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Sensor-based ore sorting is a technology used to classify high-grade mineralized rocks from low-grade
waste rocks to reduce operation costs. Many ore-sorting algorithms using color images have been pro-
posed in the past, but only some validate their results using mineral grades or optimize the algorithms
to classify rocks in real-time. This paper presents an ore-sorting algorithm based on image processing
and machine learning that is able to classify rocks from a gold and silver mine based on their grade.
The algorithm is composed of four main stages: (1) image segmentation and partition, (2) color and tex-
ture feature extraction, (3) sub-image classification using neural networks, and (4) a voting system to
determine the overall class of the rock. The algorithm was trained using images of rocks that a geologist
manually classified according to their mineral content and then was validated using a different set of
rocks analyzed in a laboratory to determine their gold and silver grades. The proposed method achieved
a Matthews correlation coefficient of 0.961 points, higher than other classification algorithms based on
support vector machines and convolutional neural networks, and a processing time under 44 ms, promis-
ing for real-time ore sorting applications.
� 2023 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Gold grades have steadily declined over the years since most
high-grade deposits are currently being mined or have already
been depleted [1,2]. This trend has also been observed in metals
such as copper [1] and manganese [3]. Mining low-grade deposits
require more resources than high-grade deposits to produce the
same amount of concentrate, which results in increased operating
costs and lower profits [4]. New mining technologies are being
developed to optimize mineral processing and make low-grade
mining more accessible to keep up with the increasing demand
for metals.

Typically, the gold extraction process consists of several stages
that form a value chain of operations, including mining, crushing,
grinding, and gold recovery [5]. Sensor-based ore sorting is a pre-
concentration technology usually implemented between the
crushing and grinding stages to classify mineralized rocks from
waste rocks. Ore sorting aims to reduce the amount of material
that goes into the processing plant without significantly reducing
mineral recovery [6].
Ore sorting consists of three main stages. In the first stage, sen-
sors are used to measure the physical properties of the rocks. For
example, color cameras may be used to produce color images, X-
ray transmission sensors to measure the atomic density, lasers
and triangulation cameras to estimate the geometry of the rocks,
or near-infrared hyperspectral cameras to produce spectral curves
[7,8]. After measuring the particle properties, the data gathered by
the sensors is sent to a processing unit, which uses classification
algorithms to determine if the rocks are mineralized. Finally, the
rocks are physically separated by ejecting them using a system of
high-pressure jet nozzles depending on if the processing unit clas-
sifies them as ore or waste.

Gold and silver are usually scattered in minimal concentrations
within a matrix of other rocks or minerals, making it difficult to
detect them directly. However, gold and silver grades in many
deposits are heavily correlated with the presence of proxy minerals
or elements, which can be detected using the right set of sensors
[9]. The problem with this approach is that each mine has unique
mineralogy that may even vary in different areas of the same mine.
Because commercial ore sorters use standard sorting algorithms,
sometimes it is not possible to detect the minerals or elements cor-
related with gold or silver grade with high accuracy. In those cases,
some of the mineralized rocks are classified as waste, and some of
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Fig. 1. Vein in the selected mine showing breccia, quartz vein and andesite.
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the waste rocks are classified as ore. When this happens, the higher
grade of the mineral sent to the plant does not justify the value lost
in the material rejected by the sorter, and the use of traditional ore
sorting is not economically viable.

Visual ore sorting is a challenging problem because its effi-
ciency depends on several different factors, such as particle size,
feed rate, and the optical characteristics of the minerals [10]. In
general, no single method works for every type of mineral. The
diversity and complexity of the methods usually depend strongly
on the mineral system [11]. However, in the past years, several
papers have proven that it is possible to classify minerals with rel-
atively high accuracy using only images, for example, from color
cameras, which are inexpensive and more accessible to maintain
than other sensors, such as X-ray transmission (XRT), which could
enable low-cost sorting in the future.

Visual sorting methods can be grouped into two categories: fea-
ture engineering and feature learning. Feature engineering meth-
ods usually use different algorithms to extract color and texture
features from an image. In [12,13], the authors proposed an ore
sorting algorithm to classify rock particles from a ferromanganese
metallurgical plant using color, Haralick texture, and neural net-
works. Similarly, in [11], the authors proposed a new ore sorting
algorithm using loading vectors as color features, wavelets as tex-
ture features, and support vector machines. In [14], the authors
proposed two improvements over the method presented by [11].
The first used the minimum redundancy maximum relevance
(MRMR) algorithm to reduce the color and texture feature space,
while the second used the watershed segmentation algorithm
and a voting system to decide the final class of the rock. Then, in
[15], the authors proposed another improvement over the method,
which consisted in extracting texture features from the RGB (red,
green, and blue) and HSV (hue, saturation, and value) channels of
the images using Gabor filters without feature selection. Feature
engineering methods have also been used in other mining areas,
such as rock trace identification using features extracted from 3D
point clouds [16].

More recently, different feature learning methods based on con-
volutional neural networks (CNN) have been proposed to solve
problems inmining andother domains. In [17], the authors explored
potential solutions using CNN models with different depths, struc-
tures, and dataset sizes for coal mineral classification. In [18], the
authors used a CNN to estimate the particle density range of coal
particles under different light sources. In other domains, in [19],
the authors proposed a new type of CNN that uses the energy of
the images produced by the last convolution layer in the network
to generate texture features. Then, in [20], the authors proposed a
CNN model that combines traditional CNN architectures with mul-
tiresolution analysis usingHaarwavelets. Lastly, in [21], the authors
presentedamulti-scale rotation-invariant convolutionalneural net-
work (MRCNN) to classify different lung textures using Gabor-LBP
(local binary patterns) images as inputs to a CNN.

Although the methods mentioned before achieved relatively
high classification performances for different ore systems, none
of them focused on classifying minerals containing gold and silver.
Furthermore, these methods only focus on classifying rock frag-
ments according to ore type but do not present classification
results according to mineral grade or the processing time required
to perform the classification.

This paper presents an ore sorting algorithm used to classify
rocks from an underground mine in the Peruvian Andes, owned
by Hochschild Mining PLC. Unlike some commercial ore sorters,
the proposed method only uses color cameras, which are cheaper
and easier to operate than other ore sorting sensors. The images
taken by the color camera are used to extract color and texture fea-
tures from the rock using image processing algorithms. Then, the
features are used to train a classification model based on neural
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networks. The classification model was trained with two different
datasets: (1) images of static dry rocks that were classified into
four different classes by an expert geologist and (2) images of static
dry rocks that were analyzed in a laboratory to determine their
gold and silver grades. The classification performance was evalu-
ated, and the algorithm was optimized to reduce its processing
time for future real-time ore sorting. Finally, additional tests were
performed with images of moving wet rocks to determine the algo-
rithm’s performance in a setting that more closely resembles an
actual sorting plant.

The organization of this paper is as follows. Section 2 describes
the minerals of the selected mine and the vision system. Section 3
presents the proposed system’s digital image processing and
machine learning methods. Finally, section 4 presents the perfor-
mance of the proposed method and compares it to other methods
using different classification algorithms.

2. Mineral and vision systems

The selected mine is a gold and silver underground mine
located in the Peruvian Andes, over 4200 m above sea level. This
mine is characterized by low- and high-sulphidation epithermal
mineralized systems hosted by veins, breccias, and dissemination
within Tertiary volcanic rocks. This section presents the character-
istics of the four most abundant types of minerals found in one of
the veins of the selected mine and the vision system used to imple-
ment the ore sorting algorithm.

2.1. Mineral characteristics

All the rock fragments used in this paper were extracted from
one vein, composed chiefly of quartz veins surrounded by volcanic
wall rock. The vein is approximately 2 mwide and oriented at a 45�
angle. The transition between the main vein and the wall rock is
not abrupt, as there is a zone in between where the wall rock con-
tains smaller quartz veins and sulfides. The rocks found in this
intermediate zone are called breccias. Fig. 1 shows a picture of
the selected vein, where the breccia, quartz vein, and wall rock
can be clearly seen.

The rocks extracted from the main vein (VE) are composed of
quartz (SiO2) and calcite (CaCO3). Although quartz is not an eco-
nomically valuable mineral, its presence is positively correlated
with high gold and silver grades [22]. This is mainly due to the dis-
semination of sulfides [23], such as acanthite and argentite (Ag2),
electrum (a gold-silver alloy), and free gold, which are deposited
in the vein by hydrothermal fluids. In the selected mine, sulfides
are usually scattered in small particles and are only visible as a
light coloration on the rock.
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The breccia rock fragments (BX) consist primarily of quartz and
calcite veins encapsulated in an andesite matrix. Rocks classified as
breccia usually have a high grade for the same reason as vein rocks,
which is that hydrothermal fluids deposit gold and silver particles
in the mineral. Sulfides such as acanthite, galena, sphalerite, pyr-
rhotite, and pyrite may also be found on BX rocks.

The wall rock is mainly composed of andesite, a type of volcanic
rock [24]. In the selected mine, two types of rocks have little to no
economic value: pure andesite (AN) and altered andesite (AA). The
difference between the two types of waste rock is the color and
alteration: AN has a green and dark gray color and no significant
alteration, while AA has a purplish-gray color due to the presence
of oxides and clay. Other minerals found in the wall rock are pyrite
and thin quartz veins, which may contain gold or silver particles in
rare cases. Fig. 2 shows images of the four types of minerals
described before.

