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ABSTRACT
We deployed 39 broadband seismometers in southern Chile 
from Dec. 2004 to Feb. 2007 to determine lithosphere and 
upper mantle structure in the vicinity of the subducting 
Chile Ridge. Body-wave travel-time tomography clearly 
shows the existence of a long-hypothesized slab window, a 
gap between the subducted Nazca and Antarctic lithospheres. 
P-wave velocities in the slab gap are distinctly slow relative to 
surrounding asthenospheric mantle. Thus, the gap between 
slabs visible in the imaging appears to be filled by unusually 
warm asthenosphere, consistent with subduction of the Chile 
Ridge. Shear wave splitting in the Chile Ridge subduction 
region is very strong (mean delay time ~3 s) and highly vari-
able. North of the slab windows, splitting fast directions are 
mostly trench parallel, but, in the region of the slab gap, split-
ting fast trends appear to fan from NW-SE trends in the north, 
through ENE-WSW trends toward the middle of the slab win-
dow, to NE-SW trends south of the slab window. We interpret 
these results as indicating flow of asthenospheric upper mantle 
into the slab window.

INTRODUCTION
Spreading ridge subduction is an apparent contradiction—an 

impossibility if we assume ridges mark the upwelling limbs of 
mantle convection cells, or a geodynamic oddity if we believe 
that ridges spread passively, pulled apart by distant sinking 
slabs. And yet, there is good evidence that ridge subduction 
has occurred with some regularity, leaving a distinct record of 
rather pronounced effects on the geology and tectonics of the 
continental plates that overrode those ridges. Ridge subduction 
is invoked to explain odd tectonics and magmatism during the 
Neoarchean beneath the Dharwar craton of India (Manikyam-
ba et al., 2007), during the Paleozoic in China (Jian et al., 2008), 
during the Mesozoic in Alaska, and during the Paleogene in the 
Java-Sumatra region (Whittaker et al., 2007). In fact, the very 
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concept of ridge subduction was developed to explain Neo-
gene tectonics and magmatism in western North America that 
were difficult to ascribe to Farallon plate subduction alone (At-
water, 1970; DeLong and Fox, 1977; Dickinson and Snyder, 
1979; Thorkelson and Taylor, 1989), and since then a host of 
observations from Central America (Johnston and Thorkelson, 
1997) to Baja (e.g., Rogers et al., 1985; Michaud et al., 2006; 
Pallares et al., 2007) to British Columbia (Groome et al., 2003; 
Audet et al., 2008) to Alaska (e.g., Sisson and Pavlis, 1993; Sis-
son et al., 2003; Breitsprecher et al., 2003; Cole et al., 2006; Qi 
et al., 2007) have been associated with spreading ridge subduc-
tion beneath western North America in some way.

Beyond the clear effects on the overriding plate, ridge sub-
duction is the last stage of destruction of one of the two oce-
anic lithospheres involved in the process, and, depending on 
the exact geometry of the ridge with respect to the consuming 
trench, may mark the introduction of new oceanic plate into 
the subduction system. In most cases, ridge subduction seems 
likely to result in wide separation of the subducted lithospheres 
that were once contiguous at their intervening ridge-transform 
boundary, at least at depths greater than a few hundred kilo-
meters. Such divergence between the trailing edge of the com-
pletely consumed plate and the leading edge of the conjugate 
plate opens slab windows and provides gaps through which 
asthenospheric mantle can flow and mix (Thorkelson, 1996). 
The implications for geochemical cycling in the mantle, at arcs 
(Gutiérrez et al., 2005), and even at unsubducted portions of 
the spreading ridge may be profound (Klein and Karsten, 1995; 
Karsten et al., 1996). Given the possible effects of ridge sub-
duction on the geology of overriding continental plates, and on 
mantle mixing, some direct imaging of how ridge subduction 
actually works is desirable. Currently, the Chile Ridge, a long-
lived wide ocean basin spreading ridge, is subducting beneath 
southern South America, affording a perfect opportunity to ex-
amine exactly what happens when a ridge meets a trench and 
is recycled into the mantle.

SUBDUCTION OF THE CHILE RIDGE
The actively spreading Chile Ridge (Fig. 1) has been sub-

