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Abstract: Mining and exploration companies routinely use four-acid digestion (4AD), inductively coupled plasma, atomic
emission spectra/mass spectrometry methods from commercial assay laboratories for analysing drill and rock samples for
lithogeochemical assessment and resource reporting. This method is also known to exhibit lower recovery of elements hosted
by resistate minerals. To assess the impact of lower recoveries on lithogeochemical interpretation, a suite of commonly used
elements for lithogeochemical analysis (high-field-strength elements Zr, Hf, Nb, Ta, Ti and Eu and transition elements V and
Sc) was analysed by 4AD and alkali fusion/acid digestion (AFAD). Lower recoveries in the 4AD relative to the AFAD were
recorded for Zr, Hf, Nb, Ta, Ti and Eu; Sc and V reported similar concentrations for both decomposition methods. Despite the
lower recoveries for Nb, Ta and Ti, element ratios were largely preserved with the 4ADmethod due to the recoveries covarying
at a 1:1 ratio. A plot of Ti/Nb against V/Sc was found to be largely unaffected by decomposition method, producing similar
compositional classifications between the two digestion methods. Use of the Eu anomaly (Eu/Eu*) to determine plagioclase
fractionation was also found to be unaffected by decomposition method. In contrast, a standard Zr/Ti v. Nb/Y discrimination
plot produced incorrect classifications with 4AD producing more mafic and alkaline classifications relative to the AFAD
method. Magmatic fertility interpretations utilizing Zr/Hf were also found to be affected in the 4AD results due to the lower
recovery of Zr relative to Hf. This resulted in a bias in the 4AD results and produced false-positive anomalism in fertility
assessments. Multiple decomposition methods including combinations of acid and fusion methods are recommended for
lithogeochemical analysis utilizing large regions of the periodic table. However, if only 4AD data are available, plots such as Ti/
Nb v. V/Sc and Nb/Ta, which preserve their ratios, can be used for lithogeochemical classification.
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Fractionation trends recorded by igneous rocks during magma
evolution can be characterized by assessing changes in ratios of
select element pairs (Winchester and Floyd 1977; Deering and
Bachmann 2010; Halley 2020). Petrogenic ratios such as Nb/Ta and
Zr/Hf can be sensitive to mineralogical changes during magma
fractionation that reflect changes to melt composition, temperature,
pressure and oxygen fugacity (Linnen and Keppler 2002; Claiborne
et al. 2006; Fulmer et al. 2010; Mallmann et al. 2014; Holycross
and Cottrell 2020). Various authors have utilized different element
pair systematics to infer mineral compositions of melts such as; V–
Sc to infer titanomagnetite and magnetite formation (Aeolus Lee
et al. 2005; Loucks 2014; Wijbrans et al. 2015), Sr–Y–Eu
systematics as a proxy for plagioclase and hornblende crystalliza-
tion (Drake and Weill 1975; Defant and Drummond 1990; Deering
and Bachmann 2010; Richards et al. 2012), Nb–Ta for Ti-oxides
and biotite crystallization (Linnen and Keppler 1997; Klemme et al.
2006; John et al. 2011; Stepanov and Hermann 2013) and Zr–Hf for
zircon, pyroxene and garnet crystallization (David et al. 2000;
Linnen and Keppler 2002; Weyer et al. 2003; Claiborne et al. 2006;
Zaraisky et al. 2008).

Recent studies of magma fertility and its links to magmatic–
hydrothermal mineralization have focused on trace element ratios in

both mineral and whole-rock analysis (Loader et al. 2017; Cheng
et al. 2018; Liu and Chen 2018; Wells et al. 2020; Mohammadi
et al. 2021). Some of these results are relevant to mineral
exploration since they provide a rapid and affordable method of
selecting exploration areas using whole-rock geochemistry and can
be applied to all scales from regional selection, such as identifying
fertile magmatic terranes, to deposit-scale exploration and targeting.
Large volumes of whole-rock chemical data are commonly obtained
through analytical packages offered at commercial laboratories. The
four-acid digestion, inductively coupled plasma mass spectrometry
(4AD-ICP-MS) method is frequently used by mineral explorers for
its low cost, rapid throughput and low detection limits. This has
helped it become the dominant method for trace-element analysis in
mineral exploration and resource reporting.

