in Silurian
and Devonian time (Thomas and Astini 1996; Ra-
mos 2000, 2004; Ordóñez-Carmona et al. 2006).
Moreover, in the Chilean Andes there is evidence
of a passive margin environment during this time
interval (Bahlburg and Hervé 1997; Bahlburg and
Vervoort 2007).

Magmatic arc activity was reestablished in the
Carboniferous, as evidenced by the U-Pb detrital
record, the volcanic protoliths of the western
schists, andesite flows associated with the Missis-
sipian Ambo Group (Dalmayrac et al. 1988), the U-
Pb migmatite ages reported in this study, and K-Ar
amphibole and biotite ages of between 356 and 291
Ma (Cardona 2006). This activity is widespread
along the central and northern segments of the
Eastern Cordillera of Peru (Chew et al. 2007b; Mis-
kovic et al. 2005, Miskovic and Schaltegger 2008).

The end of the Late Paleozoic tectonic cycle is
marked by a major regional metamorphic event of
Late Carboniferous–Early Permian age that affects
the western belt and produces the development of
a crenulation cleavage within the eastern belt (Car-
dona et al. 2007). This metamorphic episode may
be connected with an apparent shutoff in magmatic
activity (fig. 9D). It is also expressed farther south
in central Peru by the development of syntectonic
migmatites at ca. 310 Ma (Chew et al. 2007b) and
in northern Peru by deformation of Carboniferous
granitoids along major shear zones (Haeberlin
2002). Terrane accretion, or changes in the sub-
duction configuration may have caused the inver-

sion of the arc-related basins (Hervé et al. 1995;
Collins 2002; Stern 2002; Cawood and Buchan
2007). The actual position of the Carboniferous
continental magmatic arc more than 350 km from
the paleotrench (V. A. Ramos, pers. comm., 2007)
can be explained with the accretion of a terrane
that causes the widening of the continental margin.
The late Paleozoic “Gondwanide” orogeny has
been also documented in the Chilean Andes, where
Late Carboniferous turbiditic sequences are de-
formed and are associated with the evolution of a
subduction complex (Bahlburg and Hervé 1997;
Willner et al. 2005). In the Eastern Cordillera of the
Bolivian Andes, a major deformational event be-
tween 290 and 320 Ma has been recognized (Jacobs-
hagen et al. 2002), while in the Argentinean Andes,
a similar deformational event has been envisaged
for the Early Permian, as a consequence of a flat-
slab subduction process (Ramos 2008b). Within the
northern Andes (Ecuador, Colombia, Venezuela) a
few suites of syntectonic granitoids and some meta-
morphic belts have been linked to the accretion of
continental terranes associated with the formation
of Pangaea and with the evolution of subduction of
the proto-Pacific lithosphere (Ramos and Aleman
2000; Vinasco et al. 2006; Cardona et al. 2008).

Following the orogenic phases, a period of major
extension with basin formation and bimodal mag-
matism was installed along most of the Andes
(Kontak et al. 1985, 1990; Ramos 2000; Franzese
and Spalletti 2001; Sempere et al. 2002; Miskovic
et al. 2005). This latter extensional process has been
related to a change in the convergence velocity be-
tween the Pacific and South American plates dur-
ing the final assembly of Pangea, with the conse-
quent orogenic collapse of the Late Paleozoic
orogen (Gurnis 1988; Ramos and Aleman 2000).

