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ABSTRACT

We use cosmogenic nuclide-derived denu-
dation rates from in situ-produced “Be in
river sediment to determine sediment pro-
duction rates for the central Amazon River
and its major tributaries. Recent develop-
ments have shown that this method allows
calculating denudation rates in large depo-
sitional basins despite intermediate sediment
storage, with the result that fluxes of the
sediment-producing hinterland can now be
linked to those discharged at the basins’ out-
let. In rivers of the central Amazonian plain,
sediment of finer grain sizes (125-500 pm)
yields a weighted cosmogenic nuclide-derived
denudation rate of 0.24 + 0.02 mm/yr that is
comparable to the integrated rate of all main
Andean-draining rivers (0.37 = 0.06 mm/yr),
which are the Beni, Napo, Mamoré, Ucayali,
and Maraii6n rivers. Coarser-grained sedi-
ment (>500 um) of central Amazonian rivers
is indicative of a source from the tectonically
stable cratonic headwaters of the Guyana
and Brazilian shields, for which the denuda-
tion rate is 0.01-0.02 mm/yr. Respective sedi-
ment loads can be calculated by converting
these cosmogenic nuclide-derived rates using
their sediment-producing areas. For the
Amazon River at Obidos, a sediment produc-
tion rate of ~610 Mt/yr results; non-Andean
source areas contribute only ~45 Mt/yr. A
comparison with published modern sediment
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fluxes shows similarities within a factor of ~2
with an average gauging-derived sediment
load of ~1000 Mt/yr at Obidos, for example.
We attribute this similar trend in cosmo-
genic versus modern sediment loads first
to the absence of long-term deposition within
the basin and second to the buffering capa-
bility of the large Amazon floodplain. The
buffering capability dampens short-term,
high-amplitude fluctuations (climatic varia-
bility in source areas and anthropogenic
soil erosion) by the time the denudation rate
signal of the hinterland is transmitted to the
outlet of the basin.

INTRODUCTION

The Amazon River is the world’s largest
fluvial system in terms of water discharge and
drainage area, and presently exports a total sedi-
ment load of ~550-1500 Mt/yr to the Atlantic
Ocean (e.g., Meade et al., 1979; Gaillardet
et al., 1997; Dunne et al., 1998; Guyot et al.,
2005; Martinez et al., 2009). Based on mod-
ern sediment load measurements, it has been
suggested that the export of sediment does
not correspond to the total sediment flux dis-
charged from the Andes and cratonic shields.
Guyot et al. (1993) estimated that currently
roughly 40% of Andean sediment flux is inter-
cepted and deposited in the basins close to the
foothills of the Bolivian Andes. Consequently,
it is reasonable to expect that most sediment
passing Obidos has resided in the floodplain
for some time since its initial denudation in the
Andes. The question is whether this storage is
temporary, and whether the deposition of sedi-

ment detected from modern loads represents
a long-term process. Storage times have been
estimated for the present Amazon River con-
figuration to be on the order of several thou-
sand years, ranging from ~5 k.y. on the basis of
sediment budgets (Mertes et al., 1996; Mertes
and Dunne, 2007), to ~14 k.y. from U-series
constraints (Dosseto et al., 2006a; Dosseto
etal., 2006b). Storage of sediment for unknown
durations potentially compromises erosion
rate estimates from gauging (Walling, 1983),
so that an increasing need arises for a method
that can estimate sediment production by ero-
sion while being insensitive to storage effects
in floodplains. In situ—produced cosmogenic
isotopes ('“Be and 2°Al) are routinely measured
in quartz from river sediment for estimating
denudation rates in steady-state hill-slope set-
tings over time scales relevant to soil forma-
tion processes (e.g., Bierman and Steig, 1996;
Granger et al., 1996; Schaller et al., 2001;
von Blanckenburg, 2005; Granger and Riebe,
2007). In a recent extension to the method,
Wittmann and von Blanckenburg (2009) mod-
eled the effect of floodplain sediment storage on
cosmogenic nuclide-derived denudation rates.
These authors showed that nuclide concentra-
tions accumulated in source areas are under
most conditions conserved if storage times
are a few thousand years. Hence, cosmogenic
nuclide-derived denudation rates can provide
a measure of sediment production at the same
time scale. Wittmann et al. (2009) tested this
approach in large Amazon tributaries, the Beni
and Mamoré basins, where the average Andean
denudation rate is preserved throughout several
hundreds of kilometers of floodplain storage.
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In the present study, we directly compare appar-
ent sediment loads calculated from cosmogenic
nuclide-derived denudation rates (Table 1)
to those derived from modern sediment flux
measurements in central Amazonian rivers. Our
construction of a sediment mass budget for the
Amazon trunk stream, the major tributaries, the
Andean source areas, and the cratonic shields
serves to evaluate the capability of large flood-
plains to buffer sediment export against human-
induced and climatic changes.

STUDY AREA

The trunk stream of the Amazon River in
Brazil is formed by three main tributaries, which
are the Solimdes, draining the central Andes, the
Negro River draining the Guyana Shield, and
the Madeira River, a mixed load river drain-
ing the Bolivian and Peruvian Andes and the
Brazilian Shield (see Fig. 1). In Peru, the So-
limdes is also called “Amazonas.” The Andes
comprise only 11% of the total Amazon basin
area, but are thought to contribute ~90% of
the total suspended load carried by the Ama-
zon River at Obidos (Meade et al., 1985). The
Brazilian Shield to the south and the Guyana
Shield to the north of the Amazon valley, re-
spectively, are highly weathered cratonic areas
that consist of granitic Precambrian basement of
mostly Proterozoic age (Hartmann and Delgado,
2001; Mertes and Dunne, 2007), but these areas
are thought to contribute only minor amounts of
sediment (Filizola and Guyot, 2009). The archi-
tecture of the Amazon basin is composed of two
distinct settings, with the deforming foreland
basins to the northwest and southwest (drained
mainly by the Solimdes and the Madeira tribu-
taries, respectively), and subsiding central Ama-
zonia with elevations below 200 m (Caputo,
1991; Irion et al., 1995).

