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Abstract 

The effects of climate change and rapid population growth increase the demand for freshwater, particularly in arid 
and hyper-arid environments, considering that groundwater is an essential water resource in these regions. The main 
focus of this research was to generate a groundwater potential map in the Center Eastern Desert, Egypt, using a 
random forest classification machine learning model. Based on satellite data, geological maps and field survey, fifteen 
effective features influencing groundwater potentiality were created. These effective features include elevation, slope 
angle, slope aspect, terrain ruggedness index, curvature, lithology, lineament density, distance from major fractures, 
topographic wetness index, stream power index, drainage density, rainfall, as well as distance from rivers and chan-
nels, soil type and land use/land cover. Collinearity analysis was used for feature selection. A 100 dependent points (57 
water points and 43 non-potential mountainous areas) were labeled and classified according to hydrogeological con-
ditions in the three main aquifers (Basement, Nubian and Quaternary Aquifers) in the study area. The random forest 
algorithm was trained using (70%) of the dependent points. Then, it was validated using (30%) and the hyper-param-
eters were optimized. Groundwater potential map was predicted and classified as good (5.1%), moderate (0.1%), poor 
(4.2%) and non-potentiality (90.6%). Sensitivity (92%), F1-score (94%) and accuracy (97%) are validation methods used 
due to the imbalanced dataset problem. The most important effective features for groundwater potential map were 
determined based on the random forest and the receiver operating characteristics curve. Groundwater management 
sustainability was discussed based on the predicted groundwater potential map and aquifer conditions. Therefore, 
the random forest model is helpful for delineating groundwater potential zones and can be used in similar locations 
all over the world.
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Introduction
Arid and hyper-arid environments suffer from water 
scarcity. Industrial development, rapid population 
growth and climate change compel governments world-
wide, especially in the Middle East to explore sustain-
able water resources. By 2025, the majority of the world’s 
countries will face a freshwater deficit (Amarasinghe and 
Smakhtin 2014). Groundwater is a vital water resource in 
these environments. Given that groundwater is an invis-
ible natural resource, defining groundwater potential 
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zones is critical for socio-economic management, plan-
ning, and sustainable development. The availability and 
movement of groundwater are influenced by ecological, 
topographical, hydrological, atmospheric, and geological 
parameters (Oh et al. 2011).

Numerous studies on groundwater potential mapping 
(GWPM) have been conducted by researchers using 
various approaches. Early GWPMs were based on hydro-
geological laboratory testing, sample drilling and field 
investigations. Although these earlier approaches provide 
precise identification of subsurface hydrogeological fea-
tures, they can be time-consuming and expensive (Gan-
apuram et al. 2009; Nampak et al. 2014).

Conventionally, remote sensing and geographic infor-
mation system (GIS) are integrated with knowledge-
driven models that are effectively applied to delineate 
the groundwater prospect zone including weights of 
evidence (Elewa and Qaddah 2011; Lee et  al. 2012; 
Pourtaghi and Pourghasemi 2014; Madani and Niyazi 
2015; Tahmassebipoor et  al. 2016), analytical hierarchy 
process (Arulbalaji et al. 2019; Ramachandra et al. 2022). 
However, because the models utilized in these studies 
are dependent on expert opinion, the effectiveness of the 
groundwater assessment potential was subjective, mostly 
high bias and insufficiently accurate.

Recently, with the exponential increase in computing 
power and the advancements of algorithms, machine 
learning has continuously been utilized to solve sev-
eral real-world issues including GWPM (Karpatne et al. 
2019; Elmahdy et al. 2021). Machine learning is a subset 
of artificial intelligence that enables software applications 
to grow increasingly effective at predicting outcomes 
without explicitly programming them to do so, therefore, 
machine learning algorithms estimate new output values 
using previous data as input. The numbers of machine 
learning models have grown rapidly for GWPM, such as 
logistic regression (Park et al. 2017), K-nearest neighbor 
(Naghibi and Moradi Dashtpagerdi 2017; Martínez-San-
tos and Renard 2020), Gaussian naive Bayes (Martínez-
Santos and Renard 2020), decision tree (Naghibi et  al. 
2016; Chen et al. 2020; Patidar et al. 2021), random for-
est (Golkarian et al. 2018; Al-Fugara et al. 2020b; Prasad 
et al. 2020; El Bilali et al. 2021), support vector machine 
(Lee et al. 2017; Rizeei et al. 2019; Al-Fugara et al. 2020a), 
artificial neural network (Nguyen et  al. 2020; Pradhan 
et  al. 2020) and convolution neural network (Xu et  al. 
2020; Chen et al. 2021).