Provenance of the Marañon Complex. The U-Pb
detrital zircon ages of the metamorphic rocks of
the Marañon Complex indicate contributions from
at least four main sources: Carboniferous-Ordovi-
cian ( U-Pb detrital zircon analyses), Cam-n p 48
brian–Middle Neoproterozoic ( ), Late Neo-n p 207
proterozoic–Mesoproterozoic ( ), and ann p 190
older discontinuous record that extends until 2.95
Ga ( ). As discussed above, the Neoprotero-n p 66
zoic and Paleozoic sources must be related to the
continuous reworking of the continental margin,
while contemporaneous arc magmatism was in ac-
tion. Taking into account the great similarities in
detrital zircon populations observed in the different
units of the Marañon Complex, we used the entire
detrital record of the Marañon Complex to con-
strain further the provenance regions of the Cam-
brian to Proterozoic detritus (fig. 8).
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Zircons older than Mesoproterozoic (including
some Archean) can be attributed to several geolog-
ical provinces in the Amazonian Craton (Tassinari
et al. 2000). Moreover, the Sm-Nd TDM model ages
between 1.6 and 2.1 Ga are also comparable with
those of the granitoids of the Rondonian San Ig-
nacio and Rio Negro–Juruena belts of the Amazo-
nian Craton and those of the Proterozoic inliers in
the northern Andes (Cordani et al. 2000, 2005;
Loewy et al. 2004; Cordani and Teixeira 2007).

A significant zircon population is encountered
between 1.3 and 0.90 Ga ( ) with majorn p 156
peaks at 1030, 1230, and 1320 Ma. These ages re-
flect tectonomagmatic episodes related to Grenvil-
lian-type orogens that culminated with the juxta-
position of Laurentia and Baltica with the Amazon
Craton, in the process of agglutination of Rodinia
(Hoffman 1991). Proximal sources for these might
be the Rondonian San Ignacio and Sunsas provinces
of the Amazonian Craton (Litherland et al. 1989;
Tassinari et al. 2000; Cordani and Teixeira 2007).
Alternative sources are a few Proterozoic basement
inliers found along the northern Andean belt, in
Colombia and Venezuela (Cordani et al. 2005). In
Peru, two Grenvillian domains have been recog-
nized. First, the Arequipa Massif, characterized as
major terrane including magmatic and high-grade
metamorphic rocks with 0.97–1.2 Ga (Wasteneys
et al. 1995; Loewy et al. 2004; Chew et al. 2007a).
Second, in the southeastern part of the Peruvian
Amazon basin, there is an isolated massif of gran-
ulite that has yielded a U-Pb age of Ma1140 � 23
(Dalmayrac et al. 1988).

The above evidence seems to imply that a major
Grenvillian-related domain extends along this seg-
ment of the western margin of Gondwana, includ-
ing the central Peruvian and Colombian Andes.
Moreover, if we consider the position of the Ron-
donian San Ignacio orogenic belts at the south-
western edge of the Amazonian Craton, we envis-
age that this Grenvillian domain may continue also
under the Acre and Solimões sedimentary basins.

The Neoproterozoic crystallization age of the
CM-80 orthogneiss protolith falls within the age
interval of the Cambrian to Neoproterozoic detrital
zircon ages ( ) whose major peaks are at 545,n p 207
595, and 645 Ma. This population is the most abun-
dant in the detrital record in other segments of the
eastern Peruvian Andes, south of Lima (Chew et
al. 2007a, 2008). It is of special interest, as the role
of the proto-Andean margin in relation with the
processes of Rodinian fragmentation and subse-
quent Gondwana assembly is poorly understood
(Pankhurst and Rapela 1998; Chew et al. 2008).
Critical issues that must be considered in order to

constrain the source of this detrital population in-
clude the following: (1) the age-equivalent Brasili-
ano orogens at the eastern margin of Amazonia are
far removed from the proto-Andean margin; (2)
within the western Amazon Craton, tectonomag-
matic events within this time period have not been
found (Tassinari et al. 2000); (3) although Neopro-
terozoic rift-related magmatism is relatively com-
mon on the Laurentia and Baltica margins during
Rodinia breakup (e.g., Tollo et al. 2004), it is pre-
dominantly mafic in character, and hence, its in-
volvement as a major detrital zircon source to
proto-Andean sedimentary sequences is likely to be
limited (Cawood et al. 2001; Bream et al. 2004;
Thomas et al. 2004; Carter et al. 2006).