Sediment Transport, Sediment Grain Sizes,
and Sediment Provenance

The majority of sediment that is transported
in the modern channel of the lower Amazon is
carried in suspension; bedload transport only ac-
counts for about ~1% of the total sediment load
(Strasser, 2002; Guyot et al., 2005). Grain sizes
of the Amazon bedload range between 0.1 and
1 mm with estimates of median sizes ranging
from 0.26 to 0.38 mm for the reach between Iqui-
tos and the Amazon mouth (Nordin et al., 1980;
Franzinelli and Potter, 1983). Mertes and Meade
(1985) report a median size of 0.25 mm for the
reach between Vargem Grande (at Rio Ica conflu-
ence) and Obidos, and also note that the overall
cross-channel variability in particle size is much
greater due to hydraulic sorting in bends than
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the slight effect of downstream fining observed
(Mertes and Meade, 1985). Near-absence of
downstream fining in the Amazon basin is an ef-
fect also observed, e.g., in the Beni River (Guyot
et al., 1999). Mitigation of downstream fining in
the Amazon River is the result of the addition
of coarser sediment from Brazilian and Guyana
shield weathering (Nordin et al., 1980; Franzi-
nelli and Potter, 1983). Material derived from
cratonic shields has a median size of 0.42 mm
according to Franzinelli and Potter (1983) (see
their fig. 5). This sediment addition from highly
weathered terrains is accompanied with a change
in mineral composition; Andean-derived bedload
contains more rock fragments and feldspar than
quartz-rich sands from Precambrian-dominated
cratonic watersheds (Franzinelli and Potter,
1983). In general, high maturity indices for
heavy minerals reflect the intensely weathered
areas of the cratonic shields and their overlying
Cretaceous and Tertiary products (e.g., Alter do
Chao and Barreiras, and Post-Barreiras forma-
tions), whereas Andean-derived sediment is less
mature (Vital et al., 1999). Indicative of their
source areas are also clay mineral assemblages:
illite and chlorite dominate Andean-derived sedi-
ment, kaolinite is mostly present in Guyana and
Brazilian shield sediments, and sediment of the
Amazon lowlands is enriched in smectite (Vital
et al., 1999; Guyot et al., 2007b). This smectite
enrichment across the floodplain has been in-
terpreted as an increase in the relative propor-
tion of bank sediment admixed to mainstream
mostly Andean-derived sediment from lateral
bank erosion (Johnsson and Meade, 1990;
Guyot et al., 2007b).

Published Modern Sediment Loads

For major rivers of the Amazon basin, sus-
pended load values from gauging stations
were compiled from several different sources
(Meade, 1985; Guyot et al., 1996; Dunne et al.,
1998; Guyot et al., 1999; Maurice-Bourgoin
etal., 2002; Filizola, 2003; Moreira-Turcq et al.,
2003; Seyler and Boaventura, 2003; Guyot
et al., 2005; Laraque et al., 2005; Guyot et al.,
2007a; Filizola and Guyot, 2009; Laraque et al.,
2009; Martinez et al., 2009); where more than
one published suspended sediment value was
available, we selected the lowest and the high-
est values (see Table 2). Guyot et al. (1996)
measured dissolved loads for gauging stations
located in Bolivia over the same time interval as
their suspended load equivalents, so that in these
cases a direct comparison between suspended
and dissolved loads is feasible. Dissolved loads
for other gauging stations (see Table 2) were
measured by Gaillardet et al. (1997) during a
sampling cruise in May 1989. In the following,

the sum of dissolved and suspended loads will
be called “modern total load” (Q,,). It is impor-
tant to note that cosmogenic nuclide-derived
denudation rates detect total, e.g., physical and
chemical denudation (e.g., von Blanckenburg,
2005). Therefore, for modern loads, we use both
suspended and dissolved fluxes throughout.

We assigned an average method-associated
uncertainty of 20% on modern loads. In cases
where, e.g., depth-integrated sampling was car-
ried out (e.g., Filizola, 2003; Guyot et al., 2005;
Martinez et al., 2009), this uncertainty prob-
ably is justified, but for studies where a depth-
integration of suspended particulate matter
(SPM) concentrations is absent, the uncertainty
is probably an underestimation, because the
depth-distribution of SPM concentrations is al-
most certainly not homogenous (Filizola, 2003).
However, we expect that the natural variabil-
ity of sediment discharge not contained in the
gauging period is much larger than the method-
associated error. This potential bias will be ex-
plored in “Comparison between cosmogenic
nuclide-derived and modern sediment loads.”

METHODS

Our sampling strategy is described in GSA
Data Repository Appendix DR1!, and sampling
locations are given in Table 1. All samples were
taken during cruises operated by the HYBAM
project, a collaboration of the French Institut
de recherche pour le développement Institute
with South American institutes and universities.
Samples were dried, sieved into narrow grain-
size ranges, and pure quartz was separated using
magnetic separation followed by etching with
weak HF. We used the simplified method of von
Blanckenburg et al. (2004) to separate in situ—
produced '“Be from the sample matrix. The ‘Be
carrier added to each sample was determined to
contain a '“Be/’Be ratio of 1.25 = 0.41 x 1074,
except samples denoted by a footnote in Table 1.
After Be purification, samples were oxidized
and pressed into accelerator mass spectrom-
eter (AMS) cathodes and were measured at the
Eidgendssische Technische Hochschule Ziirich
AMS facility (Synal et al., 1997). Production rate
calculation (using pixel-based altitudes derived
from 1 km resolution Shuttle Radar Topographic
Mission—digital elevation model), atmospheric
scaling, and calculation of absorption laws
were identical to those of previous studies
(Wittmann et al., 2007; Wittmann et al., 2009).