Because gold and silver cannot be detected visually, correlations
between the mineral classes and their respective equivalent silver
grades are used to classify them as ore or waste. Table 1 shows
grade statistics for the four different mineral classes acquired in
two different assay campaigns performed from January to March
2020 and January 2022. All the rocks were extracted from the same
vein at different times. The rocks from 2020 were manually
selected by a geologist and are mostly ideal samples from each
mineral class. In contrast, the rocks from 2022 were randomly
selected and are more heterogeneous since a small portion of them
contained multiple classes of minerals. We observed that the rocks
Fig. 2. Rock types found on the selected vein: vein rock (VE), breccia (BX), pure
andesite (AN), and altered andesite (AA).

Table 1
Equivalent silver (AgEq) grade statistics of the four main classes of mineral found on the se
percentiles, and percentage of samples above the cut-off grade.

Mineral Mass (kg) Avg. (ppm) SD (ppm) Perce

0

First campaign: January-March 2020
VE 3.7 214 116 97
BX 0.8 333 229 172
AN 9.5 26 22 3
AA 2.1 61 53 14
Second campaign: January 2022
VE 16.6 201 158 15
BX 30.1 225 242 10
AN 4.9 28 88 5
AA 3.0 52 99 10
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from 2022 had lower average grades and a higher standard devia-
tion, which could be explained by the fact that the section of the
vein that was mined on January 2022 had lower grades in general,
and also because the rocks selected in the first assay campaign
were mostly ideal samples of the mineral classes. This difference
can be further noticed by the percentage of rocks above the cut-
off grade in both campaigns, which is also shown on Table 1 and
graphically in Fig. 3. In 2020, all ore rocks were above the cut-off,
but in 2022 only 66% of them followed this trend. Despite the dif-
ference, in both campaigns, breccia (BX) rocks had the highest
average grade, followed by vein rocks (VE), andesite (AN), and
altered andesite (AA).

2.2. Vision system

A typical vision system consists of the hardware used to capture
and process the images, and the software, which consists of the
images and the algorithms used to analyze them. This section
describes the hardware components and the images captured
and processed by said hardware.

2.2.1. Hardware
The hardware used in the proof-of-concept stage to test the ore

sorting algorithms consists of four main parts: a color camera, a
structure to hold the camera, a professional light box to illuminate
the rocks uniformly, and a processing unit that contains the algo-
rithms. The camera that was used in the vision system is a Sony
DSC-HX90V. This is a consumer photography camera that can cap-
ture high-resolution images using a 1/2.300 type (7.82 mm) Exmor
RTM CMOS sensor [25]. Later, we also performed additional tests
with a semi-industrial camera under more realistic conditions.
The settings used to capture the images are a focal length of
50 mm, an exposure time of 1/40 s, and an ISO (International Orga-
nization for Standardization) speed of 200. The structure used to
hold the camera was fabricated using MDF (medium-density fiber-
board) planks cut with a CNC (computer numerical control) router,
aluminum tubes, and a tripod head. The structure was used to
manually adjust the angle of the camera and the distance between
the camera and the rocks. In this paper, all images were acquired at
a distance of 25 cm and an angle of 70�. Also, a black cloth covered
the structure in order to prevent external light from altering the
measurements. The light box used to illuminate the rocks with uni-
form light was a gti PDV-2e/M3 [26], which includes four incandes-
cent and three D65-type fluorescent light bulbs with a color
temperature of 5000 K. For this vision system, only three fluores-
cent light bulbs were used. Finally, to deploy the analysis and clas-
sification algorithms, the vision system used a 2014 MacBook Pro
with a 4-core Intel Core i7 processor running the macOS Catalina
operating system. The camera, structure, and lightbox are shown
in Fig. 4.
lected mine: average (avg.), standard deviation (SD), 0th, 25th, 50th, 75th, and 100th

ntiles (ppm) Above cut-off

25 50 75 100

118 197 230 449 100.0%
172 333 495 495 100.0%
13 18 28 86 0.0%
24 48 98 134 25.0%

74 167 271 828 66.3%
63 139 278 1400 65.9%
6 11 18 672 3.3%
26 31 41 851 7.0%



Fig. 3. Grade distribution of each class of mineral (Table 1).

Fig. 4. MDF structure used to position the camera and the light source at a fixed
distance from the rocks, thus eliminating most of the external variations in
brightness and pixel size.
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2.2.2. Image dataset
Digital images are two- or three-dimensional numerical arrays

that contain spatial information about a scene and are captured
using an imaging device, such as a color camera. Color digital
images are usually represented by a set of three matrices, where
each one is a monochromatic image that captures light intensity
in the red, green, or blue channels, centered in the 665, 550, and
470 nm wavelengths, respectively. Mathematically, color images
are usually represented by I m;n; cð Þ, where m and n represent
the vertical and horizontal spatial coordinates, and c represents
the color or spectral channel.

The Sony camera used in this vision system captures images
with a spatial resolution of 3672�4896 pixels and uses the stan-
dard RGB color space (sRGB). The pixel information is encoded in
3-byte strings, where each byte represents the intensity of one of
the color channels. In addition, the images are saved in JPEG (Joint
Photographic Experts Group) format with the camera’s fine quality
option, which uses less compression when storing images [25].
Although the images were taken with the consumer product Sony
DSC-HX90V camera, in later tests, we used a semi-industrial Basler
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camera with a resolution of 5 megapixels (more information in the
sub-section 4.5). Therefore, in order to be able to work with a res-
olution similar to that of the industrial camera, the images were
decimated by a factor of two using a low-pass filter to avoid alias-
ing. This procedure generated new images with a spatial resolution
of 1836�2448 pixels. Given that the images represented a surface
of 151 mm � 201 mm, using the new resolution allowed the algo-
rithms to analyze mineral structures of up to 82 lm, which is
equivalent to a pixel density of 12.2 px/mm. All images contain
only one rock, such as the examples shown in Fig. 2.

In order to design and test the mineral classification algorithms,
three data sets of rock images were constructed. Initially, Hochs-
child Mining PLC provided 196 rock samples extracted from one
of the main veins in the selected mine in 2020. This vein was
selected because (1) in recent years, it has provided almost 17%
of the extracted mineral, and (2) the mineral is highly representa-
tive of the whole mine. The 196 rocks were selected manually by a
geologist and contained ‘‘ideal” features of each mineral class. The
rocks in this data set are mostly homogeneous, which means that a
randomly selected region in the rock is roughly equivalent to any
other region. The 196 rocks were divided into two groups: the first
with 156 samples (79.6%) and the second with 40 samples (20.4%),
which follows the typical 80%/20% dataset split done to validate
machine learning algorithms. The second group, with 40 samples,
contains mostly quartz and andesite rocks, with only a few sam-
ples from the breccia and altered andesite classes. Initially, the plan
was to include more rocks of the latter two classes; however, doing
this was not possible because of budget constraints at the time.
One to five images were captured for each rock since images can
only capture one face of the rock, and rocks may have multiple
faces with different visual properties. In total, 465 images were
captured for the first and 155 for the second group, as shown in
Table 2. Then, in 2022, Hochschild Mining PLC provided an addi-
tional 435 samples from the same vein to validate the algorithm
further using images of moving rocks in the newly created test
bench. The samples corresponding to the third group were pho-
tographed using a semi-industrial camera, producing 867 new
images. More details about the imaging process of the rocks from
the third group of samples are provided in the sub-section 4.5.



Table 2
Number of rocks and images used for training and testing the performance of the proposed algorithms.

Mineral Group 1 Group 2 Group 3

Rocks Images Rocks Images Rocks Images

VE 77 234 11 62 104 208
BX 33 44 2 5 185 370
AN 25 137 23 77 60 117
AA 21 50 4 11 86 172
Total 156 465 40 155 435 867
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After forming the image data set, the samples from groups two
and three were sent to a geochemical laboratory to perform assays
and estimate their gold and silver grades. As mentioned in
Section 2.1, the assays were performed on two different campaigns
in 2020 and 2022 and are shown on Table 1. The methods used by
the laboratory to estimate the grades were fire assays and aqua
regia, which are the industry standard analysis processes. The
detection range of the assays was 0.005–10 ppm for gold and
10–1000 ppm for silver. After estimating the individual gold and
silver grade of each rock in the second and third groups, the equiv-
alent silver grade (GAgEq) was calculated as follows

GAgEq ¼ GAg þ fGAu ð1Þ

where GAg is the silver grade; GAu the gold grade; and f a conversion
factor that is based on the ratio between the gold and silver price.
This paper uses f¼81 to calculate the equivalent silver grade.

It is worth mentioning that although the assays are performed
on the whole rock, the images captured with the color cameras
only contain information about the surface. This means that there
could be rocks that appear to be barren on the surface but are actu-
ally mineralized and vice versa. However, because of the small size
of the rocks (mesh between 3/400–500), we assume that the surface of
the rock contains roughly the same physical properties as the inte-
rior, which most sensors and algorithms of commercial sorters also
do.
3. Image processing and machine learning algorithms

This section describes the main methods proposed for the ore
sorting algorithm. First, the machine vision problem is presented
to give context to the algorithms from an image processing per-
spective, and then, the analysis and classification algorithms are
described. The method consists of four main stages: (1) segmenta-
tion and partition of input images, (2) feature extraction, (3) clas-
sification of sub-images, and (4) the voting algorithm to decide
the overall class of the rocks.