For creating groundwater potentiality maps, a variety 
of models have been created so far. According to a review 
of the literature, combining evolutionary algorithms with 
machine learning has produced better results (Naghibi 
and Moradi Dashtpagerdi 2017; Al-Fugara et  al. 2020b; 

Pal et  al. 2020). When machine learning algorithms are 
compared to each other in multi-models without suffi-
cient consideration to the specifics and challenges linked 
to their structural characteristics, they cannot provide 
a suitable benchmark for researchers since not enough 
attention is devoted to them. As a result, understanding 
a model’s specifics can greatly help in identifying its capa-
bilities. The random forest (RF) model will be the focus of 
this research.

The RF algorithm is an ensemble machine learning 
model that has been used as a data-driven prediction for 
GWPM (Rahmati et al. 2016; Prasad et al. 2020). We have 
chosen the RF model in this study because: (a) it improves 
the decision tree accuracy by reducing overfitting; (b) it 
can deal with imbalanced data where water points con-
centrate in downstream in the main wadis; (c) performs 
well in high dimensionality data; (d) it is relatively strong 
against outliers and can overcome the “black-box” limita-
tion of artificial neural networks (Palczewska et al. 2014) 
and offers a novel approach to GWPM by analyzing the 
relative importance of the groundwater effective features 
and determining the most important features; (e) results 
in higher prediction performance (Wiesmeier et  al. 
2011); (f ) due to a wide number of trees, there is low bias 
and low variance; (g) acceptable error estimations using 
the model out of bag (OOB) error.

In this study, a cost-effective interdisciplinary research 
strategy comprising the integration of GIS, satellite 
images and RF model, as well as thematic layers pro-
duced from Arc GIS and field data, is used to determine 
GWPM in dry wadis in arid conditions in the East Idfu-
Esna area as a case study in Egypt’s Eastern desert.

Study area
The research location lies in the Nile Valley in Upper 
Egypt, east of the villages of Idfu and Esna (Fig.  1). It 
extends across the center of the Eastern Desert in a NE 
direction. The Central Eastern Desert is a semi-arid area. 
The study area is bounded by latitudes 24°52′ and 25°37′N 
and longitudes 32°33′ and 34°15′E. It has a large land 
area of around 8000 km2. The elevation of the study area 
ranges from + 1043 m in the upstream portion to + 74 m 
in the downstream portion. It contains many wadis that 
end in the Nile River from Wadi Abadi in the southern 
part to Wadi El-Dir and El-Foley in the north part of the 
study area. Wadi Abadi has the largest drainage network, 
covering around 6700 km2 and it stretches 200  km east 
crossing the Red Sea mountainous terrains. The study 
area contains about 57 water points that were collected 
data through a late field survey and from the previous 
study (Hammad et  al. 2015). There are two main topo-
graphic zones in the study area: the first is made mainly 
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of basement rocks and is rough with high relief and the 
second zone is low relief and composed of sedimentary 
rocks. This zone descends gently westward towards the 
Nile and rises more steeply eastward into the basement 
range.

Geologically, sedimentary succession makes up the 
majority of the East Esna-Idfu region, which covers 
around 71% of the study area. The sedimentary succes-
sion ranges in age from upper Cretaceous to recent. Pre-
cambrian basement rocks cover about 29% and locate in 
the eastern part of the study area. They are composed of 
crystalline Neoproterozoic igneous and metamorphic 
rocks from the Arabian–Nubian shield, which range in 
age from 550 to 900 M (Sultan et al. 1990). Upper Cre-
taceous rocks are non-conformably found on top of the 
Precambrian basement rocks and are classified into four 
formations from bottom to top: Taref, Quseir variegated 
shale, Duwi, and Dakhla (Fig. 2).