!GSA Data Repository item 2011019, Data
Repository item contains information on sampling
strategy, AMS standardization, and details on
nuclide concentrations and denudation rate calcula-
tions, is available at http://www.geosociety.org/pubs/
ft2011.htm or by request to editing @geosociety.org.
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Figure 1. Overview of the Amazon basin and sampling scheme. Circled numbers refer to !’Be nuclide concentrations panels of Figure 3 and

to IDs presented in tables.

Sample preparation and inductively coupled—
optical emission spectrometer (ICP-OES) measure-
ments of stable aluminum (*’Al) were carried out
following the procedure described in Goethals
et al. (2009) in order to derive 2°Al/°Be ratios.
Relevant information relating to individual sam-
ples can be found in Table 1, and information re-
garding half-lives and AMS standardization can
be found in Appendix DR2 (see footnote 1).
Corrections for variations in the intensity of
Earth’s magnetic dipole field were carried out fol-
lowing Masarik et al. (2001) for all Brazilian and
Guyana shield samples, because these samples
integrate over long time scales and are located
between 0° and 20°S latitude. Resulting produc-
tion rate corrections are between 13% and 30%.
We have shown elsewhere (Wittmann and
von Blanckenburg, 2009) that under most con-
ditions of floodplains storage, samples conserve

Geological Society of America Bulletin, May/June 2011

the nuclide concentration of their source area.
Because in these cases all nuclides have accu-
mulated in the eroding source areas, denudation
rates in depositional settings must be calculated
using the cosmogenic nuclide production rate of
the source area, not of the entire catchment. In
Table 1 and Figure 2, we provide this correc-
tion, which we call “floodplain-corrected” (see
Wittmann et al., 2009, for details on the pro-
cedure). Apparent sedimentary loads (“Qcy”)
were calculated by multiplying these floodplain-
corrected, cosmogenic nuclide-derived denuda-
tion rates with the sediment-producing area and
the sediment density. This allows us to compare
our cosmogenic nuclide-based denudation rates
with published modern loads.

In the case that storage times approach the
half-life of '°Be (i.e., the newly determined value
is 1.39 m.y. [Chmeleff et al., 2010]), nuclide

concentrations can be modified by both radio-
active decay and further production by deep cos-
mic rays, so that the initial nuclide concentration
is not preserved. In the Amazon basin, Tertiary
and older formations crop out in distal vicinities
of the main modern channel (see detail maps
of, e.g., Vital et al., 1999; Rossetti et al., 2005),
that are, to some extent, periodically flooded
(Martinez and Le Toan, 2007). Sediment stored
in basins of the Brazilian and Guyana cratons
have been shown to weather on time scales of
>300,000 yr (Mathieu et al., 1995; Dosseto
et al.,, 2006a). Therefore, an erosion of these
deposits by undercutting of the bank at large
channel depths would lead to an incorporation
of buried sediments with potentially decayed
2Al/'""Be signatures. In separate work currently
in preparation, we assess burial depths and dura-
tions from our measured **Al/'°Be ratios. In the
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Figure 2. Schematic method for the calculation of floodplain-
corrected (corr.) denudation rates in depositional basins, for the
case that nuclide concentrations are uniform throughout the basin.

present study, we solemnly utilize the *°Al/'’Be
ratio to identify and exclude sediment fractions
that have experienced such long-term burial, so
that a representative hinterland denudation rate
can be calculated in all cases where such indica-
tions are absent.

1'Be CONCENTRATION AND
2A1/"Be RATIOS RESULTS

Grain-Size Dependency as Fingerprint of
the Sediment Source Areas

Figure 3 summarizes the '"Be concentration
data in the Amazon basin relevant for this study;
respective nuclide concentrations and 16 uncer-
tainties (ranging usually between 4% and 9%)
can be found in Table 1.

Figure 3, panels 1-3 show cosmogenic nu-
clide concentrations of the Peruvian Andes.
Panel 4 of Figure 3 shows “Be concentrations
measured in sediment sampled upstream of the
Negro confluence from the Solimdes River at
Manacapuru. Panels 5 and 6 of Figure 3 give
nuclide concentrations of the Negro and Branco
rivers, respectively, which drain the Guyana
Shield. Panel 7 of Figure 3 gives '"Be concen-
trations of the Amazon River at Iracema, and
Panel 8 of Figure 3 gives “Be concentrations
of the Madeira River at its confluence with the
Amazon River. Panels 9-13 in Figure 3 summa-
rize the available '’Be data in the Bolivian Andes
(upper Madeira basin) as published by Witt-
mann et al. (2009). Panel 14 of Figure 3 denotes
the nuclide concentrations for upper Madeira
tributaries that drain the Brazilian Shield. Panels
15 and 16 of Figure 3 give again '’Be concentra-
tions of the main Amazon River at Parintins and

Geological Society of America Bulletin, May/June 2011

near Obidos, respectively, and Panel 17 of Fig-
ure 3 gives nuclide concentrations of a central
Amazonian floodplain system (the “Varzea do
Curuai”) near Obidos as published in Wittmann
and von Blanckenburg (2009). Panels 18 and 19
of Figure 3 give '’Be concentrations representa-
tive of the Brazilian Shield, e.g., of the lower
Tapajos River at its confluence with the Amazon
River at Santarem, and of the upper Tapajds
headwater basins, respectively.