3.1. Machine vision challenge

In most cases, ore sorting is not a trivial problem because the
algorithms that are needed strongly depend on the types of miner-
als found in the specific mine [11]. Several convolutional neural
network (CNN) architectures have been proposed in the last dec-
ade to solve various image classification problems. This new type
of algorithms can automatically learn the feature representations
from input images [27], thus eliminating the need to use a manual
feature extraction stage. However, CNNs usually require large
datasets, which are costly and challenging to create in mining. This
is especially true for ore sorting algorithms, in which the classifica-
tion results need to be validated by performing chemical assays to
the rocks on the test set and often also on the training set.

In the selected mine, developing ore sorting algorithms has
additional challenges. Although vein (VE) and andesite (AN) rocks
can be easily classified using color features, breccia (BX) and
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altered andesite (AA) rocks have very similar colors. The only dif-
ference is the light shades of purple found on AA compared to
BX. The other challenge related to BX and AA is their high-class
variability. The amount of quartz present in BX and the amount
of white clay present in AA may change drastically in each rock.
Because quartz has a similar color to clay, this creates further prob-
lems in their classification. Classifying these two types of minerals
correctly is crucial because BX rocks usually have a high grade,
while AA rocks usually have a low grade.

Finally, the last challenge related to the development of sorting
algorithms is the processing time. Commercial sorters may use belt
speeds of up to 3 m/s to process the material extracted from the
mines. Considering an image surface area of 151 mm � 201 mm,
which is the area of the scene captured by the camera in the
proof-of-concept stage, the entire processing time for a single
image should be less than 70 ms, equivalent to a frame rate of
14.3 fps (frames per second). This requirement severely limits
the amount of color and texture features that can be used for clas-
sification, as each additional feature that is computed increases the
system’s processing time. For this reason, it is convenient to use
features that require a low number of operations to compute or
are highly parallelizable.

Solving the machine vision problem requires a processing pipe-
line composed of several stages (Fig. 5). Each image is segmented
and split into several sub-images in the first stage. The use of
sub-images allows the algorithm to identify all the possible miner-
als present in the rock and use different strategies to decide
whether they should be sent to the processing plant or waste
dump. The second stage involves extracting each sub-image color
and texture features using statistical and image processing algo-
rithms. In the third stage, one or more neural networks in parallel
are used to assign one mineral class to each sub-image, creating
mineral distribution maps. Finally, the fourth stage uses a voting
algorithm to assign a single class to the whole image by counting
the number of sub-images that belong to each mineral class.

3.2. Segmentation and sub-images

This section presents the methods used in the first stage of the
algorithm, which contains the image segmentation and partition
blocks, shown in Fig. 5. The input to this stage is the color image
I m:n:cð Þ, and its output is a set of Nv sub-images of the rock. In this
case, Nv represents the number of valid sub-images that do not
contain part of the background, as will be explained later in this
section. Fig. 6 shows a detailed block diagram representing all
the operations performed in this stage.

Many of the rocks in a real mining setting contain more than
one type of mineral. The most common cases are andesite rocks
with small quartz veins, which may have a low or medium grade
depending on the number of veins in the rock. Identifying the dis-
tribution of the different minerals in the rocks is essential in order
to classify them as ore or waste correctly. For this reason, the algo-
rithm splits the input image into 1064 sub-images with dimen-
sions of 64�64 pixels (5.25 mm � 5.25 mm), denoted by
Sp m;n; cð Þ, where p=1, . . . , 1064. Because each sub-image



Fig. 5. Block diagram of the proposed mineral classification algorithms.

Fig. 6. Block diagram of the preprocessing stage of the algorithm.

Fig. 7. Visual example of the image segmentation and partitioning process.
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Sp m;n; cð Þ contains information about the local color and texture of
the image, classifying sub-images instead of whole images has two
main advantages: (1) each sub-image has a higher probability of
containing a single type of mineral due to its small size, and (2)
classification at the sub-image level generates a much larger num-
ber of training samples, which makes the classification algorithm
more robust and accurate.

In order to avoid classifying sub-images that are part of the
background and do not contain any part of the rock, the algorithm
uses a basic but effective segmentation method. This method con-
sists of two steps: first, it produces a grayscale image by adding the
three color channels of the color image I m;n; cð Þ, and then, it
thresholds the image in order to obtain a binary mask, denoted
by M m;nð Þ. Mathematically, this method is defined by

M m;nð Þ ¼ 1; if
PC

c¼1I m;n; cð Þ � TM

0; if
PC

c¼1I m;n; cð Þ < TM

(
ð2Þ

where
PC

c¼1I m;n; cð Þ represents the sum of the image’s red, green,
and blue channels; C¼3 the total number of color channels; and
TM the decision threshold, determined experimentally as TM ¼ 100
by using image intensity histograms. Because the image and mask
have the same number of pixels, each sub-image has a correspond-
ing sub-mask SM m;nð Þ of 64� 64 pixels. Therefore, to decide
whether a sub-image should be processed, the algorithm counts
the number of pixels in the sub-mask equal to 1, representing those
containing a section of the rock. If at least 90% of the pixels in the
sub-mask is equal to 1, the sub-image is processed in the subse-
quent stages of the algorithm (Fig. 7 as an example of the process).
As mentioned earlier in this section, the result of this stage is a set
of Nv valid sub-images Sp m;n; cð Þ that contain sections of the rock
but not of the background.

3.3. Feature extraction

This section presents the methods used in the second stage of
the algorithm, which contains the color and texture feature extrac-
tion blocks, shown in Fig. 5. The input to this stage is the set of Nv
664
valid color sub-images, and the output is a set of Nv feature vectors,
each one with 24 color features and 12 texture features (36 fea-
tures in total). Fig. 8 shows a detailed block diagram representing
the algorithms used in this stage.

Once all the valid sub-images have been identified, the next
stage in the algorithm pipeline is used to extract a feature vector
from each one of them. As mentioned in Section 1, several papers,
such [11,14,15], have demonstrated that color and texture features
can be used to classify different types of minerals. The color fea-
tures used successfully in the past include color statistics and
multi-way principal component analysis (MPCA), while the texture
features include Haralick features, wavelets, Gabor filters, or
amplitude modulation frequency-modulation (AM-FM) [28]. This
paper presents a feature extraction stage that uses color statistics,
principal component analysis, and wavelets. Other methods, such
as Haralick features and local binary patterns (LBP), were also eval-



Fig. 8. Block diagram of the color and texture feature extraction stage.
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uated, although the results are not presented in this paper because
of their high computational time.
3.3.1. Color feature extraction
The color feature extraction stage begins by normalizing each

sub-image Sp m;n; cð Þ to [0,1] and storing the resulting values in
the new sub-image SRGB m;n; cð Þ. Then, the sub-image is trans-
formed from the RGB to the HSV color space, producing the new
sub-image SHSV m;n; cð Þ. The HSV color space describes colors simi-
larly to how humans interpret them. Hue is a characteristic that
describes pure colors, saturation refers to how diluted the color
is with white, and value is related to the brightness of the color.
The equations used to convert a color from the RGB to HSV space
are widely known and can be found in [29]. In the early stages of
the algorithm development, we found that using both sets of chan-
nels produced better classification results in the training set than
using only the RGB color space. The main advantage of using the
HSV color space, in addition to the RGB color space, is that it sep-
arates color from intensity, providing a new way to perform fea-
ture extraction over the channels. Another advantage is that it
provides more color features for the classification algorithms in
later stages, and performing the transformation is computationally
inexpensive.

The RGB and HSV sub-images are each composed of three color
channels each, which are represented by the grayscale sub-images
SR m;nð Þ, SG m;nð Þ, SB m;nð Þ, SH m;nð Þ, SS m;nð Þ, and SV m;nð Þ. The first
12 color features computed for the sub-images are the mean (lRGB,
lHSV) and variance (r2

RGB, r2
HSV) vectors of the pixels in each color

space. These two statistical parameters are useful color features in
this ore sorting problem because their computation is already
needed in the principal component analysis (PCA) algorithm, so
they do not require additional computational costs.

The next set of color features is the principal components of the
RGB and HSV sub-images, which contain information about the
directions of the most significant variance of both color spaces.
Unlike statistical parameters such as the mean and variance, prin-
cipal components consider the correlation between color channels,
which makes them good descriptors of the overall color and con-
trast of the image [30]. Using the principal components and the
mean and variance of each color space allows the algorithm to fully
represent the sub-image color information. PCA can be computed
using several methods, such as singular value decomposition
(SVD) [31], eigenvalue decomposition of the covariance matrix
[32], and the alternating least squares algorithm [33]. The method
proposed in this paper uses the eigenvalue decomposition of the
covariance matrix to compute the principal components because
it is the fastest algorithm of the three mentioned before.