In terms of hydrogeology, three main aquifers have 
been identified: (a) an unconfined Quaternary alluvium 
aquifer near to Nile River, especially in the northern part 
at Wadi El-Dir and El-Foley; (b) a semi-confined Nubia 
Sandstone aquifer discovered in Wadi Abadi; and (c) a 
Precambrian fractured basement aquifer that consists of 
disconnected local aquifers. Permeability as a potential-
ity recharge relatively decreases from wadi deposits and 
Taref Sandstone to shale beds and Precambrian crystal-
line rocks that form the lowest permeability.

Methodology
Material and methods used to utilize, enhance and evalu-
ate RF classifier model for the prediction of the GWPM 
in the study area are presented as following.

Data used and software
Various types of data were used in this investiga-
tion (Table  1). For dependent features, groundwater 

Fig. 1  General map of Egypt shows the geographic location of the study area and a close-up view of SRTM DEM illustrates wadis dissecting the 
study area trending east–west direction associated with the location of water points and mountainous area
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Fig. 2  The study area’s general geological units (Conco 1987) are associated with relative permeability

Table 1  Data used for effective features creation and dependent feature preparation

Data used Source data Scale Time period

Spring and well locations 
associated with groundwater 
information

(Hammad et al. 2015) _ 2015

Field survey September 2021

Rainfall The Modern-Era Retrospective Analysis for 
Research and Applications, version 2 (MERRA-
2)
https://​power.​larc.​nasa.​gov/​data-​access-​
viewer/

_ January 1981–December 2019

Digital elevation model (DEM) Shuttle Radar Topography Mission (SRTM)
https://​earth​explo​rer.​usgs.​gov/

1 arc second, 30 m spatial resolution 23th September 2014

Satellite image Multispectral satellite landsat8 (OLI)
https://​earth​explo​rer.​usgs.​gov/

30 m spatial resolution and 15 m 
panchromatic band

1st July 2021

Sentinel-2A satellite image
https://​earth​explo​rer.​usgs.​gov/

10 m spatial resolution 29th June 2021

Geology (Conco 1987) 1:500,000 1987

Infiltration test and sieve analy-
sis for soil type recognition

Field survey – September 2021

https://power.larc.nasa.gov/data-access-viewer/
https://power.larc.nasa.gov/data-access-viewer/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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information (number of water points, depth to water, 
aquifer type, etc.) is collected from 57 water points (wells 
and springs) in 2015 (Hammad et  al. 2015) and 2021 
through field survey. Forty-three points are selected in 
the mountainous area and high land to mark non-poten-
tial groundwater area. For effective features creation, dif-
ferent types of data are collected. Along with geologic 
maps and fieldwork data, four different types of satel-
lite remote sensing data were collected for digital image 
processing.

Arc GIS Pro 2.8 software was used to create effective 
features. It uses python programing language associated 
with machine learning libraries such as Scikit-Learn and 
geospatial libraries such as Arc Py to run RF Algorithms. 
The SPSS statistics 20 software was used to calculate and 
draw receiver operating characteristics (ROC) curve and 
determine the most important effective features depend-
ing on the area under curve (AUC).

Methods
Knowledge extraction such as GWPM from data is made 
possible by machine learning through a mechanism 
known as "the Machine Learning Life Cycle" (Ashmore 
et al. 2021).