For comparison with data from central Ama-
zonian rivers, we calculated an Andean load-
weighted '"Be nuclide concentration of 5.2 x 10*
ats/g,, from the data (presented in panels 1, 2,
3, 10, and 12 of Fig. 3), which include all major
Andean tributaries of the Marafién, Ucayali,
Napo, Beni, and Mamoré rivers and integrates
over ~95% of the total Andean area that drains
to the Amazon basin (see Appendix DR3 [see
footnote 1] for details on load-weighting cal-
culation). Other sediment-providing areas to
central Amazonian rivers are the Guyana and
Brazilian shields. In the Guyana Shield head-
waters, cosmogenic '’Be measurements for the
Branco River yield high nuclide concentrations
at an average of 39.3 x 10* ats/g,, (n = 12;
Fig. 3, Panel 6). An analysis of cosmogenic
nuclide variations with grain size shows that
the finer fractions mostly have higher nuclide
concentrations in Branco River sediment. In the
Brazilian Shield headwaters, rivers draining the
upper Madeira basin (Panel 14, Fig. 3) give a
load-weighted average 'Be concentration of
18.7 x 10* ats/g ,,, (n = 4), and rivers that drain
the upper Tapajds basin (Panel 19, Fig. 3) give
a load-weighted average '“Be concentration of
15.4 x 10* ats/g,,, (n = 10). These average nu-
clide concentrations are significantly lower than

those of the headwaters of the Guyana Shield.
For this region, no trend in nuclide concentra-
tions with grain size is observed.

The major findings concerning nuclide con-
centrations as a function of grain size are as fol-
lows. (1) Measured '°Be concentrations of the
Solimdes River at Manacapuru (Fig. 3, Panel 4)
show very little dependency on grain size, with
an average '“Be concentration of eight samples
of 6.7 x 10* ats/gq,,. (2) At sampling locations
on the Amazon River downstream of the Negro
confluence (e.g., Iracema and Parintins, Fig. 3,
Panels 7 and 15), we observe a significant in-
crease in the variability of '“Be concentration
with grain size. The finest analyzed fractions
(mostly 125-250 pm, sometimes also 250-
500 um) always yield significantly lower '’Be
nuclide concentrations than the 500-800 pm
fraction. At Parintins, for example, an average
""Be concentration of 7.3 x 10* ats/g,,, (n = 4)
was measured in finer fractions (125-500 pm),
whereas one sample for the coarsest analyzed
500-800 um fraction yields a nuclide concentra-
tion of 16.7 x 10* ats/g q,, (see Table 1). (3) This
trend is also observed in the lower Madeira
River (draining the Bolivian Andes as well as the
Brazilian Shield) close to its confluence with the
Amazon River (Panel 8 in Fig. 3). An average
nuclide concentration for the 125-250 um frac-
tion is 5.6 x 10* ats/g y,, (n = 2), the 250-500 um
fraction is 9.0 x 10* ats/g,, (n = 3), and one
sample for the 500-800 um fraction is 21.8 x
10* ats/g ,,. (4) Some rivers in central Amazo-
nia display a different behavior. In the case of
the lower Negro near the Amazon confluence
(Fig. 3, Panel 5), finer grain-size fractions yield
higher nuclide concentrations, similar to the
pattern observed in Negro River headwaters
drained by the Branco River. The Negro drain-
ing the Guyana Shield thus shows an opposite
trend than rivers that drain Andean territory.
Moreover, '"Be concentrations of the lower
Negro are 7.8 x 10* ats/g,,, (n = 6). These con-
centrations are ~5 times lower than those of the
Branco River in the Guyana Shield headwaters.
(5) In the Tapajés near the Amazon confluence
(Fig. 3, Panel 18), nuclide concentrations do
not vary with grain size. Measured '°Be nuclide
concentrations for the lower Tapajos are signifi-
cantly lower than the Tapajdés headwaters in the
Brazilian Shield. Near the Amazon confluence,
the lower Tapajés shows a mean nuclide con-
centration of 9.7 x 10* ats/g y,, (n = 3).

Identification of Sediment Burial
from 2°Al/'*Be Ratios

Aside from cosmogenic 'Be, we measured

cosmogenic Al nuclide concentrations in se-
lected samples to identify burial of sediment
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from the 2°Al/'°Be ratio (see Table 1 and “Meth-
ods”). Burial results in differential decay of
isotope pairs due to differences in half-lives
(Granger and Muzikar, 2001; Granger, 2006).
The surface production ratio of 2°Al/'°Be ranges
between 6.5 and 7.2 (the exact value is currently
debated; see Goethals et al., 2009). Samples
yielding 2Al/'°Be ratios below these values have
experienced burial at some stage in their sedi-
mentary history. For detrital fluvial sediment,
repeated burial and relocation are possible, and
thus the measured Al/'"Be ratio integrates
over different burial events. Our °Al/'"Be ratios
therefore yield minimum estimates of burial
depth and duration (Balco et al., 2005; Granger,
2006; Wittmann and von Blanckenburg, 2009).
All samples that show *°Al/""Be ratios <6.5 were
excluded from the calculation of basin-wide
denudation rates, even in cases of slight burial,
because these samples do not represent the
modern erosion signal. In Table 1 (last column),
we state explicitly which samples allowed in our
view the calculation of denudation rates.

For the Amazon mainstream along the
800 km transect from Manacapuru to Obidos,
burial ratios are in general somewhat lower than
the surface ratio of ~6.5. At Manacapuru (Man)
for example, a mean *Al/'"Be ratio of 5.3 +
1.0 was measured for three samples that were
analyzed for *Al. Only sample Man 0.2a does
not display burial (although within a high un-
certainty caused by high natural Al contents of
~1.5 mg; see Table DR1 [footnote 1]). For sam-
ples at Parintins (Par), the two samples analyzed
for Al show slight burial (average **Al/'’Be
ratio of 6.2 + 1.9).