The first step to compute the principal components of a sub-
image SCS m;n; cð Þ with dimensions 64�64�3 is to reshape it into
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a matrix XPCA with dimensions 1064�3, where the subscript CS
can be used to represent either the RGB or HSV color spaces. The
main objective of PCA is to find a new set of uncorrelated variables
that maximize the variance of the data while minimizing the loss
of information [34]. These new variables, called principal compo-
nents (PC), are represented by orthonormal vectors, whose direc-
tions are estimated by calculating the eigenvectors of the
covariance matrix of the dataset.

Mathematically, a data point that belongs to matrix XPCA can be

represented by a column vector x ¼ x1; x2; � � � ; xnð ÞT of size n� 1,
where each value x1; x2; � � � ; xn represents a random variable and
T is the transpose operator. To find the principal components of a
data set, the first step is to compute the covariance matrix given by

Cx ¼ E x�mxð Þ x�mxð ÞT
n o

ð3Þ

where mx is a vector composed of the mean value of each random
variable in x. The next step is to find the eigenvalues k1, k2, . . ., kn
and eigenvectors e1, e2, . . ., en of the covariance matrix Cx. In PCA,
the eigenvalues are proportional to the variance contribution of
their respective eigenvector. Thus, the eigenvector with the highest
eigenvalue is considered the first principal component, followed by
the second eigenvector with the highest eigenvalue, and so on. The
eigenvectors can then be concatenated horizontally in order to form
a new matrix-A 2 Rn�n, which is called the Hotelling transform [35].
This transform assigns each data point, represented by x, a new vec-
tor y, whose components are uncorrelated.

Because the eigenvectors with lower eigenvalues account for a
small portion of the total variance of the data, it is possible to dis-
card them to reconstruct XPCA with minimal loss of information. In
this case, the matrix Ak, which is composed of the k eigenvectors
with higher eigenvalues, is used to reconstruct the dataset so that
the approximation of each data point x is given by

bx ¼ AT
ky þmx ð4Þ

Applying the PCA algorithm to the RGB and HSV sub-images
produces, in total, six principal components PCi;RGB and PCi;HSV,
where i ¼ 1;2;3, and each component is a vector of dimensions
3� 1. The color feature extraction stage proposed in this paper
only uses the first and second principal components because they
represent, on average, 99.93% of the variance in RGB sub-images
and 99.54% of the variance in HSV sub-images. These two values
were found experimentally by analyzing the cumulative variance
of the principal components of each sub-image in the dataset.
Because the four selected principal components are three-
dimensional vectors, the algorithm produces 12 additional color
features in total. The 12 PCA features are then concatenated with
the 12 features derived from channel statistics in order to form a
color feature vector for each sub-image with dimensions 1� 24.
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3.3.2. Texture feature extraction
The visual texture of an image is defined by the local variations

in intensity generated by the roughness or unevenness on the sur-
face of an object [36]. Wavelet decomposition is a method com-
monly used to analyze image textures that decomposes a
grayscale image into a set of lower resolution images containing
frequency information at different scales [35]. Wavelet analysis
decomposes an image using high-pass and low-pass filter banks,
which must meet specific properties so that the image can be per-
fectly reconstructed [37]. The filtered images are then decimated
by a factor of 2, reducing their resolution by half and eliminating
redundant information. The filters used to decompose the image
are closely related to a specific family of wavelets, chosen accord-
ing to the specific application.

Analyzing a grayscale image using wavelets produces four new
matrices. The first matrix, called the approximation image, con-
tains the lower frequencies of the original image. The second, third,
and fourth matrices, called the horizontal, vertical, and diagonal
detailed images, contain high-frequency information about the
original image in their respective directions. Because the approxi-
mation image is just a lower resolution version of the original
image, wavelet analysis can be applied recursively to the approxi-
mation image an arbitrary number of times to produce a multi-
resolution analysis [38].

The filters used by the proposed texture feature extraction stage
are associated with the two-coefficient Haar wavelet. Although
many wavelets can be used to decompose an image, the Haar
wavelet is the simplest to implement and the least computation-
ally demanding [39], which is desirable in a real-time classification
system. The filters associated with this type of wavelet are

h/ nð Þ ¼ 1
2

ffiffiffi
2

p
;

ffiffiffi
2

pn o
and hw nð Þ ¼ 1

2

ffiffiffi
2

p
;�

ffiffiffi
2

pn o
, where h/ nð Þ is the

low-pass filter and hw nð Þ is the high-pass filter. The proposed fea-
ture extraction stage uses these filters to generate the first three
wavelet analysis levels, including 4 approximations and 8 detailed
images. Wavelet texture analysis (WTA) is a method for extracting
texture information from approximation and detailed images. The
most common method for extracting texture information is by
computing the energy (E) of each matrix [40], defined by

E ¼
XM
m¼1

XN
n¼1

SGS m;nð Þj j2 ð5Þ

where SGS m;nð Þ is the grayscale sub-image, m and n are the vertical
and horizontal coordinates of each pixel; M the numbers of rows of
the sub-image; and N the numbers of columns of the sub-image.
WTA is based on the assumption that the feature vectors of similar
textures form clusters in the feature space, which are different from
other clusters that belong to different textures. For this reason, the
proposed algorithm uses the energy of the 12 resulting matrices as
Fig. 9. Block diagram of the classification
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texture feature vectors to characterize the texture of each sub-
image.

After the color and texture feature extraction stages, the Nv

valid sub-images are transformed into feature vectors xp with 36
elements, where the first 12 come from color statistics, the next
12 come from the vector coefficients obtained through PCA, and
the last 12 come from wavelet texture analysis. These vectors are
a low-dimensional representation of the sub-images, which
reduces the dimension space from 12228-pixel intensity values
(4096 for each color channel) to just 36 real decimal numbers,
which enables the use of simple classification algorithms in later
stages.

3.4. Classification mode

This section presents the methods used in the third stage of the
algorithm, which contains the machine learning models used to
classify the sub-images as shown on Fig. 5. The input to this stage
is the set of Nv feature vectors, each representing the color and tex-
ture of a sub-image, and the output is a set of probability maps.
Depending on the data set used to train the algorithm, the proba-
bility maps represent the likelihood that the sub-images belong to
each of the four classes of minerals or the likelihood that the sub-
images are mineralized. Fig. 9 shows a detailed block diagram rep-
resenting the algorithms used in the classification and voting
stages.

After extracting the 36 color and texture features from each
sub-image, the next stage uses classification models to find their
respective classes. The ore sorting algorithms proposed in this
paper use only artificial neural networks (ANN) in the classification
stage, although other classification methods were also tested, as
will be explained in section 4.

ANN are a class of regression and classification algorithms that
can be used to approximate unknown functions from a collection
of input and output data points. One of the main advantages of
neural networks over other regression and classification algo-
rithms is that they do not require prior knowledge of the data dis-
tribution, which is especially useful when working with data with
a large number of variables [41].

Neural networks are composed of basic units, called artificial
neurons or neural units, which are nonlinear functions that take
as input a feature vector x 2 Rd, a weight vector w 2 Rd, and a bias
b 2 Rd. The output of the neural unit is given by

by ¼ g wTxþ b
� � ð6Þ

where g �ð Þ is a non-linear function known as the activation function.
In order to train a neural network from a set of input and output
data points, one must find the weights that minimize the cost func-
tion of the neural network, which is usually done with the gradient
and voting stages of the algorithm.
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descent algorithm [42]. This algorithm is a numerical optimization
method that calculates the gradient of the cost function concerning
the neural network’s weights and takes small steps in the steepest
direction until the optimal point is found. The backpropagation
method uses the chain rule to decompose the gradient into several
simpler derivatives based on known functions. This process is
widely known and explained thoroughly in other sources [35].

The classification algorithm presented in this paper consists of a
set of neural networks operating in parallel, where each is special-
ized in classifying one specific mineral. We found that using paral-
lel one-vs-all neural networks achieved better classification results
than using a single multi-class neural network. When the algo-
rithm is trained with the feature vectors from rock group 1 and
the labels created by the geologist, it uses four neural networks
because there are four main classes of minerals. In contrast, when
the algorithm is trained with the feature vectors from rock group 2
and the labels created by binarizing the rock’s grade with the cut-
off, it only uses one neural network that predicts whether each
sub-image is ore or waste since the problem reduces to binary clas-
sification. All the neural networks used in this work have one input
layer, two hidden layers, and one output layer. Using two hidden
layers or more allows the algorithm to find arbitrarily complex
decision boundaries, unlike using one hidden layer, limiting the
algorithm to convex boundaries [35]. Each hidden layer comprises
200 neural units with the rectified linear unit (ReLU) activation
function. The output layer of each neural network has only one
neuron and uses the logistic activation function, which maps the
networks’ output to a probability between [0,1].

Each neural network of the classification stage has the same
input, which is a matrix XCT with dimensions Nv � 36 that contains
the 24 color and 12 texture features of all Nv valid sub-images of
the rock. Before being classified by the neural networks, the algo-
rithm normalizes all columns of matrix XCT by computing their
z-score, which has zero mean and a similar scale for all columns.
Normalizing the feature matrix can reduce the number of itera-
tions needed for the weight of the network to converge [43].