In Fig.  3, a complete cycle of RF classification algo-
rithm flowchart is illustrated to predict GWPM perfor-
mance and hydrogeological acceptable as following: (a) 

dependent features preparation by labeling every water 
point (as good, moderate or poor) based on collected 
groundwater information associated with labeling all 
points of mountainous area as non- potential; (b) effec-
tive features creation (Table 2): create 15 features: topo-
graphical features (elevation, slope angle, slope aspect, 
terrain ruggedness index (TRI) and curvature), geological 
features (lithology, lineament density and distance from 
major fractures), water-related features (topographic 
wetness index (TWI), stream power index (SPI), drainage 
density, rainfall and distance from rivers and channels), 
soil features (soil type) and land use features (land use/
land cover (LULC)); (c) feature selection and collinearity 
analysis; (d) random selection and splitting of depend-
ent features as 70% using RF model training and 30% for 
model validation; (e) utilization of ensemble RF classi-
fication using by training 70% of dependent features on 
effective features; (f ) model enhancement by optimize 
hyper-parameters according to performance resulting 
from validation and create GWPM based on the best 
model optimization; (g) model evaluation using equa-
tions in Table  2 and finally discuss the most important 
features.

Results
In this paper, the results of each part through machine 
learning life cycle to predict acceptable GWPM are illus-
trated as following.

Fig. 3  A machine learning flowchart is developed to predict the groundwater potential map
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Dependent features preparation
Labeling and classifying dependent features are manda-
tory before running supervised machine learning clas-
sification models (Kotsiantis et  al. 2006). Forty-three 
points in mountainous were labeled as non-potential 
because they are high land from the surrounding areas 
and do not prospect for any future water well drilling. 
Fifty-seven water points are classified into 3 classes 
(good, moderate and poor) groundwater potentiality 
based on (Table  3): (a) aquifer type; (b) aquifer name 
and lithology; (c) depth to water; (d) drawdown in 
water level through last 7 years (2015–2021). The Pre-
cambrian aquifer is unconfined of unconnected local 
aquifers that form from faults and fractures, so all water 
wells located in this aquifer are of poor potential. The 
Nubia aquifer is a semi-confined aquifer significant in 
the down and middle stream of Wadi Abadi. Drawdown 
of wells through the last 7 years in downstream of Wadi 
Abadi is very low and average transmissivity based on 
pumping test is  346.3m2/day. Although the depth to 
water in the new wells (well 8 and well 9) is moderate 
to deep (44–55  m) in the middle stream, overall pro-
ductivity is 140 m3/h “personal contact” and the total 
penetrated thickness is about 360 m of fine-to-medium 
sandstone. Therefore, all water points in the Nubian 
aquifer are of good potential. The quaternary aquifer 
is an unconfined aquifer that recharges from rainfall 
and partially from the Nile River and it is significant in 

Wadi El-Dir and El-Foley in the Esna area and along the 
Nile River. Water wells in Wadi El-Dir are classified into 
3 classes: good (low drawdown and near to Nile River), 
moderate (moderate drawdown, and water depth) and 
poor (high drawdown reaches 15 m and deep in water 
depth).

Preparation of effective features
Even though satellite data cannot see very far below 
the surface, it offers data on characteristics that may 
indicate the existence of groundwater (Díaz-Alcaide 
and Martínez-Santos 2019). 15 effective features used 
in this study (Figs. 4 and 5) were created based on dif-
ferent types of satellite data, geologic maps and field 
measurements. The following paragraphs go into great 
depth on how each feature was created and how it 
relates to groundwater potentiality.

Topographic features
In the mountainous region, the topographical features 
serve as markers for determining groundwater con-
ditions (Todd and Mays 2005; Das 2017). The poten-
tial for groundwater in a particular place is inversely 
related to elevation in an indirect manner. Elevation 
feature (Fig.  4a) has been created using SRTM-DEM 
data. SRTM-DEM data are processed in ArcGIS soft-
ware using spatial analyst tools to establish the nature 

Table 2  The equations used to create some effective features (TRI, TWI and SPI) associated with the equations used for random forest 
model evaluation

TRI: terrain ruggedness index; Avg, Max, and Min: averages, highest and lowest elevation values of pixels in nine rectangular neighborhoods of elevation values, 
respectively; TWI: topographic wetness index; Fa: flow accumulation (m2 m−1); β : slope angle measured in degrees; SPI: stream power index; MSE: mean square error; 
OOB: out of bag; TP: true positive; TN: true negative; FP: false positive; FN: false negative; MCC: Matthews correlation coefficient