In the Guyana Shield (Branco River),
2A1/'Be ratios of 5.4 = 0.5 (n = 5) indicate that
at least 20% of the stream sediment is derived
from buried sources, when mixing calculations
between nonburied and buried end member
sources are applied. For this data set, only sam-
ple Br 1a shows minimal burial (*Al/'°Be =6.2 +
0.5; see Table 1). Other Branco samples were
buried for durations of >0.5 to 2 m.y. and depths
of 3-5 m, so that the corresponding basin-wide
denudation rate of 0.012 mm/yr is a minimum
estimate of the prevailing denudation rate from

»
>

Figure 3. In situ—produced cosmogenic "Be
nuclide concentrations (in x 10* ats/g,)
of samples relevant for this study. Circled
numbers correspond to locations shown in
Figure 1. Data from panels 9-13 are taken
from Wittmann et al. (2009), and data from
panel 17 are taken from Wittmann and von
Blanckenburg (2009). See text for more
explanation.
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sample Br la. Initial nuclide concentrations
(that were representative of a steady-state ero-
sion rate prior to burial) will have significantly
changed due to long-term deep burial in these
intensely weathered areas, so that the measured
nuclide concentration almost certainly under-
estimates steady-state nuclide concentrations.

In the Varzea do Curuai floodplain setting in
central Amazonia, Wittmann and von Blancken-
burg (2009) used *Al/'°Be ratios to distinguish
between Miocene floodplain (sample Curu) that
has not been reworked by the Amazon River
recently, and the modern Amazon floodplain
(samples Gran and Soc; see Table 1 for their ''Be
and Table DR1 [footnote 1] for their *°Al nu-
clide concentrations), which evidently receives
sediment from the main Amazon River. These
results indicate that burial of more than 5 m.y.
in Miocene floodplain systems occurs (see Witt-
mann and von Blanckenburg, their fig. 4C). We
included the data from samples Gran and Soc
into our denudation rate/sediment load calcula-
tions (see Table 3), because these samples reflect
the active part of the floodplain that receives fine-
grained, mostly unshielded sediment from the
Amazon, whereas sample Curu has experienced
significant burial prior to erosion.

SEDIMENT PROVENANCE AND
MIXING IN THE AMAZON BASIN

The preceding presentation of our new data has
shown that (1) in some samples strong grain-size
dependencies of '"Be concentrations exist, and
(2) some samples display a significant 2Al/''Be
signature of burial. These patterns are mostly re-
producible phenomena that we synthesize here.

Assessment of Source Area
Grain-Size Dependency

Upstream of the confluence between the
Negro and the Solimdes (represented by sam-
ples Man at Manacapuru), no dependence in
the '“Be concentration with grain size can be
detected. Below the confluence at Iracema,
1'Be concentrations depend on grain size, and
this pattern is preserved from thereon down-
stream. Where Andean sediment is incorporated
(Madeira, Amazon at Iracema, Parintins, and
Obidos), the coarse grain sizes contain higher
nuclide concentrations than the fine grains. In
all settings that drain shield areas or Neogene
lowland formations but that lack the Andean
hinterland (Xingu, Branco, and Negro), the finer
grains contain higher nuclide concentrations
than the coarser sediment.

In cases of the lower Negro and Tapajds rivers
(sampled close to the Amazon confluence),
the exceptionally low nuclide concentrations

Geological Society of America Bulletin, May/June 2011

(when compared to their headwater concen-
trations) might be due to very strong Amazon
discharge events that regularly block water and
sediment delivery from the Negro and Tapajds
rivers; thus, these low nuclide concentrations
are diluted from main Amazon River sediment
input. Concerning grain size, the Negro shows
downstream fining, which is due to the suc-
cessive filling of basins in upper reaches with
coarser sediment that does not reach the Negro
downstream section (Latrubesse and Franzinelli,
2005). Sediment provenance and grain-size
analysis for the lower Negro near the Ama-
zon confluence (Franzinelli and Igreja, 2002;
Latrubesse and Franzinelli, 2005) shows that
especially coarser sand does not originate from
Guyana Shield areas, but from Cretaceous con-
tinental deposits of the Alter do Chdo Forma-
tion, which mainly consists of quartz-rich red
clayed sandstones, siltstones, and claystones
(Latrubesse and Franzinelli, 2005).

Aside from the special cases of the lower
Negro and Tapajés, we interpret the observed
grain-size—specific '’Be concentrations in terms
of provenance. In the non-Andean catchments,
coarse quartz grains are the main survivors of
slow (>100 k.y.) weathering of the cratonic
shields (Dosseto et al., 2006a). Where An-
dean sediment is present, we are dealing with
a binary mixture where coarse grains are be-
ing supplied by the cratonic and non-Andean
landscapes, while fine grains with low nuclide
concentrations survive sediment transport and
comminution along the long route from the
Andes to the central Amazon basin. This ob-
servation is supported by grain-size analysis
of these different regimes by Franzinelli and
Potter (1983) and Potter (1994).

Signatures of Sediment Burial
from *Al/’Be Ratios

All cratonic and Andes-draining rivers carry
formerly buried sediment. In cratonic headwater
areas and in the lower Guyana Shield, we gen-
erally observe the strongest burial signals with
2A1/'°Be ratios well below 6.5. In the Guyana
Shield, rivers are in general sediment depleted.
Therefore, any contribution of deeply buried
sediment would dilute the source area signal,
resulting in the observed very low 2°Al/'’Be
nuclide ratios. Low 2°Al/'°Be ratios are how-
ever also observed in the Amazonian lowlands,
where all sampled rivers carry buried sediment
at variable fractions. Lowest °Al/!’Be ratios and
therefore longest burial durations are observed
in Miocene sediment of isolated floodplain
deposits (present in the “Varzea do Curuai”).
The presence of formerly buried sediment in
active central Amazonian streams could there-

fore be explained by the admixture of very old,
buried sediment of at least Tertiary age from
non-Andean tributaries (e.g., the cratons), or, al-
ternatively, from incorporation of sediment that
was remobilized recently from large depths of
very old (i.e., late Miocene), formerly isolated
floodplain deposits. This assessment shows that
an analysis of Al along with ’Be could im-
prove our understanding of sediment transport
in larger basins; moreover, we suggest that these
analyses should be routinely carried out when
using in situ—produced “Be for denudation rate
deduction in large river basins.

