
1. Main Text
Volcanic eruptions are the source of a major natural forcing of Earth's climate: The stratospheric sulfate aerosol 
layer is temporarily enhanced after major explosive eruptions, reducing the amount of incoming solar radiation 
reaching the planet's surface, which has a global cooling effect. Volcanic eruptions are episodic, irregular, poten-
tially disastrous, and unpredictable, and so is volcanic forcing. Unraveling the volcano-climate connection is not 
only a great endeavor but also a challenge for climate scientists.

A glance at radiative forcing during the historical period already illustrates that volcanic eruptions stand out 
among other forcing agents (Figure 1): The apparently random succession of volcanic negative spikes of different 
amplitude contrasts with the progressive evolution of other natural and anthropogenic forcings. The radiative 
effect of volcanic aerosols can be so strong that for large events it temporarily dominates the Earth's energy 
budget. For instance, aerosol from the 1991 Pinatubo eruption offset, at its peak, the total net radiative forc-
ing by all other agents, in a period when it was otherwise shaped by anthropogenic greenhouse gas emissions. 
Grand events, such as the early 19th-century cluster of large volcanic eruptions, including the 1809 unidentified 
and 1815 Tambora eruptions, can produce a peak negative forcing around or even exceeding in absolute value 
the (more persistent) positive forcing estimated for a doubling of atmospheric CO2 concentration (∼3.8 W/m 2). 
Grand eruptions can lead in their aftermath to a global-average surface cooling over landmasses of more than 
1°C and strongly affect decadal and interdecadal climate variability (Figure 1). These are rare events (just a few 
over a thousand years) and remain in many aspects enigmatic: They still engage paleoclimatologists and climate 
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volcano-climate interactions in their whole complexity and revealing a substantial role for small-to-moderate 
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The research also reminds us of limitations inherent in climate model experiments and should foster improved 
communication of natural climate variability and associated uncertainties.
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modelers in efforts to understand and reconcile apparent inconsistencies between reconstructions and simulations 
(Timmreck et al., 2021) and across model results (Zanchettin et al., 2016). Less striking for interannual climate 
variability but equally important for decadal and interdecadal trends are clusters of small-to-moderate eruptions, 
such as the early 21st-century cluster that some studies invoked as an explanation of the hiatus (a temporary slow-
down) in the rise of global-mean surface temperature during the same period (Santer et al., 2014).

With this premise of outstanding evidence acquired in the past decades of the relevance of volcanic eruptions for 
climate, it is surprising how underrepresented volcanic forcing is in climate projections, with only a few studies 
having so far investigated volcanoes in a warmer climate. Figure 1 illustrates the striking discrepancy in the 
complexity of volcanic and hence total radiative forcing in historical and scenario experiments contributing to the 
sixth phase of the coupled model intercomparison project (CMIP6). There is no actual eruption in the scenario 
experiments, but a constant volcanic forcing generated by prescribed constant volcanic aerosol optical proper-
ties derived from data for the historical period (see also Cross-Chapter Box 4.1 in Lee et al., 2021). In practice, 
volcanic forcing is neglected in current climate projections.

The paper by Man Mei Chim and Colleagues (Chim et al., 2023, hereafter CHIM23) is a much-needed step forward 
toward tackling this known unknown. Especially, their comprehensive approach allows for an unprecedented level of 
complexity in the description of volcanic forcing in a warmer climate, including potential effects of climate change on 
volcanic plume dynamics and aerosol life cycle, the so-called climate-volcano feedback (Aubry et al., 2019, 2021).

The heart of the matter is that individual eruptions are unpredictable. But, history allows the generation of 
“stochastic eruption scenarios” where the statistical properties of a sequence of documented events, such as the 