Once the input matrix is normalized, it is processed by the neu-
ral networks in parallel, and each one of them produces a vector of
probabilities bym with dimensions Nv�1. Each element of this vec-
tor is a number between [0,1], representing the probability that
each valid sub-image belongs to the mineral class m. When the
model is trained with the feature vectors from rock group 1 and
the mineral labels identified by the geologist, the neural networks
generate four probability vectors: byVE, byBX, byAN, and byAA. In con-
trast, when the model is trained with images from rock group 2
and the labels obtained by binarizing the rock’s grade with the
cut-off, it only produces one probability vector byore. By tracking
Fig. 10. Probability maps
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the spatial location of the valid sub-images, the algorithm rear-
ranges the probability vectors into probability maps, denoted by
MVE, MBX, MAN, MAA, and More. Fig. 10 shows the four probability
maps of a breccia (BX) rock generated by the model when it is
trained with the geologist’s labels (Fig. 10 b-e) and the probability
map generated by training the model with the labels obtained
through chemical assays (Fig. 10f).

3.5. Voting system

After generating the probability maps, the classification stage
uses a voting system that analyzes the probability of each sub-
image in order to decide whether a rock is mineralized or not
and, consequently, whether it should be sent to the processing
plant or waste dump. The inputs to this stage are the probability
maps, and the output is a single classification value, which takes
a value of 1 if the algorithm decides that the rock is mineralized,
or 0 if it decides that the rock is barren. The voting system corre-
sponds to the fourth stage of the proposed algorithm, represented
graphically in Fig. 5.

The voting system is composed of two main stages. In the first
stage, the algorithm analyzes each sub-image and compares the
score given by each probability map. The map with the highest
score for a given sub-image determines its mineral class when
the algorithm is trained using the geologist’s labels. In contrast,
when the algorithm is trained with the labels obtained by perform-
ing chemical assays, it determines whether the sub-image is min-
eralized or not by comparing the predicted probability with a
binary threshold, whose value is determined experimentally in
the training stage. After assigning a class to each sub-image, the
algorithm produces a mineral distribution map, represented by
MMD. This process is presented graphically in Fig. 11.

The second stage of the voting system counts the number of
sub-images that belong to each mineral class. The mineral class
with the highest amount of sub-images determines the overall
class of the rock. When trained with the geologist labels, if the rock
as a whole is classified as either vein (VE) or breccia (BX), the algo-
rithm assumes that the rock is mineralized and should be sent to
the processing plant, and if the rock is either pure andesite (AN)
or altered andesite (AA), it should be sent to the waste dump. This
decision process is based on the fact that, on average, VE and BX
have a grade above the cut-off, as explained in the sub-section 2.1.
4. Results and discussion

The proposed algorithm was first trained and tested using the
images of static rocks, which correspond to rock groups one and
of a sample image.



Fig. 11. Graphical representations of the voting system. Note: (a) shows the voting system used when the classification algorithm is trained with the geologist’s labels,
assigning the class with the highest probability to each sub-image, and (b) shows the voting system used when the classification algorithm is trained with the equivalent
silver grade.
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two. This first test was used as a proof of concept to validate the
algorithm in an ideal setting, with dry rock samples highly rep-
resentative of each mineral class and photographed using a
high-resolution image. Then, after validating the algorithm in
this ideal setting, more tests were performed using images of
moving rocks corresponding to group three, which were pho-
tographed in a new test bench using an industrial camera.
Although performed in a lab, these tests are more representative
of the conditions that could be expected in an actual sorter since
the rocks are photographed moving at a constant speed while
still being wet. Sections 4.1–4.4 describe the training and testing
process of the proof-of-concept stage, as well as the results that
were obtained, while Section 4.5 shows the results with the
moving rock images.
Fig. 12. Graphical representation of the separation between the training and test set for e
were exclusively used to train the algorithm using class-based labels in the proof-of-conce
grade-based labels also in the proof-of-concept stage, and the remaining 31 images were
images in rock group 2, 100 train-test iterations were performed randomly, choosing the t
the algorithm with class-based labels using moving rocks, while the remaining 154 imag
train and test sets in 100 iterations. The exact amount of images in the train and test sets
actual mine.
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4.1. Training the classification models

In order to train and test the classification model in the proof-
of-concept stage, the image dataset was divided into a training
set and a test set. As explained in the Section 2.2.2, the geologist
classified all 196 rocks from rock groups 1 and 2 into four mineral
classes, while the 40 rocks from rock group 2 were also analyzed in
a geochemical laboratory to obtain their gold and silver grades.
Because of the small size of the rocks (mesh between 3/400�500),
the algorithm assumes that the whole rock is homogeneous and
assigns the same label to all sub-images from the same rock. This
applies to both the geologist’s labels as well as the grades obtained
from the assays. All images obtained from rock group 1 were used
to train the classification algorithm using the geologist labels,
ach of the three rock groups used in this paper. Note: 465 images from rock group 1
pt stage. 124 images (80%) from rock group 2 were used to train the algorithm using
used to test the algorithm using both types of labels. Because of the low amount of
rain and test sets. Finally, in rock group 3, on average, 713 images were used to train
es were used for testing. Images from this group were also randomly assigned to the
is not defined since the train set is constructed using mass proportions found in the



Fig. 13. Graphical representation of the data augmentation process.
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while only 80% of images from rock group 2 were used to train the
algorithm using the labels obtained through chemical assays. The
remaining 20% of images from rock group 2 were used to test the
algorithm trained using both sets of labels. It is worth mentioning
that because of the lower quantity of rocks in group 2 compared to
group 1, the training and testing stages were performed on 100
iterations, randomly choosing the train and test rocks from group
2. Fig. 12 explains this process clearly by showing a graphical rep-
resentation of how the rock groups were divided into train and test
sets.

After choosing the training set rocks, their images were pro-
cessed using the methods described in subsections 3.2 and 3.3 to
create feature matrices and label vectors. Data augmentation using
an offset when partitioning the images into sub-images was also
used to double the number of sub-images in the training set. This
method effectively creates one new sub-image from every-four
adjacent sub-images, as illustrated in Fig. 13.

Because there was a different number of images for each min-
eral class, the feature matrices and label vectors were unbalanced.
In classification problems, having an unbalanced dataset can result
in poor performance for standard algorithms [44], such as neural
networks. Thus, to avoid this problem, the feature matrices and
label vectors were resampled to match the target class size so that
the algorithms could be trained with the same number of positive
and negative data points. This means that half of each feature
matrix and label vector rows contained data from the target min-
eral, while the other half contained data from the rest of the min-
erals, as shown in Table 3.

After balancing the feature matrices and label vectors, they
were further divided into a training set used to train the models
and a validation set used to tune the model’s parameters and eval-
uate the performance at the sub-image level. The neural networks
were trained using the Adam (Adaptive Moment Estimation) algo-
rithm. This algorithm is a stochastic optimization method based on
the gradient descent algorithm that finds the optimal weights of
the neural network by combining the main advantages of the Ada-
Grad and RMSProp algorithms [45]. Also, the proposed algorithm
uses the dropout regularization method, in which neurons in the
hidden layers have a fixed probability of being temporarily elimi-
nated in one iteration of the training process. This method makes
Table 3
Number of sub-images per mineral class used to train the neural networks.

Classifier Feature
matrix

Data-points per class

VE BX A

VE vs. other XVE 11251 3750 3
BX vs. other XBX 1039 3118 1
AN vs. other XAN 1613 1613 4
AA vs. other XAA 896 896 8
Ore vs. waste Xore
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the neural network less dependent on any particular neuron,
which means that the network’s weights are kept small [46]. All
the neural networks of the proposed models were trained for 200
epochs, recording the value of the cost function at each iteration
to verify convergence.

4.2. Testing the classification models

The model’s classification performance was first evaluated
using test sub-images from the feature matrices and then using
test images from rock group 2. The first test, which evaluates the
algorithm’s accuracy in classifying sub-images, is a good indicator
of which minerals are harder to classify and provides insights into
the performance of the individual neural networks. In contrast, the
second test evaluates the performance of the algorithm in classify-
ing complete images as ore or waste, which is the most important
metric when comparing ore sorting algorithms.

4.2.1. Testing with sub-images
The sub-image classification performance of the model was

evaluated using the validation set of the feature matrices. The met-
ric used to evaluate the performance of the neural networks is the
Matthews correlation coefficient (MCC), also known as the phi-
coefficient, which is given by

MCC ¼ TP� TN� FP� FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PP� P� N� PN

p ð7Þ

where PP¼TPþFP, P¼TPþFN, N¼TNþFP, PN¼TNþFN, TP is the
number of true positives; FP the false positives; FN the false nega-
tives; and TN the true negatives. The MCC is a classification metric
used to evaluate binary classifiers that produces a high score only if
the prediction obtained good results in all of the four categories of
the confusion matrix (true positives, false negatives, true negatives,
and false positives), proportionally both to the size of positive ele-
ments and the size of negative elements in the dataset [47]. The
MCC is a real decimal number between þ1 and �1, where a value
ofþ1 means that the model classified all samples correctly, 0 means
that it did not find any relationship between inputs and outputs and
is working as a random classifier, and a value of �1 means that the
model classified all samples incorrectly. The classification perfor-
mance of the neural networks was also evaluated using more com-
mon metrics, such as the true positive rate (TPR), true negative rate
(TNR), positive predictive value (PPV), and negative predictive value
(NPV).