ANDEAN DENUDATION RATES
AS PRESERVED IN “Be NUCLIDE
CONCENTRATIONS FROM
FINE-GRAINED CENTRAL
AMAZONIAN SEDIMENT

A load-weighted average '"Be concentration
for central Amazonian rivers (IDs 4, 7, 8, 15, 16,
and 17) is 6.2 + 0.5 x 10* ats/g,,, (1o, n = 16).
We calculated this concentration from all fine
grain-size fractions <500 pm and from samples
that did not contain a burial signal (see Table 3
for details on sample exclusions). We can now
compare this '"Be concentration to that of the
major Andean tributaries, which is 5.2 + 0.5 x
10* ats/g,, (16). The difference between An-
dean and central Amazonian nuclide concentra-
tions could be attributed to input of fine-grained
sediment from other rivers (e.g., Purus and
Jurud rivers) for which '*Be nuclide concentra-
tions have not been measured. Nevertheless, we
observe that the '“Be concentration of the fin-
est analyzed fraction is relatively steady along
the entire course of the trunk stream (Fig. 4A).
Given that this Andean nuclide concentration
appears to be preserved over the length of the
entire Amazon stream, one may calculate flood-
plain-corrected denudation rates, using only the
Andean area for production rate derivation (cf.
Wittmann et al., 2009, and Appendix DR4 [see
footnote 1]). The average '°Be nuclide concen-
tration of all Andean tributaries of the upper
Solimdes, Ucayali, Napo, Beni, and Mamoré
rivers (see Table 3) translates to a flux-weighted
mean denudation rate of 0.37 + 0.06 mm/yr. This
average value compares to 0.24 + 0.02 mm/yr
(Fig. 4B) for central Amazonian river samples,
excluding formerly buried and coarse sediment,
and also disregarding floodplain and cratonic
shield terrain for production rate calculation.
We conclude that '"Be-derived denudation rates
from fine-grained sediment in the Amazon trunk
stream approach Andean denudation rates. This
finding is summarized in Figure 5, where for all
major tributaries, average floodplain-corrected
denudation rates are presented.
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budget for all major tributaries. The burial-free
average denudation rate from fine grain sizes

(~0.24 mm/yr, see “Andean denudation rates
as preserved in '°Be nuclide concentrations

from fine-grained central Amazonian sedi-

nuclide concentrations and an Andean area of

94.7 x 10* km? translates to an average cosmo-
genic nuclide-derived sediment load (Qcy) of
610 Mt/yr. If none of this sediment were lost by
net storage into the floodplain, this value would

ments”) calculated from central Amazonian
represent the average annual sediment load

passing Obidos. The basin of the Solimdes at

Manacapuru contributes a Qg of ~330 Mt/yr,

the Madeira basin near the Amazon conflu-
ence contributes a Qqy of 160 Mt/yr, and the

lower Negro and Tapajés draining cratonic

areas together contribute a minimum Q. of

~45 Mt/yr (see Fig. 6). The budget shows that
the sums of the individual reaches are consistent

2

with respect to the total flux at Obidos, except
for a small difference that is due to the minor

Purus and Jurud rivers and the Andean-draining
Putumayo-I¢a River that have not been sampled
ment using cosmogenic nuclides shows that our
mass budget is internally consistent, and it dem-

sediment discharge of lowland rivers such as the
for cosmogenic nuclide analysis. This assess-

onstrates that the sediment debouched from the
Andes is indeed the dominant sediment source

(1985) with additions from non-Andean cra-

Gibbs (1967), Meade (1985), and Meade et al.
tonic source areas being minor.

for the central Amazon region as suggested by

COMPARISON BETWEEN

COSMOGENIC NUCLIDE-DERIVED
AND MODERN SEDIMENT LOADS

2

zon basin (at Obidos; lowest published value
556 Mt/yr compared to the highest published

When compared with short-term modern
loads calculated from suspended and dissolved
value of 1322 Mt/yr), and thus already incor-

sediment (Q,,), most of our apparent loads Qcy

agree relatively well (within a factor of ~2,

sults only from calculating an average value
Obidos, Table 3) from the range given in Table 2.

(1067 Mt/yr suspended and dissolved load at
This range is largest at the outlet of the Ama-

Table 3 and Fig. 7). This trend is especially
observed for central Amazonian (lowland)
porates an internal variance in gauging-derived
fluxes of more than +50%. Taking a “longer”-

rivers, where a divergence by a factor of 2 re-
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Figure 4. (A) Summary of ""Be nuclide concentrations (x 10* ats/g ,, ) of fine-grained sam-
ples unaffected by burial versus distance from Manaus (in km). (B) Respective denuda-
tion rates (mm/yr) that are corrected for floodplain area where necessary (see Fig. 2 and
Appendix DR4 [footnote 1] for more details on floodplain-correction). In both plots, the
Andean load-weighted mean (calculated from IDs 1, 2, 3, 10, and 12) and the central Ama-
zonian load-weighted mean (calculated from IDs 4, 7, 8, 15, 16, and 17) are given.
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term modern load estimate (i.e., 556 Mt/yr aver-
aged over a maximum integration time of 19 yr;
see Filizola and Guyot [2009] and Table 2), a
100% agreement between Q,; and Q. would be
achieved. The agreement within a factor of ~2
thus can be seen as an upper limit, and it shows
that the central Amazon basin may not be one in
which sediment is deposited on kyr time scales,
or the system may be switching to be more ero-
sive recently. This finding is in agreement with
Maurice-Bourgoin et al. (2007), who concluded
that the central Amazonian floodplain system is
not an efficient sediment trap.