4AD uses combinations of nitric acid (HNO3), perchloric acid
(HClO4), hydrofluoric acid (HF) and hydrochloric acid (HCl) to
decompose the sample. These digestions are often referred to as
‘near-total’ digests due to their ability to decompose most mineral
matrices, including Si-bonds (Chao and Sanzolone 1992). Acid
digests produce significantly lower matrix interferences, resulting in
improved sensitivity; however, some of the methods can also suffer
from partial recovery of resistate minerals such as zircon and rutile
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(Hoops 1964; Langmyhr and Sveen 1965; Hall and Plant 1992;
Totland et al. 1992; Pashkova et al. 2019). This is especially
problematic for high-field-strength elements (HFSE) such as Ta
(Münker 1998) and sulfates of Ba, Sr and Pb (Hoops 1964). The use
of HF also produces fluoride complexes of Si, As, B, Ti, Nb, Ta, Ge
and Sb which are lost in open vessel digestion, but also result in
improving detection limits by lowering the plasma load during ICP-
MS analysis (Chao and Sanzolone 1992). The lower recovery of
HFS elements in 4AD is therefore problematic for lithogeochemical
analysis which makes extensive use of these elements in
interpretation.

Fusion using a lithium–borate flux is often used as an alternative
to direct acid digests as it is generally considered to provide a more
complete decomposition and produce more accurate results for
HFSE when compared to acid digestion (Yu et al. 2001; Potts et al.
2015). However, the higher blank levels and higher salt contents
associated with the flux material have the effect of lowering
sensitivity and increasing detection limits (Longerich et al. 1990;
Totland et al. 1992; Yu et al. 2001; Panteeva et al. 2003). This is
particularly important when analysing trace elements with low
abundances. Additionally, volatile elements such as Se, Cs, Rb, Pb,
Sn, Sb, Tl, some PGE and Zn can potentially be lost due to the high
fusion temperatures (Jarvis 1990; Totland et al. 1992; Yu et al.
2001; Senda et al. 2014). Fusion is also known to result in partial
decomposition of the sample when highly resistant minerals such as
zircon and certain metal oxides, REE phosphates and sulfides are
present (Cremer and Schlocker 1976; Potts et al. 1990). Additional
treatments are recommended when significant amounts of these
minerals are present (Chao and Sanzolone 1992).

Other authors have experimented with combining the fusion and
multi-acid digestion methods. Alkali fusion followed by acid digest
(AFAD) attempts to combine the benefits of both techniques by
producing a total digest without contaminants that may be present in
the flux and matrix effects (Senda et al. 2014). These authors found
that compared to a standard AD, the AFAD method produced more
accurate results, especially for HFSE and HREE where resistate
minerals such as zircon were more efficiently digested. However,
therewere significant losses in volatile elements as discussed above.

In a study of the analysis of HFSE, REE and the impact of
digestion type on tectonic interpretation, Hall and Plant (1992)
compared REE analysis of LiBO2-ICP-MSwith 4AD-ICP-MS. The
authors found significant deviations in the MREE–HREE between
the two digests. The mixed AD was found to be inefficient at
dissolving HREE-bearing resistate minerals such as zircon and
garnet, resulting in under-reporting of the elements Gd to Lu.
Sholkovitz (1990), in a study using geochemical standards of
marine sediments and shales, found that only 0.1 to 0.3% of
insoluble zircon (by sample weight) can contribute to between 20
and 100% of the total whole-rock HREE budget. This presents a
problem for mineral explorers who might rely on acid digestion data
to screen for REE fractionation as a measure of metal fertility
(Jamali 2017; Loader et al. 2017; Liu and Chen 2018) and
highlights the importance of understanding the analytical require-
ments prior to method selection as no single method can provide
high-quality results across the periodic table. For a detailed
summary of the advantages and disadvantages of fusion and ADs,
see Totland et al. (1992) and Yu et al. (2001).

We present a case study of Zr–Hf, Nb–Ta-(Ti), V–Sc and Eu–Eu*
systematics from the Cambrian Mt Read Volcanics (MRV)
metallogenic province of western Tasmania, Australia. The MRV
is a 200 × 20 km belt of Middle Cambrian submarine volcanics and
associated volcaniclastics with abundant sedimentary and intrusive
rocks (Corbett 1992; Fig. 1). The belt formed during a post-
collisional phase of extension following the c. 510 Ma Tyennan
Orogeny (Berry et al. 2007). It is comprised of mostly calc-alkaline,
rhyolitic to basaltic volcanics and volcaniclastics with minor

tholeiitic volcanism (Crawford et al. 1992). The MRV is host to
several volcanic-associated ore-deposits which have been mined
continuously since the late nineteenth century. In this time c. 8.15
Mt Zn, 3.1Mt Pb, 3.31Mt Cu, 9.04 kt Ag and 279 t Au is thought to
have been extracted, generating $72.4 billion dollars in estimated
revenue (Blewett 2012). The MRV samples in the dataset presented
here include a range of compositions from basaltic to rhyolitic and
include both intrusive and extrusive equivalents and coherent and
volcaniclastic facies with varying degrees and types of alteration.