Figure 1. Top: Estimated annual-average global land-surface average temperature based on the Complete Berkeley Data 
set (Rohde & Hausfather, 2020). Bottom: total and single-agent effective radiative forcing estimated from coupled model 
intercomparison project historical and, for total and volcanic forcing, the ssp245 scenario simulations (Forster et al., 2021). 
Shading illustrates the uncertainty range for selected variables (95% confidence interval for temperature and 5–95 percentile 
range for effective radiative forcing). Major volcanic eruptions are reported at the bottom. Note the lack of volcanic eruptions 
in the scenario period, the critical problem addressed by CHIM23.
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frequency of occurrence of events with certain magnitude, is used to produce synthetic yet possible sequences 
of volcanic eruptions. This method is at the forefront of climate research, as the first attempt in this regard dates 
back to just a few years ago (Bethke et al., 2017). The key to build realistic stochastic eruption scenarios are 
reliable volcanic histories, mainly derived from analysis of volcanic aerosol depositions in ice cores. As there is 
continued refinements to the synchronization and dating of ice-core records, and to the methods used to estimate 
volcanic stratospheric sulfur injections from depositions, volcanic histories have improved through time (e.g., 
Burke et al., 2019; Crowley & Unterman, 2013; Sigl et al., 2015, 2022). Still, they remain subject to uncertainties 
and limitations regarding the detection of individual events and their characteristics, such as magnitude, timing 
and location. For instance, in ice-sheet archives discriminating volcanic events from the noisy background of 
aerosol depositions from other sources becomes increasingly difficult for decreasing eruption magnitude (Toohey 
& Sigl, 2017). Missing small to moderate eruptions means that volcanic histories from ice-core records are biased 
toward reduced volcanic activity and forcing, and so are scenarios based solely on such data. CHIM23 accounts 
for this potential bias by sampling small events from the satellite period only, when they are well observed. The 
study provides compelling evidence that including small volcanic eruptions leads to significantly more sulfur 
injections in the stratosphere till the end of the 21st century, hence more climatically relevant aerosol, compared 
to what currently assumed in CMIP6 scenarios. Of course, here a critical assumption concerns the representative-
ness of the 40-years satellite record for long-term statistics of small eruptions.

Stochastic scenarios for large eruptions in CHIM23 build on a recent data set of volcanic aerosol depositions 
in ice cores covering the past 11,500 years (Sigl et al., 2022). Climatically relevant volcanic parameters from 
this record can vary across centuries by even more than an order of magnitude, revealing a very large potential 
uncertainty in volcanic forcing during the 21st century. In fact, there might be even more diversity and complex-
ity in volcanic eruptions, hence uncertainty in 21st century volcanic forcing, than indicated by this nonetheless 
impressive Holocene database. Nature is an endless source of new discoveries, and the Hunga Tonga submarine 
eruption in 2022 revealed a previously unobserved type of large explosive volcanic event, where the amount of 
water vapor injected into the stratosphere largely dominates that of sulfur gases. As water vapor is a potent green-
house gas, its positive radiative forcing overwhelmed the aerosol negative forcing causing the first post-eruption 
surface warming in the observational record (Sellitto et al., 2022). Our grasp on events like the Hunga Tonga in 
the past is weak at best, hence providing further uncertainty to volcanic scenarios.

The comprehensive stochastic eruption scenarios are a potential breakthrough for climate projections. With 
a more realistic implementation of volcanic activity, the model results change significantly and pervasively 
across climate compartments. CHIM23 is thus very effective in illustrating the potential shortcomings for our 
representation of future climates when key aspects of the earth system are underrepresented or oversimplified 
in scenario simulations. For instance, surface cooling after major eruptions can significantly dampen decadal 
and multidecadal future warming trends if eruptions are clustered together, as found in some of the stochastic 
eruption scenarios. The post-eruption cooling also yields increased variability in global-mean surface tempera-
ture, highlighting the role of natural climate fluctuations in the quantification of climate projections uncertainty. 
Beyond post-eruption cooling, there is more richness in basically all aspects of climate variability, agreeing with 
the now countless indications from the scientific literature that volcanic radiative perturbations trigger dynamical 
adjustments and feedback loops that involve the whole earth system, from atmosphere and ocean to cryosphere 
and land. The less strong and less certain warming of the planet has obvious impacts on when climatic thresh-
olds are reached in the simulations, including those assumed in socio-economic agreements. A well known 
sensible threshold is, for instance, an ice-free Arctic climate in September which a recent study based on obser-
vationally constrained climatic projections from CMIP6 suggests could occur within the next two decades (Kim 
et al., 2023). Accounting for stochastic eruption scenarios may revise such estimates significantly.