In systems that are dominated by Andean
sediment discharge, especially in the Boliv-
ian Andes (Beni system), modern loads are
higher than cosmogenic nuclide-derived fluxes
by a factor of ~4. If different integration time
scales for both methods are the main source of
this variance (see discussion below and in “The
long-term stability of output fluxes as caused by
diffusive-like floodplain buffering”), it is neces-
sary to note that the modern load record of the
upper Beni system (e.g., at Rurrenabaque, see
Table 2) presents one of the longest gauging rec-
ords in the Amazon basin (1969—-1990). In the
Peruvian Andes (e.g., at Tamshiyacu), where Q,,
is higher than Q. by a factor of ~2, suspended
sediment gauging has been carried out for the
period 2004-2006 only (see Table 2).

In sediment-starved systems like the Tapajds
and Guaporé rivers, the agreement between
modern loads Q,, and cosmogenic-derived Qy
is somewhat weaker. In these systems, Q. are
generally higher than Q,, with an average de-
viation factor of ~3. In the Branco and Negro
rivers, the agreement is better, although our
cosmogenic nuclide-derived loads give mini-
mum estimates only for these rivers.

We conclude that the agreement between
modern sediment fluxes Q, and long-term
fluxes Qcy is much poorer in the sediment
source areas than in central Amazonia. There-
fore, the similarity in exported Q,, and Qcy
fluxes at the Amazon outlet cannot stem from
similar erosion rates already present in the sedi-
ment source areas.

Bridging Time Scales: From Short-Term
Modern over Cosmogenic Nuclides

to Long-Term Fission-Track
Denudation Estimates

These observations can be interpreted in re-
lation to the differences in time scale of both
methods. We assign a maximum integration
time scale of ~14 k.y. (Dosseto et al., 2006b) to
Andean-derived, '"Be-based sediment loads Q.
of the central Amazon basin, because this is the
maximum transfer time of suspended particles
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from the Bolivian Andes to the central Amazon
plain carried by the Madeira River. In the shields
and in very old floodplain systems that are usu-
ally isolated from the modern river, this assigned
time scale may be an underestimation (Mathieu
et al., 1995; Dosseto et al., 2006a). A time scale
for the erosion of sediment particles in the An-
dean source area is given by the cosmogenic
“apparent age” (Table 1; von Blanckenburg,
2005) which is ~1.6 k.y. for an average Andean
denudation rate of 0.37 mm/yr. This average
Andean denudation rate is similar to long-term
(up to 20 m.y.) denudation estimates from apa-
tite fission-track (AFT) analysis: a denudation
rate of 0.3 mm/yr has been measured by Safran
et al. (2006) in the high Bolivian Andes (East-
ern Cordillera and Subandes); a range of 0.2
to 0.7 mm/yr (with a highly disputed increase to
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0.7 mm/yr at 10-15 m.y.) has been suggested by
Benjamin et al. (1987) for the same area. Barnes
et al. (2008) have recently measured AFT-based
exhumation rates of ~0.1-0.6 mm/yr in the
more southern Bolivian Andes and Subandes.
This agreement between long-term rates from
fission-track and shorter, kyr-scale cosmogenic
nuclide-based rates hints at cosmogenic nu-
clides being able to capture the long-term fea-
tures of a mountain belt (Wittmann et al., 2009).
Sediment gauging-derived fluxes on the other
hand integrate only over the gauging period
and cannot be extrapolated to longer time scales
(Walling and Webb, 1981; Walling, 1983). It is
known from statistical analysis of environmen-
tal time series data that a certain time interval in
sampling is required to recognize the magnitude
and recurrence interval of natural variations. As-

sume, for example, that high-magnitude, low-
frequency sediment discharge events take place
at a regular recurrence interval. Then the period
of gauging necessary to capture the full ampli-
tude of an interval is required to be at least half
of the recurrence interval (“Nyquist frequency,”
e.g., Borradaile, 2003; Jerolmack and Sadler,
2007). This minimum sampling frequency for
representative sampling is dependent on the
basin size and thus must be determined indi-
vidually for each basin (Coynel et al., 2004). In
summary, short gauging periods and low sam-
pling frequencies (e.g., yearly) could result in
sediment fluxes that in some cases could over-
estimate or in other cases could underestimate
the real fluxes, depending on the setting, basin
size, and gauging methodology used. In the fol-
lowing, we discuss consequences with respect
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to changes in climate and sea level that arise
from the different integration time scales of
cosmogenic nuclide and gauging methods.

Changes in Climate Affecting Sediment Loads

Both modern and cosmogenic nuclide-
derived sediment fluxes in the Andean sediment
source area could be affected by changes in cli-
mate that occur within the different integration
time scales of the two methods. A drier climate
in the Andean source areas persisting over most
of the Holocene including the Last Glacial and
a wetter modern climate for the past few thou-
sand years (Cross et al., 2000; van der Hammen
and Hooghiemstra, 2000; Abbott et al., 2003)
might also explain lower long-term sediment
output fluxes compared to higher modern fluxes.
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However, the overall effect of precipitation on
erosion is also a function of vegetation density,
which stabilizes erosion at a certain threshold.
Thus, erosion does not necessarily increase
with increasing precipitation (Langbein and
Schumm, 1958).

Changes in Sea Level

Changes in sea level occurring during the
integration time scales could also affect sedi-
ment fluxes. During the Last Glacial Maximum
(~20 k.y. ago), sea level was ~120 m below the
present level, which caused deep incision of
the Amazon river bed and led to an excavation
of sediment deposited during earlier sea-level
high stands (Mertes and Dunne, 2007; Irion
et al., 2009). Approximately 11 k.y. ago, sea-

level rise began to affect the Amazon basin
(Irion et al., 2006), and ~3 k.y. ago, the water
surface of the Amazon River attained its cur-
rent elevation (Mertes and Dunne, 2007).
Characteristic of high water stand periods is a
reduced sediment delivery with increased rates
of sedimentation, especially in the estuary of
the lower Amazon River (Mertes and Dunne,
2007). The resulting variations in the Amazon
floodplain configuration could potentially cause
the observed divergence between Q, and Qy
(we will discuss this possibility in “The long-
term stability of output fluxes as caused by
diffusive-like floodplain buffering). For cosmo-
genic nuclide-derived loads Qqy, we expect
no effect by sea-level-induced changes of the
floodplain, because nuclide concentrations are
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uniform throughout the basin from the Andes to
the floodplain’s outlet, thereby integrating over
all floodplain changes since the Last Glacial
Maximum. Modern sediment loads on the other
hand may be much more sensitive to local ero-
sion deposition disequilibria in the floodplain as
the slope of the river bed is adjusted to changes
in the reference water level.