ducting beneath South America since mid-Miocene time (Cande 
et al., 1987; Breitsprecher and Thorkelson, 2009; Eagles et al., 
2009). The spreading segment between the Taitao and Darwin 
transform faults is currently at the trench and converging with 
South America at a geologically determined rate of a bit over 
8 cm/yr directed N79°E (Spitzak and DeMets, 1996a, 1996b). 
Space geodetic observations yield somewhat slower conver-
gence rates, 6.6 cm/yr for Nazca–South America and 1.85 cm/yr 
for Antarctica–South America convergence (Wang et al., 2007). 
Past subduction of Chile ridge segments has been associated 
with a wide range of effects on the overriding continent, 
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including highly variable structure of the continental forearc 
(Cande and Leslie, 1986; Cande et al., 1987; Bangs et al., 1992; 
Lagabrielle et al., 2004; Ranero et al., 2006), as well as impor-
tant differences between structures, morphology, and evolu-
tion in foreland areas north and south, and backarc areas well 
east of the present triple junction (Ramos, 1989; Flint et al., 
1994; Cembrano et al., 2002; Lagabrielle et al., 2004). Obduc-
tion of a Plio-Pleistocene ophiolite sequence (Forsythe and 
Nelson, 1985; Nelson et al., 1993; Bourgois et al., 1996; Lagabri-
elle et al., 2000; Veloso et al., 2005, 2007; Shibuya et al., 2007) 
and recent volcanism on the Tres Montes Peninsula anoma-
lously close to the trench (Forsythe et al., 1986; Lagabrielle et 
al., 1994, 2000) are both attributed to the ridge subduction. 
A pronounced gap in the active Patagonian volcanic arc  
(Fig. 1) (Cande and Leslie, 1986; Ramos and Kay, 1992; Gutiérrez  
et al., 2005), eruption of back-arc–like plateau basalts in east-
ern Chile and western Argentina (Charrier et al., 1979; Ramos 
and Kay, 1992; Kay et al., 1993; Gorring et al., 1997; Espinoza 
et al., 2005, 2008; Guivel et al., 2006), anomalous isotopic sig-
natures from rocks dredged from Chile Ridge ridge segments at 
or adjacent to the trench (Klein and Karsten, 1995; Karsten et 
al., 1996), and anomalous seismicity, gravity (Murdie et al., 
1993, 2000), and upper mantle flow (Murdie and Russo, 1999) 
have also been deemed consequences of the subduction of the 
Chile spreading ridge.

Implicit in the slab window idea is the assumption that 
spreading between the trailing and leading edges of the sub-
ducted ridge continues after subduction, but that no new litho-
sphere is formed after subduction, leading to a progressively 
widening gap between the two edges of the former ridge 
(Fig. 2) (Delong and Fox, 1977; Dickinson and Snyder, 1979; 
Thorkelson and Taylor, 1989; Thorkelson, 1996; Gorring et al., 
1997; Thorkelson and Breitsprecher, 2005). Although the exact 
form of slab window mantle flow is unknown, such mantle 
flow should be detectable via shear wave splitting analysis, and 
we have attempted to characterize the Chile Ridge subduction 
slab window flow field using splitting observations of extant 
regional data (Murdie and Russo, 1999) and larger-scale upper 
mantle flow indicators (Alvarez, 1982; Russo and Silver, 1994, 
1996; Russo et al., 1996; Anderson et al., 2004).

As part of the ongoing Chile Ridge Subduction Project 
(CRSP), we deployed 39 broadband seismometers (Fig. 1) 
from late 2004 to early 2007 in the region where the Chile 
Ridge subducts. The basic goals of the seismic deployment 
were (1) to detect whether a Patagonian slab window be-
tween subducted Nazca and Antarctic lithosphere exists; (2) if 
so, to resolve its shape and extent; (3) to determine the form 
of asthenospheric mantle flow in the vicinity of any slab win-
dow; and (4) to confirm that a slab window allows direct 
contact between mantle flow associated with ridge spreading 
processes and the base of the overriding (i.e., South Ameri-
can) lithosphere. Such interaction would explain many as-
pects of the anomalous forearc and backarc volcanism that 
has been associated with the Patagonian slab window. The 
geodynamic implications of ridge subduction are important: 
Subduction of actively spreading ridges implies that mantle 
convection return flow is not strongly localized at oceanic 
spreading ridges (ridges spread passively, unforced by con-
vective upwelling). Any indication that upwelling mantle flow 
is occurring in the geodynamically equivocal setting of ridge 
subduction would be important information for understand-
ing global geodynamics.

Figure 1. Actively spreading ridge segments (red) and transform faults/frac-
ture zones (black); projections of subducted Chile Ridge structures (dashed 
black lines). Purple triangles are arc volcanoes; note gap in volcanic arc 
between Hudson and Lautaro. Relative convergence velocities from Spit-
zak and DeMets (1996a, 1996b) and Wang et al. (2007). Heavy dashed 
gray lines mark study area shown in inset, lower left: Chile Ridge Subduc-
tion Project station sites (squares). Slab window boundaries predicted from 
marine paleomagnetic data, subduction rates, and slab dip marked by 
heavy blue lines (Murdie and Russo, 1999). Inset, lower right: study region. 
FZ—fault zone; LOFZ—Liquiñe-Ofqui fault zone.