It is commonly assumed that separation between
Laurentia and Amazonia took place at about 570
Ma, whereas between Laurentia and Baltica it was
around 600 Ma (Bingen et al. 1998; Cawood et al.
2001; Kinny et al. 2003). We consider that the ex-
tensive Neoproterozoic detrital record at the west-
ern margin of Gondwana must be related to a major
felsic-intermediate magmatic source that is more
likely to have an arc affinity, and therefore, an al-
ternative tectonic scenario could be an earlier sep-
aration between Amazonia and Baltica-Laurentia
followed by the installation of an active margin
operated by subduction since at least 640 Ma. This
continental arc is considered to be the major feeder
of the extensive Neoproterozoic to Cambrian zir-
con found in the Marañon schist belts. This in-
ferred Neoproterozoic subduction phase started
earlier than those already envisaged for Laurentia,
Baltica, and other segments of the proto-Andean
margin, considered respectively at 500, 550–560,
and 600 Ma (Rapela et al. 1998; Van Staal et al.
1998; Cocks and Torsvik 2005; Escayola et al.
2007). However, the 640 Ma subduction process
would be contemporaneous with the initiation of
subduction-related magmatism on several peri-
Gondwana terranes, including the southernmost
Pampean terrane of the proto-Andean margin (Mur-
phy et al. 2004; Escayola et al. 2007)

Another consequence of this tectonic configu-
ration is the potential connection with several peri-
Gondwanan terranes such as Avalonia, Ganderia,
Carolinia, and Iberia. These terranes formed as in-
traoceanic and continental arcs and yield U-Pb and
Sm-Nd isotopic signatures that might place them
in the vicinity of the Amazonian Craton at the
northwest margin of Gondwana from 650 Ma until
the Cambro-Ordovician when they departed (Kep-
pie et al. 1998; Murphy et al. 2000, 2004a; Gutier-
rez-Alonso et al. 2003; Ingle et al. 2003; Collins and
Buchan 2004; Carter et al. 2006; Reusch et al. 2006;
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Rogers et al. 2006). Concrete evidence of the ac-
cretion of these terranes to the continental margin
is still scarce. However, examples may be found in
the Venezuelan Andes, where syntectonic Neopro-
terozoic granitoids associated with a low- to me-
dium-grade metamorphic event are reported from
the Bella Vista Group (Burkley 1976; Ramos and
Aleman 2000). If these terranes were accreted dur-
ing the Neoproterozoic, they might provide a mech-
anism for the structural inversion of the passive
margin of the Amazonian Craton that must have
formed after the Rodinia breakup. The detrital zir-
con populations of the Peruvian segment of the
proto-Andean margin are also comparable with the
detrital zircon record of these peri-Gondwanan ter-
ranes (Keppie et al. 1998; Murphy et al. 2000,
2004b; Gutierrez-Alonso et al. 2003; Ingle et al.
2003; Collins and Buchan 2004; Carter et al. 2006;
Reusch et al. 2006; Rogers et al. 2006), which also
indicates a possible connection.

Paleogeographic studies from central Peru have
suggested that a terrane with continental basement
was located against the western margin of the East-
ern Cordillera, bounded to the east by the Marañon
Complex (see reviews by Ramos and Aleman 2000;
Ramos 2008a). This inferred terrane, termed “Para-
cas,” has been considered a conjugate margin to the
Oaxaquia terrane (Ramos and Aleman 2000; Ramos
2008a), a major Gondwanan Mesoproterozoic do-
main with an Ordovician sedimentary cover
that forms the southern portion of Mexico (Ortega-
Gutierrez et al. 1995; Keppie and Ortega-Gutiérrez
1999). However, the Nd isotope record from Oaxa-
quia and the U-Pb detrital record from its younger
Paleozoic cover sequences (Weber and Köhler 1999;
Gillis et al. 2005) do not exhibit the strong Neo-
proterozoic to Cambrian signature found within
the Marañon segment of the Proto-Andean margin.
Recent reviews of Rodinian paleogeography have
questioned the Peruvian connection with the Oaxa-
quia microcontinent (Keppie and Dostal 2007). Al-
though the position of the conjugate terrane re-
mains uncertain, we think that a major terrane
dispersion event took place during the Neoprote-
rozoic, either associated with Rodinia breakup or
with the departure of Avalonia-Cadomia-type ter-
ranes. Young south to north Meosozic dispersion
events are also possible, as suggested by recent pa-
leomagnetic data from the Colombian Andes (Bay-
ona et al. 2006).