The equations used for creating effective features

S. n. Index Equation

1 TRI (Avg−Min)/(Max −Min)

2 TWI ln( Fa

tanβ
)

3 SPI Fatanβ

The equations used for the random forest model validation

Measure Equation

4 MSEOOB n−1
∑n

i=1
(γi −�i)

5 Accuracy TP+TN
TP+TN+FP+FN

6 Sensitivity TP
TP+FN

7 Precision TP
TP+FP

8 F1-score 2× (Sensitivity×Precision)
(Sensitivity+Precision)

9 MCC (TP×TN−FP×FN)√
(TP+FP)×(TP+FN)×(TN+FP)×(TN+FN)
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Fig. 4  Effective features creation for GWPM: a elevation; b slope angle; c slope aspect; d TRI; e curvature; f lithology; g lineament density; h distance 
from major fractures
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Fig. 5  Effective features creation for GWPM: a TWI; b SPI; c drainage density; d rainfall; e distance from river and channels; f soil type; g LULC
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of the slope of the entire area to produce the slope 
angle (Fig.  4b), slope aspect (Fig.  4c), terrain rugged-
ness index (TRI) (Fig. 4d) and curvature (Fig. 4e) maps. 
Low-slope areas are suitable for water accumulation 
and infiltration. Curvature is the derivative of eleva-
tion and defined as the rate of change of slope (Catani 
et al. 2013), it affects the acceleration and convergence 
of water runoff. TRI gives an objective quantification of 
topographic heterogeneity (Riley et  al. 1999) influenc-
ing drainage. It is calculated in Eq. (1) in Table 2.

Geological features
The groundwater is usually located in the pore spaces 
between grains in rocks and the secondary porosity such 
as faults and joints. Lithology is an important indicator 
of hydrogeological properties that defines the hydrogeo-
logical characteristics of aquifer materials (Hussien et al. 
2017; Yidana et al. 2020). The interpretation of false color 
composite (FCC) of Landsat 8 band ratios (3/5, 1/4, 1/6) 
associated with published geological maps (Conco 1987) 
and field surveys were employed in lithological discrimi-
nating of distinct rock units (Fig. 4f ).

Lineaments, which are considered secondary porosity, 
are a significant feature to be considered while investigat-
ing groundwater potentiality. Various researchers have 
used the relationship between groundwater potential 
and lineaments to emphasize that high lineament den-
sity closely correlates with high groundwater potential-
ity (Magowe and Carr 1999; Hung et al. 2005; Al-Ruzouq 
et  al. 2019). Remote sensing data, such as the panchro-
matic band of Landsat 8 and the combination of Landsat 
8 bands (7,5,3), were utilized in conjunction with a pub-
lished geological map (Conco 1987) and field trip in order 
to visually extract structural lineaments and determine 
major linear fractures, using ArcGIS software to create 
lineament density (Fig. 4g) and distance from major frac-
tures features (Fig. 4h).

Water‑related features
Various features are resulting from surface water runoff 
such as topographic wetness index (TWI), stream power 
index (SPI) and drainage density. Some significant fea-
tures recharge the aquifers in the study area such as rain-
fall and distance from rivers and channels.

The TWI is a secondary topographic index that shows 
how topography affects the quantity of runoff generation 
and flow accumulation at any site within the catchment 
region (Gokceoglu et  al. 2005). Recently, TWI (Fig.  5a) 
has been widely used for groundwater potential map-
ping creation (Prasad et al. 2020; Paryani et al. 2022). SPI 
(Fig.  5b) is a measure of how much water flow erodes. 

TWI and SPI are calculated in Eqs.  (2) and (3) (Moore 
et al. 1991) in Table 2.

The drainage density feature is a vital component in 
hydrogeological research. The drainage networks in the 
area under investigation are taken from SRTM-DEM data 
and analyzed using spatial analyst tools in ArcGIS soft-
ware. The entire length of streams per square meter is 
known as drainage density. The research area is graded 
by 10 min of degree and divided into polygons, drainage 
density (Fig. 5c) is then calculated for each polygon, and 
a raster surface is interpolated from points using kriging 
ArcGIS software.