The results from the sub-image tests are presented in Table 4.
The VE, BX, AN, and AA results correspond to the single test per-
formed to evaluate the model’s performance when trained with
the geologist’s labels. In contrast, the classification results associ-
ated with the ore versus waste classifier were obtained when the
model was trained with the equivalent silver grades and is pre-
sented as the average obtained in 100 iterations. The proposed
model achieved an excellent classification performance, quantified
by the MCC, for the VE (0.938) and AN (0.902) classifiers and good
performance for the BX (0.723) and AA (0.779) classifiers. VE and
AN rocks are easier to classify because they have very different
Total

N AA Ore Waste

750 3750 22501
039 1039 6235
839 1613 9678
96 2689 5377

11063 8304 19367



Table 4
Sub-image classification performance of the individual neural networks for the vein (VE), breccia (BX), pure andesite (AN), and altered andesite (AA) versus all the rest, and for ore
(O) versus waste (W).

Model TPR TNR PPV NPV MCC

VE 97.5% 96.0% 96.0% 97.5% 0.938
BX 86.5% 81.0% 79.0% 87.9% 0.723
AN 96.1% 93.6% 93.7% 96.0% 0.902
AA 85.6% 89.3% 89.5% 85.3% 0.779
O vs. W 90.5% 87.9% 89.8% 87.4% 0.778

Note: The neural networks are compared using TPR, TNR, PPV, NPV, and MCC.

Fig. 14. Comparison between sub-images that were correctly classified (a, c, e, and
g) and those that were incorrectly classified (b, d, f, and h) for each mineral type.
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color characteristics from the rest of the minerals. VE is almost
entirely white due to its high quartz content, while AN has a dark
green to black color due to its high andesite content. The BX and AA
minerals classifiers have lower accuracy than the others because
they are visually very similar. Both minerals are gray with white
sections. In the case of BX, the white sections are composed chiefly
of quartz, while those of the AA mineral contain clay. By looking at
the sub-images presented in Fig. 14, it can be clearly seen that
most of the BX class sub-images that were misclassified are very
similar to the AA class sub-images, with a few exceptions that
resemble the VE and AN minerals. The same is true for the misclas-
sified sub-images of the AA class, which resemble those of the BX
class. The ore versus waste classifier also achieved a good classifi-
cation performance (0.778), which was 0.055 points higher than
the BX classifier but 0.001 points lower than the AA classifier.
4.2.2. Testing with full images
After training the neural networks and testing the classification

performance using sub-images, the model trained with both sets of
670
labels was evaluated using the full images. The tests were per-
formed on 100 iterations, using 31 randomly chosen rock images
from group 2 not used for training the models. Then, the test
images were processed using the segmentation, partitioning, and
feature extraction methods described in Section 3, producing a
set of feature vectors for each image. The neural networks then
classified the feature vectors to make a single prediction value
for each image. An image was considered to be correctly classified
if the prediction matched the grade of the rock. For example, if the
prediction of one of the models was ‘‘ore” and the rock associated
with the image had an equivalent silver grade above the cut-off,
then the classification was considered to be correct. The same
applied if the model’s prediction was ‘‘waste” and the grade was
below the cut-off. It is important to note that the same test images
were used to evaluate both models in each iteration to compare
the classification results. Similar to the tests using sub-images,
the classification performance using complete images is quantified
using the MCC.

Table 5 shows the classification results for the complete image
tests. The model trained with the geologist’s labels (NN-G)
achieved a higher MCC than the model trained with the labels
obtained through chemical assays (NN-A) in every test iteration,
which on average, was 0.032 points higher. The models are com-
pared using the true positive rate (TPR), true negative rate (TNR),
positive predictive value (PPV), negative predictive value (NPV),
and Matthews correlation coefficient (MCC). Such metrics as TPR,
TNR, PPV and NPV were also higher for the model trained with
the geologist’s labels, which proves that the model is the superior
method for mineral classification for this particular mineral
system.

After performing the complete image tests, the images misclas-
sified by the model trained with the geologist’s labels were ana-
lyzed to determine the cause of the errors. Only 3 out of 155
images from group 2 were misclassified. The first two images
shown in Fig. 15 come from the same rock, which the geologist
and the algorithm probably classified as altered andesite (AA)
because of its purple tones. However, after analyzing the rock using
chemical assays, it was found that its equivalent silver grade was
higher than the cut-off, which means that it should have been clas-
sified as ore by the geologist and the algorithm. This particular
example is an outlier in the altered andesite category, and it is
inferred that most of the gold and silver content is hosted on small
quartz veins on the rock. The third misclassified image is a rock
classified correctly by the geologist as an altered andesite but mis-
classified by the algorithm as breccia (BX). In this case, the algo-
rithm classified the other image from the same rock correctly as
waste.
4.3. Comparison with other classification algorithms

Previous papers have used other methods besides neural net-
works in their mineral classification algorithms. One of the most
common methods is support vector machines (SVM), which are
classification and regression algorithms that aim to find the deci-



Table 5
Image classification performance of the proposed method compared to the support vector machines (SVM) and the VGG-19 convolutional neural network models using all images
from the second rock group.

Model TPR TNR PPV NPV MCC

NN-G 97.1% 98.8% 98.5% 97.7% 0.961
NN-A 96.1% 96.9% 95.9% 96.9% 0.929
SVM 92.8% 97.7% 97.0% 94.4% 0.909
VGG-19 100.0% 95.4% 94.2% 100.0% 0.948

Fig. 15. Images from the group 2 rocks that the model misclassified.
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sion boundary that maximizes the separation between two classes,
in the case of classification, or to find the curve that best fits the
trend of a data set, in the case of regression. For example,
[11,14,15] used SVM to classify rocks from nickel mineral systems
successfully.

Another method that has been used extensively for solving
many challenges related to image classification is convolutional
neural networks (CNN). CNNs are a class of neural networks spe-
cialized in processing data arranged in a grid, such as digital
images. These classifiers comprise at least one convolutional layer
containing filter banks whose coefficients are learned in a super-
vised learning stage [48]. CNN models learn to identify arbitrarily
complex structures without designing a prior feature extraction
system [48,49]. Due to their good classification potential and ease
of use, CNNs have become one of the dominant algorithms in sev-
eral areas of computer vision. For example, in ore sorting applica-
tions, CNNs were successfully used by [17,50] to classify different
coal ore classes.

The classification algorithm proposed in this paper was also
compared with SVM and CNN-based algorithms to confirm that
our approach is the best choice for the ore sorting problem. The
SVM-based algorithm used the same feature extraction method
as the proposed model, but instead of neural networks, it used a
regression SVM with a Gaussian kernel to predict the class of the
sub-images. The CNN-based algorithm, unlike the SVM, did not
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use the color and texture features of the rock but instead used
the raw sub-images as inputs. We used a modified version of the
VGG-19 model [51], which is a commonly used CNN for many clas-
sification problems. This network consists of 16 convolution layers,
5 max pool layers, 3 fully connected layers, and 1 SoftMax layer.
The modifications are the following: (1) the input size of the image
was reduced from 224�224�3 to 64�64�3 since the sub-images
have the latter dimensions, (2) the fully connected layer size was
reduced from 4096 to 200 neurons, because that was the number
of neurons used by the proposed model and we only want to com-
pare the feature extraction backbone, and (3) the output layer was
reduced from 1000 to 4 neurons because we only want to classify 4
classes of minerals. The results of the two new algorithms, pre-
sented in Table 5, show that the model using neural networks
and feature engineering achieved a better classification perfor-
mance, evidence that the proposed algorithm is the best alterna-
tive for this specific mineral classification problem.

4.4. Processing time

The proposed method was optimized to classify rocks in real
time. The processing time of the algorithm was measured from
the moment after the image was loaded from memory until the
moment the algorithm finished counting the number of sub-
images from each class. The time the computer takes to load the
image from memory was not considered because, in a real-time
implementation, the camera transfers data directly to the memory
buffer [52]. Fig. 16 shows the distribution of processing times for
the test set images, with a mean of 19.2 ms and a standard devia-
tion of 7.9 ms. The maximum processing time was 44 ms and
belonged to a AA class rock, the largest rock in the test set and
the entire dataset. This indicates that the processing time is within
the limit proposed by the mining company of 70 ms. There is a sur-
plus of 25 ms, which another neural network could use to classify
other classes of minerals if necessary.

On the other hand, Fig. 17 shows the correlation between the
number of valid sub-images in an image and the time it takes to
classify them. This correlation is linear and has a coefficient of
Fig. 16. Distribution of the processing times of the images from rock group 2.



Fig. 17. Correlation between the number of valid sub-images in each rock and their
processing time, represented by a linear regression with a coefficient of determi-
nation (R2).
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determination R2¼0:97, which indicates a strong correlation
between the number of sub-images and the processing time. To
calculate the maximum number of sub-images that the algorithm
can classify, we used the line equation found by the linear regres-
sion method, which is given by

t ¼ 0:0543nþ 9:7002 ð8Þ

where t is the processing time in milliseconds; and n the number of
sub-images. Solving Eq. (8) using the maximum possible number of
sub-images in a given image (n¼1064) results in a processing time
of just 67.5 ms, which is less than the limit of 70 ms needed for real-
time ore sorting. Thus, the algorithm can classify an entire image of
1836�2448 pixels using four neural networks. The maximum pro-
cessing time was calculated using a theoretical conveyor belt speed
of 3 m/s. However, this speed could change depending on the com-
pany’s mining plan.