Conclusions

1. Lithostratigraphic evidence, U-Pb zircon geo-
chronology and Nd isotopic data from the Marañon

Complex at 10�S in the Eastern Cordillera of the
Peruvian Andes provide a tectonostratigraphic
framework for the proto-Andean margin from the
Neoproterozoic until the Late Carboniferous.
These include development of an arc since 620 Ma
or earlier that lasted until the Silurian, while a ma-
jor metamorphic event occurred at about 480 Ma.

2. Two separate volcano-sedimentary basins
formed within an arc-related setting. The older ba-
sin was deformed and metamorphosed during the
Middle Silurian under regional (Barrovian) meta-
morphic conditions that may have been related to
ocean closure and a terrane accretionary event. The
younger basin was formed during the Carbonifer-
ous, and its inversion at around 300–310 Ma may
be related to either a terrane accretionary event or
to a change in subduction dynamics. In between
the deposition of these two basins there is a Silurian
to Devonian gap in the magmatic record. This tec-
tonic evolution is part of the long-lived peri-Gond-
wanan Terra Australis orogen that commenced af-
ter the separation between Laurentia and Godwana.
It evolved by subduction of the proto-Pacific ocean
and lasted until the Gondwanide-Alleghenian oro-
genic events that culminated in the assembly of
Pangaea (Cawood 2005).

3. Provenance constraints based on U-Pb detrital
zircon data have shown that this margin grew on
the edge of the Amazonian Craton, and was prox-
imal to major orogenic belts of Grenvillian and
Brasiliano age. The presence of a Neoproterozoic
orogenic belt at the proto-Andean margin suggests
an earlier fragmentation of the margins of Gond-
wana with Baltica and Laurentia (Chew et al. 2008)
and a possible connection with several Peri-Gond-
wanan arc-related terranes.

4. The Paleoproterozoic Sm-Nd TDM model ages
contrast with the younger U-Pb zircon detrital ages
and indicate that recycling of older crust was an
important element in the Mesoproterozoic, Neo-
proterozoic, and Early Paleozoic evolution of the
Peruvian segment of the proto-Andean margin.

5. The growth of this active convergent margin
results from several stages of subduction as well as
terrane accretion and dispersion. Whereas some
events may be of local character, the synchronicity
with similar events along the Andean chain may
reflect a more regional-scale plate tectonic control
(Cawood and Buchan 2007; Ramos 2008a).
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the Peruvian Geological Survey (INGEMMET) are
acknowledged for their logistical support and help
provided during several stages of this research. A.
Zapata and J. Galdos of INGEMMET are acknowl-

edged for discussions and help during field work.
Thorough and clear reviews and suggestions by V.
A. Ramos, J. Aleinikoff, and A. Anderson are ac-
knowledged. The assistance of M. Marulanda dur-
ing field work and other stages of this research is
deeply appreciated. These results are part of A. Car-
dona’s PhD thesis at the University of São Paulo.

R E F E R E N C E S C I T E D

Bahlburg, H. 1993. Hypothetical southeast Pacific con-
tinent revisited: new evidence from the middle Pa-
leozoic basins of northern Chile. Geology 21:909–912.

Bahlburg, H.; Carlotto, V.; and Cárdena, J. 2006. Evidence
of Early to Middle Ordovician arc volcanism in the
Cordillera Oriental and Altiplano of southern Peru,
Ollantaytambo Formation and Umachiri beds. J. S.
Am. Earth Sci. 22:52–65.
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———. 1996b. Mapa geológico del cuadrángulo de Yan-
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