To measure the quantity of precipitation in the research 
region for the last four decades and produce the rainfall 
feature (Fig.  5d), MERRA-2 for precipitation data are 
employed. The monthly MERRA-2 cumulative rainfall 
data for 39 years (from January 1981 to December 2019) 
was used to create the rainfall thematic layer. Kriging 
ArcGIS software was used to interpolate a raster surface 
from the points. Groundwater recharge is also controlled 
by the distance from the surface channel network and the 
water body (Adeyeye et  al. 2019). To extract the chan-
nel network, a visual interpretation approach based on 
sentinel-2A images validated by Google Earth satellite 
imagery was utilized (Fig. 5e).

Soil feature
Soil types impact groundwater recharge by determining 
the quantity of water that may percolate into underlying 
formations (Das 2017). PCA is constructed using Land-
sat 8 satellite images to differentiate between distinct soil 
types in the research area’s Quaternary deposits. Using 
the data derived from the PCA color composite image, 
the infiltration test and sieve analysis for soil samples 
from various places in Quaternary deposits were per-
formed during the field survey (Fig. 5f ). The infiltration 
capacity equilibrium based on infiltration test in sandy 
gravelly, sand to loamy sand, loamy sand and loamy fine 
sand soil are 13.8, 4.5, 2 and 0.53 mm/min, respectively.

Land use feature
The types of land use/land cover (LULC) have an impact 
on groundwater recharge (Kaur et  al. 2020). A visual 
interpretation method based on sentinel-2A that was 
validated by Google Earth satellite imagery and field trip 
were used to produce the LULC feature (Fig. 5g). Barren 
land is a LULC class that is not a prospect for groundwa-
ter potentiality because it is a mountainous area, as well 
as all water points and developments, are located within 
wadis.
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Collinearity analysis (CA)
CA is a vital method in feature selection before machine 
learning model training (Chen et  al. 2021; Víctor et  al. 
2021). It is a statistical technique for a linear relationship 
between two independent features. R-squared is a com-
mon and widely used in CA (Pradhan et al. 2020). Very 
high R-squared (> 0.95) leads to a major problem in the 
training dataset and creates inaccurate results (Daoud 
2018).

Figure  6 shows the linear relationship associated with 
R-squared between features. No significant very high 
R-squared (> 0.95) between features relationships. There 
are quite strong positive relationships between the fol-
lowing features: (a) TRI and slope angle (R2 = 0.94), both 
of them are important to express topography by different 
methods depending on DEM; (b) rainfall and elevation 
(R2 = 0.77), precipitation increases in high land like red 
sea mountainous area; (c) LULC and soil type (R2 = 0.66), 
most of water points and developments are located in soil 
material within wadis; (d) rainfall and lineament density 
(R2 = 0.55), both of them increase in Precambrian base-
ment area in red sea mountainous area; (e) lineament 
density and elevation (R2 = 0.52), high elevations are high 
fractured and deformed Precambrian basement rocks. 
The other features are low R-squared.

Utilization of RF classification model
RF was created as an extension of classification and 
regression trees (CART) to increase the model’s pre-
diction performance (Breiman 2001). The model con-
struction procedure is similar to that of CART, with the 
exception that multiple trees are produced, resulting in 
some kind of a “forest of decision models”. For classifica-
tion, the RF model employs the resampling strategy that 
changes the predictive features randomly to maximize 
the diversity within every tree. This technique com-
bines numerous decision trees to explain the spatial link 
between effective groundwater variables and depend-
ent variables. Each decision tree is constructed from a 

Fig. 6  Pairwise linear relationships associated with R-squared for all effective features

Table 4  RF model characteristics associated with validation

MCC Matthews correlation coefficient

Model characteristics

 Number of trees 50

 Leaf size 1

 Mean tree depth 5

 Number of randomly sampled variables 3

 Percent of validated point 30

Model out of bag (OOB) error

 Mean square error (MSEOOB) 15.5
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bootstrap sample of raw data, allowing for robust error 
quantification with the residual validation set, referred 
to the out of bag (OOB) sample. The mean square error 
(MSEOOB) of all trees is calculated in Eq. (4) in Table 2.