It is worth mentioning that the voting strategies presented in
this paper could be further optimized to improve classification
accuracy. For example, the voting system could automatically
accept material when it detects a small amount of a specific min-
eral instead of the current strategy, where the rock is accepted only
if the predominant mineral is ore. As another example, the voting
system could be further improved by using a second threshold that
determines the minimum amount of sub-images classified as ore
to classify the rock as a whole as ore. Also, both voting systems
Fig. 18. Test bench used to capture images of rocks moving at speeds of 1 m/s.Note:
(a) Outside view of the test bench: a treadmill is used as a conveyor belt, and the
camera, located inside the MDF box, is connected to a laptop with the image
acquisition program. (b) Inside view of the test bench: 2 m of 16.2 W/m LED strips
are used to illuminate the rocks moving through the conveyor belt, while a Basler
daA2500-14uc camera is used to acquire color images.
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can be tuned to accept or reject more material, to maximize profits
according to a financial model.

4.5. Performance test with moving rocks

After doing the tests with static rocks to choose the best algo-
rithm, additional tests were performed with moving rocks on a test
bench. The test bench consists of a conveyor belt and an MDF
structure with the camera and lighting system, as shown on
Fig. 18. The camera is a Basler daA2500-14uc [53], located perpen-
dicularly at a distance of 500 mm from the conveyor belt. It has a
resolution of 1342�1960 pixels and sends raw image data to the
PC through a USB cable. By using this resolution and distance to
the conveyor belt, the images had a pixel density of 6.25 px/mm,
representing a scene with dimensions of 215 mm � 317 mm.
The images were illuminated using 2 m of 16.2 W/m LED strips,
with a color temperature of 4000 K. The conveyor belt operated
at a speed of 1 m/s, which is only a third of commercial sorters.
However, commercial sorters use line-scan cameras and powerful
LED bars, which are able to reduce the sensor exposure time to
obtain sharper images.

Using the test bench, we acquired 867 images from 435 rocks
(54.4 kg) since, in most cases, they were photographed from two
different sides. All rocks were extracted from the same vein as
the tests with static rocks but approximately-two years later. Addi-
tionally, the rocks were washed before performing the tests in
order to remove dust and mud from their surface and then pho-
tographed while they were still wet. After creating the image data-
base, the 460 rocks were dried and analyzed in a geochemical
laboratory using aqua regia and fire assays to estimate their gold
and silver grades. The grade statistics of this group of rocks are
shown on Table 1 and correspond to the assay campaign per-
formed on January 2022.

Classification tests were performed using the selected algo-
rithm on the static tests, which consists of extracting color and tex-
ture features from sub-images and then classifying them with
neural networks trained with geologist’s labels. The only modifica-
tion that was made to the algorithm was that sub-images had a
side length of 32 pixels instead of 64 because of the lower camera
resolution and pixel density. The algorithm was trained and tested
on 100 iterations, choosing the images for each set randomly. How-
ever, unlike the tests with static rocks, the test set with moving
Fig. 19. Recovery and mass pull calculated on each of the 100 test iterations,
represented by blue dots. The red star represents the average value of the 100
iterations, which is a recovery of 95.6% and a mass pull of 77.4%. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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rocks was formed by choosing mineral proportions that closely
resemble those found in the selected mine. In particular, the test
set proportions are 39% VE, 39% BX, 19% AN, and 3% AA. Although
these proportions can vary in different veins and periods of time,
the values represent averages and were validated by geologists of
the mining company.

After performing the 100 test iterations, we found that the aver-
age MCC of the moving rock tests was 0.901, which is lower than
the average MCC of 0.961 obtained using static rocks. The decrease
in performance might be explained by one or several of the follow-
ing factors: lower grades, non-ideal rock samples, wet surfaces, a
lower camera resolution, and the blur produced by the motion of
the rocks. Motion blur is detrimental to the algorithm because it
distorts the texture of the rock. Although the first three factors can-
not be controlled since they depend exclusively on the characteris-
tics of the mineral, the last two factors might be controlled in
future work by using better sensors. Particularly, using a line-
scan camera and a brighter light source is key to reducing sensor
exposure time and, therefore, motion blur.

The algorithm was also evaluated using two additional metrics
commonly used in ore sorting: mineral recovery and mass pull
(also called yield). The mass pull is the percentage of mass that
is classified as ‘‘ore” by the algorithm, while the recovery is the
percentage of the mass of gold and silver that can be recovered
from the rocks classified as ‘‘ore”. These two metrics were not cal-
culated for the static rock tests because they need actual mineral
proportions to be interpreted correctly. In the moving rock tests,
the recovery and mass pull were calculated on each of the 100 iter-
ations, as shown on Fig. 19. We found that the average recovery
was 95.6%, while the average mass pull was 77.4%. This means that
if the sorting algorithm was implemented in a real mine, by pro-
cessing only 77.4% of the mineral, 95.6% of the gold and silver
could potentially be recovered. Finally, we calculated the
weighted-average grade of the rocks in the input and output
streams on each iteration and found that the proposed algorithm
increases the equivalent silver grade from 151 to 186 g/t, which
is equivalent to a grade upgrade of 23.6%. All of these metrics
could be used in the future to estimate the potential economic
benefit of implementing the proposed algorithm in a real mining
setting.

5. Conclusions

This paper presented a novel ore sorting algorithm capable of
classifying rock particles in real-time using color and texture anal-
ysis. The algorithm was trained with two different data sets. The
first dataset consisted of rocks that a geologist manually labeled
according to their mineral content, while the second one included
rocks analyzed in a geochemical laboratory to determine their
grade. The algorithm was tested with images of gold and silver-
bearing rocks extracted from an underground mine in the Peruvian
Andes. The ore sorting problem was particularly challenging
because of the color and texture similarities between high and
low-grade rocks. The main findings are:

(1) The highest performance was obtained when training the
algorithm with mineral class labels identified by a geologist,
with an average MCC of 0.961 points. In contrast, when the
algorithm is trained directly using mineral grades as labels,
its performance is significantly worse, with an average
MCC of 0.929 points.

(2) The algorithm using color and texture analysis in the feature
extraction stage and neural networks in the classification
stage outperforms other algorithms trained with the same
images. In particular, the MCC of the proposed method is
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0.052 points higher than the one using SVMs instead of neu-
ral networks and 0.013 points higher than the one using a
VGG-19 backbone for feature extraction.

(3) The algorithm is capable of classifying rock particles
screened with a 3/4‘‘�500 mesh with an average and maxi-
mum processing time of 19.2 ms (52.1 fps) and 44 ms
(22.7 fps), respectively.

(4) Testing the algorithmwith an additional 54.4 kg of non-ideal
wet rock particles moving at a speed of 1 m/s on a conveyor
belt, with a lower-resolution industrial USB camera, and
with real mineral proportions produced an MCC of 0.901
points, which are still highly desirable results for ore sorting.
This performance translates to gold and silver recovery of
95.6% (or grade upgrade of 23.6%) and a mass pull of 77.4%.

The results of our algorithm indicate that it could be imple-
mented in a pilot plant to perform real-time ore sorting. Also, in
the future, the proposed method will be combined with hyperspec-
tral analysis using multi-modal learning to improve its classifica-
tion performance.
References

[1] Priester M, Ericsson M, Dolega P, Löf O. Mineral grades: An important indicator
for environmental impact of mineral exploitation. Miner Econ 2019;32
(1):49–73.

[2] Cho K, Kim H, Myung E, Purev O, Choi N, Park C. Recovery of gold from the
refractory gold concentrate using microwave assisted leaching. Metals
2020;10(5):571.

[3] Elliott R, Barati M. A review of the beneficiation of low-grade manganese ores
by magnetic separation. Can Metall Q 2020;59(1):1–16.

[4] Ulrich S, Trench A, Hagemann S. Grade-cost relationships within Australian
underground gold mines—A 2014–2017 empirical study and potential value
implications. Resour Policy 2019;61:29–48.

[5] La Brooy SR, Linge HG, Walker GS. Review of gold extraction from ores. Miner
Eng 1994;7(10):1213–41.

[6] Lessard J, de Bakker J, McHugh L. Development of ore sorting and its impact on
mineral processing economics. Miner Eng 2014;65:88–97.

[7] Lessard J, Sweetser W, Bartram K, Figueroa J, McHugh L. Bridging the gap:
Understanding the economic impact of ore sorting on a mineral processing
circuit. Miner Eng 2016;91:92–9.

[8] Robben C, Wotruba H. Sensor-based ore sorting technology in mining—Past,
present and future. Minerals 2019;9(9):523.

[9] Simmons SF, White NC, John DA. Geological characteristics of epithermal
precious and base metal deposits. Society of Economic Geologists (100th
anniversary vol.); 2005.

[10] Gülcan E, Gülsoy ÖY. Performance evaluation of optical sorting in mineral
processing—A case study with quartz, magnesite, hematite, lignite, copper and
gold ores. Int J Miner Process 2017;169:129–41.

[11] Tessier J, Duchesne C, Bartolacci G. A machine vision approach to on-line
estimation of run-of-mine ore composition on conveyor belts. Miner Eng
2007;20(12):1129–44.