Figure 2. Development of slab windows, as projected from Chile Ridge 
surface structure and magnetic anomalies (e.g., Fig. 3) (Murdie and Russo, 
1999). Separation of the trailing edge of the Nazca plate and the leading 
edge of the Antarctic plate opens a slab window once ambient tempera-
tures are high enough to prevent lithosphere formation.
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TRAVEL-TIME INVERSIONS AND STRUCTURE OF THE 
SUBDUCTED SLABS

We used P-waves recorded at 39 stations of the CRSP seismic 
network to determine anomalous travel times that can be as-
cribed to local upper mantle structure. Suitable events for this 
study come from a well-distributed set of backazimuths (Sup-
plemental Data Figs. DR1 and DR21), a result of operating the 
network stations for a minimum of two years. A well-distributed 
group of source events ensures even sampling of the upper 
mantle structure, with raypaths crossing at as many angles as 
possible, allowing us to isolate structure at depth.

Results of the P-wave travel-time inversions are shown in Fig-
ure 3, with images at depths of 100 and 200 km. Travel-time 
anomalies mapped into velocity structure at these depths are 
color-coded: blue represents fast velocities, and red shows re-
gions with velocities that are slow relative to a commonly used 

model of seismic velocities that varies only with depth. The sub-
ducted Nazca slab is clearly visible in Figure 3 as a high-velocity 
region in the northern part of the maps, and this anomaly shifts 
eastward at depth, as we would expect for a slab with an east-
ward dip. Because of the event-station distribution, we are un-
able to resolve the subducted Antarctic lithosphere very well (few 
stations were deployed in the SW of the study region over the 
shallow Antarctic slab; see Fig. 3). However, the very low veloci-
ties present at the depth projections of the expected slab window 
are clearly visible, and we take this as first-order evidence that the 
slab window exists. We note that the high-velocity anomalies we 
associate with the Nazca slab are clearly bounded by the down-
dip projection of the Taitao transform fault that now forms the 
southern edge of the subducted Nazca plate, as predicted (Mur-
die and Russo, 1999; Breitsprecher and Thorkelson, 2009). Note 
also that the low seismic velocity anomalies present in the slab 

1GSA Data Repository Item 2010263, supplemental text and figures DR1–DR5, can be accessed online at www.geosociety.org/pubs/ft2010.htm; copies 
can also be obtained via e-mail to gsatoday@geosociety.org.

Figure 3. Map views of P-wave velocity anomalies at 100 km (left) and 200 km (right). Velocity anomaly relative to radial Earth model IASP91 (Kennett and 
Engdahl, 1991) shown as a perturbation percentage; see key at upper right of each map. High velocities are blue; low velocities red; where resolution is 
poor, colors fade to black. The subducted Nazca lithosphere is visible as the linear NNE-trending fast anomaly, and the slow velocities of the slab window 
are red. Structure of the Chile Ridge projected to depth shown by heavy gray lines. Stations of the CRSP seismic network are white squares, and red tri-
angles show locations of active arc volcanoes; note the gap in the arc in the region of the slab window. Thin white lines are Chile coastline and political 
border with Argentina and also mark the subduction trench westward of the coastline. At 200 km depth, note broadening and eastward shift of the high-
velocity anomalies associated with the Nazca slab. Slow velocities of the slab windows also shift eastward and broaden at depth, as expected given in-
creasing separation of the trailing edge of the Nazca slab from the leading edge of Antarctica (see Fig. 2).



GSA TODAY, SEPTEMBER 2010� 7

gap are actually slower than the typical seismic velocity of the 
asthenosphere, so these slow regions really do represent 
anomalously slow—and therefore most likely relatively warm—
asthenospheric mantle.

SHEAR WAVE SPLITTING AND UPPER MANTLE FLOW
Although we have established that a slab window is present 

between subducted Nazca and Antarctic lithosphere, and that 
seismic velocities in this gap are consistent with the presence 
of warm asthenosphere, the question remains whether upper 
mantle flow beneath the subducted lithosphere (Russo and 
Silver, 1994) is perturbed by these structures. We use observa-
tions of shear wave splitting to evaluate this issue. The most 
common interpretation of teleseismic shear wave splitting is 
based on development of a linear preferred orientation of natu-
ral upper mantle minerals, predominantly olivine, with a ten-
dency for aggregates of these minerals to align in the shear 
plane parallel to the direction of tectonic extension (Gueguen 
and Nicolas, 1980; Christensen, 1984; Nicolas and Christensen, 
1987; Ribe, 1989a, 1989b; Ribe and Yu, 1991; Zhang et al., 2000).

Shear wave splitting observed at the CRSP seismic network is 
strong (mean dt is 2.98 s) and variable. Although the results we 
present here are preliminary (see Fig. DR3; footnote 1)—only 
phases from larger-magnitude, deeper earthquakes have been 
analyzed—they are likely already robust in the sense that more 
measurements will probably add only marginally to the total 
already in hand, given the relative difficulty of generating high-
amplitude core phases at the requisite distances (D > 88°; Silver 
and Chan, 1991). We used SKS, SKKS, S´S´, and PKS phases 
to determine the splitting fast directions and delay times shown 
in Figure 4.