Table 4 summarizes the RF characteristics model used 
for training as well as MSEOOB as a validated method.

Model hyper‑parameter optimization
Using hyper-parameter optimization to enhance the RF 
model. The number of trees is the most important hyper-
parameter in The RF model. With increasing number of 
trees from 50 to 1000 trees, MSEOOB decreased from 15.5 
to 11.4 (Fig. 7).

GWPM prediction
Figure  8 shows predicted GWPM based on the trained 
RF classification model after enhancement. The pre-
dicted GWPM was classified to no potentiality area 
(90.6%), poor (4.2%), moderate (0.1%) and good (5.1%). 
This model target is to delineate groundwater potentiality 
within wadis in the study area. In Wadi El-Dir and Wadi 
El-Foley (Fig. 8a), the quaternary aquifer is delineated as: 

(a) good (near the Nile River); (b) moderate (appears only 
in this area as a transitional zone between good and poor 
zones); (c) poor (appears in upstream of the quaternary 
aquifer and in basement aquifer). In downstream and 
middle stream of Wadi Abadi (Fig. 8b), the Nubia aquifer 
is classified as a good potentiality. In upstream of Wadi 
Abadi (Fig.  8c), the basement aquifer is delineated as a 
poor potentiality. This predicted map is hydrogeological 
acceptable in this study area.

Discussion
This paper concerns the study of RF algorithm as an 
ensemble machine learning model taking into consid-
eration the previous studies to predict GWPM. The out-
comes of this work are discussed as follows.

Validation and performance
For the evaluation of the predicted GWPM, the model’s 
validation methods are essential. Confusion matrix (CM) 
of the model can be visualized (Fig. 9). Due to imbalanced 
classification data set, accuracy cannot be used solely to 
evaluate model performance. The following calculations 

Fig. 7  Number of trees as a hyper-parameter optimization
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can be used in Eqs. (5, 6, 7 and 8) based on CM (Sokolova 
and Lapalme 2009; Chicco and Jurman 2020) in Table 2.

The results of different methods as summarized in 
Table 5 were used to evaluate RF model and prove that 
model is best fit with over all accuracy (97%) and sensi-
tivity (92%) at the validation.

The RF is useful to predict high-accuracy GWPM. 
It proved its strength against knowledge-based meth-
ods (Al Saud 2010; Patra et al. 2018; Murmu et al. 2019; 
Andualem and Demeke 2019; Morgan et  al. 2022) and 
many of data-driven methods (Rahmati et al. 2016; Rizeei 
et al. 2019; Chen et al. 2020). There is no requirement for 
statistical assumptions, or outlier removal previously.

Effective features importance for GWPM
The “variable importance” tool of the RF model was used 
to highlight the relative importance of the 15 ground-
water effecting features. In this situation, soil type was 
the most important feature, followed by TWI, LULC, 

lineament density and rainfall while slope aspect had 
the lowest importance (Fig.  10). Soil type is the high-
est effective variable since most of water points are 
located within wadis and consist of different types of 
soil with various infiltration rate control the groundwa-
ter potentiality recharge. No water points are located 
in the rock area (not soil area). TWI is another variable 
for GWPM. It affects flow accumulation and direction. 
LULC is an important variable due to no water points 
in barren mountainous area. Wadi deposits and natu-
ral desert grassland are very important recharging areas 
for GWPM. Lineament density is a very important fac-
tor in the study area. It built basement aquifer that cov-
ers about 30% of the study area and plays a partial role 
in the Nubian aquifer. In Precambrian basement aqui-
fer, the presence of groundwater is primarily governed 
by secondary porosity (fractures, joints and weathered 
rocks) rather than the primary porosity. Rainfall is a vital 
factor to recharge the aquifers in the study area, it is the 

Fig. 8  GWPM derived from RF classification model associated with classification of dependent points: a zoom in Esna area; b zoom in downstream 
of Wadi Abadi; c zoom in upstream of Wadi Abadi
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only recharging source for basement and Nubian aqui-
fers and partially recharging source for quaternary aqui-
fer (Mohallel et al. 2019). According to RF model in this 
study area, slope aspect plays the lowest role in ground-
water potentiality because the direction of the slope has 
negligible importance on GWPM.