It is important to discuss the potential causes
for the difference in exported fluxes for these
two methods; however, we would like to point
out here that an agreement within a maximum
factor of 2 is a relatively good agreement, given
the above discussed differences. Therefore, it is
interesting to note that estimations from both
methods are roughly consistent with sediment
discharge estimates from *'°Pb activity profiles
in the Amazon delta on the continental shelf. For
this area and with an integration time of ~1 k.y.,
an average flux of 630 = 200 Mt/yr has been
measured (Kuehl et al., 1986), which is within
the (probably more realistic) range of 550 to
1030 Mt/yr that was later proposed by Nittrouer
and Kuehl (1995).
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THE LONG-TERM STABILITY
OF OUTPUT FLUXES AS
CAUSED BY DIFFUSIVE-LIKE
FLOODPLAIN BUFFERING

We attribute the agreement of modern and
long-term output fluxes for the central Ama-
zonian system to the buffering capacity of the
large Amazon floodplain. The buffering ca-
pacity of a floodplain results from negative as
well as positive feedbacks between deposited
alluvium and the sediment yield export from a
basin. High sediment delivery to channels will
either result in increasing storage of sediment,
or in increasing transport of sediment. Further,
increased alluvial storage results in decreased
sediment export. If the sediment delivery to the
river channel is, however, limited by slow upland
erosion, sediment transport capacity exceeds
sediment production, and thus all supplied ma-
terial will be routed rapidly through the channel
(Stallard, 1995). Diffusive-like buffering im-
plies that sediment storage may result in output
fluxes that are relatively unresponsive to envi-

ronmental change. Intrinsic in this assumption is
a persistent, accommodation-dominated regime
of a large sedimentary system (Jerolmack and
Sadler, 2007). If the amount of sediment stored
in a floodplain is large relative to the output
sediment yield, large pulses in sediment produc-
tion from hinterland erosion may be buffered.
Further, when hinterland sediment delivery is
reduced, the stream may maintain certain sedi-
ment loads due to transportable debris stored in
the floodplain (Phillips, 2003). Consequently,
relative variations in sediment fluxes are mini-
mized if the amount of alluvial storage is high
relative to the rivers’ transport capacity (Métiv-
ier and Gaudemer, 1999; Phillips and Slattery,
2006). In this respect our data allow for the first-
order implication that large floodplains may
effectively buffer against changes in erosion,
whether these changes are climate or tectonic
induced. The original perturbation (the hinter-
land erosion rate) having a large amplitude but
a short period is smoothed by the time the ero-
sion signal has passed through a large floodplain
(Métivier, 1999).

The efficiency of buffering relies on the
floodplain reaction time that scales with
floodplain size (Métivier, 1999; Métivier and
Gaudemer, 1999). We can calculate a maximum
reaction time of roughly 7 x 10° yr for the Ama-
zon floodplain that is close to the main channel
following Métivier and Gaudemer (1999), by
using their Equation 3 and a floodplain length of
3500 km, a floodplain width of 40 km, a maxi-
mum relief of the floodplain of 150 m, and a
long-term mass flux of 300 x 10° m*/yr, which
we calculated from our cosmogenic nuclide-
based average sediment load of 610 Mt/yr and
a mean wet sediment density of 2.0 g/cm?®. As
a consequence of this long reaction time, short-
term, high-amplitude fluctuations (changes in
sea level, climatic variability in source areas,
and anthropogenic soil erosion in the hinter-
land) are smoothed by the time the denudation
signal reaches the outlet of the basin.

SUMMARY

We present a sediment budget for the Ama-
zon basin that we calculated from cosmogenic
nuclide-derived denudation rates. From ~50 '’Be
analysis of bedload and bank sediment samples,
we found that an average nuclide concentration
for central Amazonian rivers is 6.2 = 0.5 x 10*
ats/g, that is preserved in mostly fine-grained
(< 500 um) sediment. This mean nuclide con-
centration does not contain buried sediment
signatures, because we found that some active
rivers contain old, partly shielded material from
floodplain burial. These burial signatures were
identified by *Al/'°Be ratios being lower than
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what we would expect for surfaces under con-
tinuous irradiation of cosmic rays. Our burial-
free nuclide concentration does not deviate
much from that of the Andean source area (flux-
weighted mean of 5.2 + 0.5 x 10" ats/g ).

The nuclide concentration detected in fine-
grained, nonburied sediment in the central
Amazonian rivers is representative of Andean
denudation and is not affected by storage within
the large Amazon floodplain. We can thus pro-
vide an independent meter of sediment produc-
tion in the world’s largest depositional basin.
The calculated sediment flux passing Obidos
amounts to 610 Mt/yr from our cosmogenic
nuclide-derived denudation rates. Despite pro-
nounced differences in integration time scales,
our estimate compares reasonably well to an
average total recent load of ~1000 Mt/yr from
published gauging and dissolved load records
and to a sediment discharge estimate of 550—
1030 Mt/yr from *'°Pb activity profiles in the
Amazon delta, which integrates over the past
1000 years. It is the ability of the large Amazon
floodplain to buffer against changes in erosion
in the source areas that controls the stability of
sediment output fluxes for the Amazon River
basin.
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