There is a discussion on how the volcano-climate connection should be represented in current climate simu-
lations. The complete chain of propagating uncertainties was unexplored in the context of climate projections 
before CHIM23, and only rarely approached in other ambits of climate modeling. The paper is thus interesting 
from a methodological perspective, as its combined plume-aerosol-chemistry-climate model UKESM-VPLUME 
allows considering the whole complexity of the volcano-climate connection, from the source to the response and 
including climate-volcano feedbacks. However, this is just one model system, and how much such a compre-
hensive approach is viable and the results interpretable in a multi-model framework is not straightforward to 
determine. In fact, to understand differences across model results, ongoing coordinated international initiatives 
opted for breaking down the chain of uncertainty in the dominant processes linking volcanic eruptions and 
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climatic response, most noticeably distinguishing the parts “from the source to the forcing” and “from the forcing 
to the climatic response” (Zanchettin et al., 2016). This is because increasing model complexity may increase 
the realism of the simulations but, given substantial uncertainties, it does not necessarily yield improved process 
understanding or inter-model agreement. For example, an experiment with a tight protocol built on characteris-
tics of the 1815 Tambora eruption was performed with several chemistry-climate models to identify a consensus 
aerosol forcing data set for the volc-long-eq experiment of the CMIP6 initiative VolMIP (Zanchettin et al., 2016). 
The results showed large uncertainties in the estimated volcanic forcing parameters, which prevented the identifi-
cation of a consensus data set and required a dedicated study to be understood (Clyne et al., 2021).

Despite a multi-model expansion of the work with UKESM-VPLUME seems far-fetched, studies like CHIM23 
and, earlier, Aubry et  al.  (2019,  2021), have been inspiring new experiments for a possible next phase of 
VolMIP. Among these is volc-long-21C, an idealized experiment with the same Tambora-like equatorial eruption 
used in volc-long-eq but occurring under late-21st-century instead of preindustrial conditions. The experiment, 
defined for earth system models and using prescribed aerosol optical properties, requires careful considera-
tion of the climate-volcano feedback in the light of inter-model differences not only in the amount of projected 
warming but in the preindustrial mean climate state (and model biases) as well. Results from the preindustrial 
Pinatubo-like VolMIP experiment volc-pinatubo-full indicate that minor differences in forcing implementation 
and model specificities regarding the tropopause height contribute to inter-model disagreement in the generated 
volcanic forcing (Zanchettin et al., 2022). A tighter coordination and mutual exchange between realistic and ideal-
ized approaches is thus the way to go for improved understanding of the linkages between volcanic eruptions, 
climate state, radiative forcing, and climate response.

Finally, beyond academic discussions, the question rises of how to communicate uncertainties and unknowns 
of the natural earth system and their impact on projected anthropogenic climate change. On the one hand, how 
researchers communicate about uncertainty can undermine trust and acceptance of scientific information about 
climate change (Ho & Budescu, 2019); on the other, there is also growing polarization of public discussions 
on climate in social media (Falkenberg et al., 2022), where antagonistic positions are often trenched to defend 
aprioristic convincement or belief about an absolute rather than uncertain (scientific) truth. The Intergovernmen-
tal Panel on Climate Change complains that there are “misperceptions of the scientific consensus, uncertainty, 
disregarded risk and urgency, and dissent” due to misinformation on climate change and deliberate undermining 
of science (Hicke et al., 2022). The volcanic forcing uncertainty described by CHIM23 appears to be intrinsi-
cally irreducible: while we can narrow down the range of possible climate futures by discriminating plausible 
from implausible social scenarios (Engels & Marotzke, 2023), volcanic scenarios are and will remain in this 
sense  indiscernible. This fundamental uncertainty is very delicate to achieve a trustworthy, undistorted public 
perception. Volcanoes, with their relevance for past, present and future climates, and their unpredictability, may 
offer an opportunity to find a new paradigm for climate change communication.

Data Availability Statement
All data is available from public archives. The Berkeley Data set was retrieved from https://berkeleyearth.org/
data/; Effective radiative forcing estimates were retrieved from https://github.com/IPCC-WG1/Chapter-7/blob/
main/data_output/SSPs/.
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