ROC curve is an another tool to determine the most 
important features to GWPM (Fig. 11). ROC agreed RF 
that LULC, soil type, TWI and lineament density fea-
tures are the most important. Lithology and distance 
from major fractures have higher AUC values because 
they play an important role in groundwater potentiality. 
The rainfall feature has a low AUC value contrary to RF 
method.

Groundwater management sustainability
Groundwater sustainability can be discussed based on: 
predicted GWPM, condition of the aquifers, field sur-
vey and historical well data. Each aquifer in the study 
area is discussed as following: (a) Quaternary aquifer in 
Esna area, there are gradual remarkable drawdown rates 
in static water level increase eastward. In the moder-
ate zone, the static water level drop (2–10 m) in the last 
7 years while in poor zone water level dropped 14 m at 
the same period due to over pumping and farmers using 
flood irrigation methods as well as low recharge rate to 
aquifer. With this situation, Quaternary aquifer in Esna 

Fig. 9  Groundwater classes with respect to dependent points occurrence potential zones

Table 5  RF model evaluation

Classification diagnostics

F1-score MCC Sensitivity Precision Accuracy

Training data

 Overall 1.00 1.00 1.00 1.00 1.00

 Validation data

Non-potentiality 0.94 0.92 1.00 0.89 0.97

 Poor 0.80 0.80 0.67 1.00 0.97

 Moderate 1.00 1.00 1.00 1.00 1.00

 Good 1.00 1.00 1.00 1.00 1.00

 Overall 0.94 0.93 0.92 0.97 0.97
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area will suffer from deterioration and drought will 
destroy the farms; (b) Nubian aquifer in down and mid-
dle stream of Wadi Abadi, it is a good potential aquifer, 
and this area is prospective for development and new 
land reclamation for agriculture, with modern types of 
irrigation methods for sustainability; (c) Precambrian 
basement aquifer, it is a poor potential aquifer with low 
recharge rate. It is composed mainly of isolated pockets 
of accumulated water that may be connected in some 
places through fractures.

Conclusion
Although GWPM has been the subject of many research 
papers, it has become necessary to use well-developed 
machine learning algorithms in order to achieve high 
accuracy. Thus, in this paper, the random forest classifier 
model was used to produce GWPM using water points 
as dependent features associated with historical data for 
hydrogeological conditions and field survey measure-
ments, splitting them randomly into training 70% for 
training the model and testing 30% for model evalua-
tion. Fifteen effective features that influence groundwa-
ter potentiality were created. After hyper-parameters 
had been optimized to reach acceptable performance 

results, then the GWPM was created. Due to imbalanced 
classification and spatial distribution of dependent vari-
ables, many validation methods were used besides accu-
racy. The validated methods in the acceptable test stage 
include accuracy 97%, selectivity (recall) 92%, F1-score 
94%, MCC 93%. Based on “variable importance” analy-
sis extracted from RF and ROC, it was found that soil 
type and LULC were the most important features for 
GWPM considering that most of the water points are 
located within wadies, but not in the mountainous area. 
Lineament density and distance from major fractures fea-
tures are highly important because secondary porosity 
builds the Precambrian aquifer occupying about 30% of 
the study area. In the light of groundwater management 
sustainability based on predicted GWPM and hydrogeo-
logical conditions, the middle and downstream of Wadi 
Abadi are suitable for future development if modern 
methods of irrigation  are  used. The Quaternary aqui-
fer in the Esna area is suffering from significant drop in 
static water levels over the last 7 years that needs water 
management to prevent aquifer deterioration. Finally, 
this study proves that machine learning, especially the 
random forest algorithm, is useful for GWPM and can be 
applied to similar regions worldwide.

Fig. 10  Effective features importance for GWPM prediction using the RF classification model
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