We assume that the heterogeneous structure visible in the 
travel-time inversions may have a strong effect on the orienta-
tions of upper mantle fabrics in the triple junction region. In 
order to separate these potential effects on observed shear 
wave splitting, we traced rays through a three-dimensional 
upper mantle velocity model derived from the travel-time 
inversions (Figs. DR4 and DR5; footnote 1) to determine which 
parts of the study area were actually sampled by waves arriving 
from different source events around the globe. We chose the 
200 km piercing points (halfway from the 410 km depth of 
olivine transformation to the surface) along these rays and 
projected this point to the surface as the point at which to 
display splitting results (Fig. 4). The variable splitting at CRSP 
stations reflects variable anisotropy in the upper mantle below. 
The shear wave phases we used to make the measurement 
integrate splitting due to anisotropy all along their paths 
through the upper mantle, so, conceivably, the anisotropy 
could be in the overlying South American crust and upper 
mantle, in the upper mantle wedge for those stations sited east-
ward enough to overlie a significant thickness of the wedge, 
within the subducted Nazca and Antarctic slabs, and beneath 
the slabs. Given the large delay times, and by analogy with 
results elsewhere in South America and the world, the 
predominant anisotropic source to these splits is likely be-
neath the slab (Russo and Silver, 1994; Fouch and Fischer, 
1996; Anderson et al., 2004; Pozgay et al., 2007; Abt and 
Fischer, 2008; Hoernle et al., 2008). The local/regional earth-
quake shear wave splitting due to crustal and upper mantle 

wedge anisotropy trend predominantly N-S in the study region 
(R.E. Murdie and R.M. Russo, 2010,  personal commun.), sig-
nificantly different from those of the teleseismic shear wave 
splitting, indicating that the teleseismic signal is primarily a 
deeper upper mantle anisotropy, as also expected from the 
much greater delay times (2–3 s) of the teleseismic data com-
pared to the local splitting delays (0.05–0.3 s).

The presence of a Patagonian slab window complicates the 
South American upper mantle flow field, which is visible in the 
splitting fast trends sampling upper mantle near and within the 
slab gap: North of the subducted ridge, fast shear wave polar-
ization trends—and hence, upper mantle flow beneath the 
Nazca slab—are predominantly parallel to the slab strike 
(trench parallel). South of the triple junction, they align more 
E-W and in many cases parallel the ENE-WSW trend of the 
subducted Taitao transform fault that now forms the southern 
boundary of the Nazca slab. Note the fanning of the splitting 
fast trends from waves sampling the western portions of the 
slab window: Splitting fast shear wave directions rotate from 
NW-SE trends, north of the western slab window opening, to 
ENE-WSW within the window, to NE-SW in the southern por-
tion of the window (Fig. 4). We interpret these results to indi-
cate that the gap between the Nazca and Antarctic slabs visible 
in the travel-time inversions allows asthenospheric upper  
mantle to flow into the separation between the subducted 

Figure 4. Map of shear wave splitting measurements. Blue bars trend in the 
fast polarization direction; lengths are proportional to delay times. Fast 
trends are variable, but splitting delays are uniformly high (mean = 2.98 s), 
which is near the global maximum for teleseismic splitting. Strong, variable 
splitting indicates a variable upper mantle flow field beneath South Ameri-
ca and the subducted Nazca and Antarctic slabs. Patagonian slab window 
boundary defined by P-wave tomography (Fig. 3), shown at three depths: 
heavy pink, red, and dark red lines.
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lithospheres (Fig. 5). The majority of fast shear wave directions 
for stations north of the slab window trend closer to N-S than 
otherwise; e.g., predominantly trench-parallel, which appears 
to be the basic upper mantle flow direction for western South 
America north of the triple junction (Russo and Silver, 1994, 
1996; Anderson et al., 2004).

CONCLUSIONS
Travel-time inversions demonstrate that the subduction of 

the Chile Ridge beneath South America has resulted in the 
opening of an asthenosphere-filled gap between the trailing 
edge of the Nazca plate and the leading edge of the Antarctic 
plate. These results provide the first imaging of a forming slab 
window, representing the first direct evidence for the existence 
of structures postulated to explain tectonics and magmatism on 
a variety of continents throughout Earth’s history. Observations 
of shear wave splitting, resulting from systematic orientation of 
upper mantle mineral fabrics due to flow, indicate that the slab 
window perturbs the regional sub-slab upper mantle flow 
field. Asthenospheric flow into the gap between subducted 
lithospheric slabs beneath South America appears to be the 
likely cause of the observed shear wave splitting.
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