[12] Singh V, Rao SM. Application of image processing and radial basis neural
network techniques for ore sorting and ore classification. Miner Eng 2005;18
(15):1412–20.

[13] McCoy JT, Auret L. Machine learning applications in minerals processing: A
review. Miner Eng 2019;132:95–109.

[14] Perez CA, Estévez PA, Vera PA, Castillo LE, Aravena CM, Schulz DA, Medina LE.
Ore grade estimation by feature selection and voting using boundary detection
in digital image analysis. Int J Miner Process 2011;101(1–4):28–36.

[15] Perez CA, Saravia JA, Navarro CF, Schulz DA, Aravena CM, Galdames FJ. Rock
lithological classification using multi-scale Gabor features from sub-images,
and voting with rock contour information. Int J Miner Process
2015;144:56–64.

[16] Chen JY, Huang HW, Cohn AG, Zhang DM, Zhou ML. Machine learning-based
classification of rock discontinuity trace: SMOTE oversampling integrated with
GBT ensemble learning. Int J Min Sci Technol 2022;32(2):309–22.

[17] Liu Y, Zhang ZL. Liu X, Wang L, Xia XH. Ore image classification based on small
deep learning model: Evaluation and optimization of model depth, model
structure and data size. Miner Eng 2021;172:107020.

[18] Bai FY, Fan MQ, Yang HL, Dong LP. Fast recognition using convolutional
neural network for the coal particle density range based on images
captured under multiple light sources. Int J Min Sci Technol 2021;31
(6):1053–61.

[19] Andrearczyk V, Whelan PF. Using filter banks in convolutional neural networks
for texture classification. Pattern Recognit Lett 2016;84:63–9.

[20] Fujieda S, Takayama K, Hachisuka T. Wavelet convolutional neural networks
for texture classification. 2017:arXiv: 1707.07394.

http://refhub.elsevier.com/S2095-2686(23)00050-2/h0005
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0005
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0005
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0010
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0010
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0010
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0015
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0015
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0020
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0020
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0020
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0025
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0025
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0030
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0030
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0035
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0035
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0035
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0040
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0040
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0045
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0045
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0045
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0050
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0050
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0050
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0055
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0055
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0055
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0060
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0060
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0060
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0065
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0065
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0070
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0070
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0070
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0075
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0075
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0075
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0075
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0080
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0080
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0080
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0090
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0090
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0090
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0090


D.G. Shatwell, V. Murray and A. Barton International Journal of Mining Science and Technology 33 (2023) 659–674
[21] Wang QC, Zheng YJ, Yang GP, Jin WD, Chen XJ, Yin YL. Multiscale rotation-
invariant convolutional neural networks for lung texture classification. IEEE J
Biomed Health Inform 2018;22(1):184–95.

[22] Corbett G. Epithermal gold for explorationists. AIG Journal 2002;67:1–8.
[23] Sillitoe RH. Styles of high-sulphidation gold, silver and copper mineralisation

in porphyry and epithermal environments. In: Proceedings of the Australasian
Institute of Mining and Metallurgy. Parkville, Vic.: Australasian Institute of
Mining and Metallurgy; 2000. p. 19–34.

[24] Gibson HL, Watkinson DH, Comba CDA. Silicification; hydrothermal alteration
in an Archean geothermal system within the Amulet Rhyolite Formation,
Noranda. Quebec Econ Geol 1983;78(5):954–71.

[25] Sony, Digital Still Camera-Instruction Manual-DSC-HX90V/DSC-HX90/DSC-
HX80/DSC-WX500 (2015). URL.

[26] GTI Graphic Technology, Inc., PDV-2e/M Multi-Source Portable Desktop
Viewers (Dec. 2017). URL.

[27] Rawat W, Wang ZH. Deep convolutional neural networks for image
classification: A comprehensive review. Neural Comput 2017;29(9):2352–449.

[28] Loizou CP, Murray V, Pattichis MS, Pantziaris M, Nicolaides AN, Pattichis CS.
Despeckle filtering for multiscale amplitude-modulation frequency-
modulation (AM-FM) texture analysis of ultrasound images of the intima-
media complex. Int J Biomed Imaging 2014;2014:1–13.

[29] Ibraheem NA, Hasan M, Khan R, Mishra PK. Understanding color models: A
review. ARPN J Sci Technol 2012;2(3):265–75.

[30] Yu HL, MacGregor JF. Multivariate image analysis and regression for prediction
of coating content and distribution in the production of snack foods. Chemom
Intell Lab Syst 2003;67(2):125–44.

[31] Edward JJ. A User’s Guide to Principal Components, Vol. 587. John Wiley &
Sons; 2005.

[32] Jolliffe I. Principal Component Analysis. Encyclopedia of Statistics in Behavioral
Science. 2005.

[33] Ilin A, Raiko T. Practical approaches to principal component analysis in the
presence of missing values. J Mach Learn Res 2010;11:1957–2000.

[34] Jolliffe IT, Cadima J. Principal component analysis: A review and recent
developments. Philos Trans Ser A Math Phys Eng Sci 2016;374
(2065):20150202.

[35] Gonzalez RC, Woods RE. Digital Image Processing. (2nd Edition). Pearson;
2017.

[36] Davies ER. Introduction to texture Analysis. In: Handbook of Texture
Analysis. Imperial College Press; 2008. p.1-32.
674
[37] Strang G. Wavelets and dilation equations: A brief introduction. SIAM Rev
1989;31(4):614–27.

[38] Moulin P. Multiscale image decomposition and wavelets. In: The Essential
Guide to Image Processing. Academic Press; 2009.

[39] Sun ZH, Miller R, Bebis G, Dimeo D. A real-time pre-crash vehicle detection
system. In: Proceddings of the sixth IEEE workshop on applications of
computer vision. Orlando: IEEE; 2003.

[40] Laine A, Fan J. Texture classification by wavelet packet signatures. IEEE Trans
Pattern Anal Mach Intell 1993;15(11):1186–91.

[41] Bishop CM. Neural networks. In: Pattern recognition and machine
learning. Springer; 2006. p. 225–90.

[42] Murphy KP. Machine Learning: A Probabilistic Perspective. Cambridge,
MA: The MIT Press; 2012.

[43] LeCun Y, Bottou L, Orr GB, Müller KR. Efficient BackProp. Neural Networks:
Tricks of the Trade. Berlin, Heidelberg: Springer, 2012:9–48.

[44] Zhang J, Mani I. KNN approach to unbalanced data distributions: A case study
involving information extraction. Proc ICML’2003 Work Learn From
Imbalanced Datasets 2003: p.1–7.

[45] Kingma DP, Ba J. Adam: A method for stochastic optimization. 2014:arXiv:
1412.6980.

[46] Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: A
simple way to prevent neural networks from overfitting. J Mach Learn Res
2014;15(1):1929–58.

[47] Chicco D, Jurman G. The advantages of the Matthews correlation coefficient
(MCC) over F1 score and accuracy in binary classification evaluation. BMC
Genomics 2020;21(1):6.

[48] Rosebrock A. Deep Learning for Computer Vision with Python (1st Ed., Vol.1).
Starter Bundle, PyImageSearch, 2017.

[49] Yamashita R, Nishio M, Do RKG, Togashi K. Convolutional neural networks: An
overview and application in radiology. Insights Imaging 2018;9(4):611–29.

[50] Liu Y, Zhang ZL, Liu X, Wang L, Xia XH. Deep learning-based image
classification for online multi-coal and multi-class sorting. Comput Geosci
2021;157:104922.

[51] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition. 2014:arXiv: 1409.1556.

[52] Patterson DA, Hennessy JL. Computer Organization and Design (ARM Edition):
The Hardware-Software Interface. Morgan Kaufmann; 2016.

[53] Basler AG. Basler product documentation: daa2500-14uc; 2022.

http://refhub.elsevier.com/S2095-2686(23)00050-2/h0105
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0105
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0105
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0120
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0120
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0120
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0135
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0135
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0140
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0140
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0140
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0140
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0145
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0145
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0150
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0150
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0150
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0155
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0155
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0165
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0165
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0170
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0170
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0170
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0175
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0175
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0180
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0180
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0185
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0185
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0190
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0190
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0195
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0195
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0195
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0200
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0200
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0205
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0205
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0210
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0210
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0230
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0230
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0230
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0235
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0235
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0235
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0245
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0245
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0250
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0250
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0250
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0260
http://refhub.elsevier.com/S2095-2686(23)00050-2/h0260

	Real-time ore sorting using color and texture analysis
	1 Introduction
	2 Mineral and vision systems
	2.1 Mineral characteristics
	2.2 Vision system
	2.2.1 Hardware
	2.2.2 Image dataset


	3 Image processing and machine learning algorithms
	3.1 Machine vision challenge
	3.2 Segmentation and sub-images
	3.3 Feature extraction
	3.3.1 Color feature extraction
	3.3.2 Texture feature extraction

	3.4 Classification mode
	3.5 Voting system

	4 Results and discussion
	4.1 Training the classification models
	4.2 Testing the classification models
	4.2.1 Testing with sub-images
	4.2.2 Testing with full images

	4.3 Comparison with other classification algorithms
	4.4 Processing time
	4.5 Performance test with moving rocks

	5 Conclusions
	References