Previous studies of the MRV noted difficulties in interpreting
certain geochemical populations with low trace-element abun-
dances not resolvable with the available X-ray fluorescence (XRF)
analysis (Crawford et al. 1992). Other studies noted differences
between XRF and 4AD-ICP-MS analyses in MRV samples and
how these differences translated into variable petrogenetic indica-
tors such as Ti/Zr, making lithogeochemical interpretation difficult
(Wu 2014). To understand the fine-scale stratigraphy of the MRV
and aid with future mineral exploration, a high-resolution
geochemical dataset is required.

This paper focuses on a comparison between fusion methods and
direct multi-ADs of whole-rock samples from theMRVand how the
different techniques can introduce bias into the subsequent
lithogeochemical and magma fertility interpretations. This is
expected to have ramifications for exploration geologists who
frequently employ AD methods in combination with legacy
geochemical datasets.

Lithogeochemical trace-element systematics

V–Sc systematics

V–Sc systematics are often used to infer the fO2 evolution of
magmatic systems (Anser Li and Aeolus Lee 2004; Aeolus Lee
et al. 2005; Mallmann and O’Neill 2009; Wu et al. 2019). Anser Li
and Aeolus Lee (2004) and Aeolus Lee et al. (2005) show that V/Sc
is robust to mantle modification, including metasomatism, by
demonstrating the constancy of V/Sc ratios between Archean basalts
and modern basalts and between modern mid-ocean ridge basalt
(MORB) and arc environments. In reduced, mafic melts, the V/Sc
values are typically c. 7 and are controlled by clinopyroxene and
amphibole crystallization where both V and Sc are present in their
+3-valence state. In this state, V and Sc have similar partition
coefficients and are therefore similarly depleted from the melt
during crystallization (Doe 1997). In more oxidized melts, V occurs
in V4+ and V5+ oxidation states and will strongly partition into
magnetite while Sc remains in its +3-valence state and is much less
compatible in magnetite (Wijbrans et al. 2015; Arató and Audétat
2017; Iveson et al. 2018). Additionally, V-Sc systematics can be
used to infer the depth of crystal formation in certain settings. High
V/Sc ratios in subduction-related magmatic environments can be
attributed to accumulations of hornblende due to high-pressure,
hydrous conditions. Based on both field observation and experi-
mental data, hornblende crystallization is promoted to the start of the
crystallization sequence with magnetite forming late at lower
temperature and/or depth (Richards 2011; Loucks 2014). A
decreasing V/Sc in an evolving melt can indicate the fractional
crystallization of magnetite under oxidized conditions while an
increasing V/Sc can indicate accumulations of hornblende under
high-pressure, hydrous conditions.

Eu–Eu* Systematics

Unlike the other REE, Eu has long been known to be stable in its
bivalent form (Goldschmidt 1937). This ‘anomalous’ behaviour
was determined to be a predictable function of temperature and fO2

and the magnitude of the anomaly is related to the abundance of
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plagioclase where Eu2+ can substitute for Ca2+ (Weill and Drake
1973). The Eu anomaly can be defined as Eu2+/Eu3+ (Weill and
Drake 1973); however, it is more commonly defined as Eu/Eu*
where Eu* is an interpolant between Sm and Gd. The Eu anomaly
is quantified as the enrichment or depletion of measured Eu, relative
to the interpolated Eu value (Eu*), normalized to a baseline
composition such as C1 carbonaceous chondrites (Taylor and
McClennan 1985; Sun andMcDonough 1989). In reduced magmas,
minerals with strong affinities to Eu2+, such as plagioclase, will
exhibit large positive Eu anomalies. Conversely, melts that have
evolved from the fractional crystallization of plagioclase will
display increasingly negative Eu anomalism with increasing melt
fractionation (Deering et al. 2016). In oxidized and/or H2O-rich
magmas, the extent of the negative Eu anomaly is expected to be
much smaller, either due to Eu being prevalently in the Eu3+, or
suppression of plagioclase crystallization, or both (Danyushevsky
2001; Loucks 2014; Tang et al. 2020).

Nb–Ta– (Ti) Systematics

Nb and Ta fractionation occurs in a variety of minerals and was
noted to always be associated with Ti-rich phases (Schmidt et al.
2004). John et al. (2011) found that in melts derived from rutile and
titanite-bearing eclogites, the Nb–Ta ratio was a function of the

modal abundance of rutile and titanite, which itself is a function of
pressure. When titanite is much more abundant than rutile, Nb/Ta
was very high (>60) and when titanite was less than rutile, Nb/Ta
was lower (≤30). For very low ratios (<16), a very high degree of
partial melting was required, consuming all Ti-phases. Stepanov
and Hermann (2013) compiled Nb–Ta partition coefficients and
noted that the Ti-rich phases such as rutile, ilmenite and titanite
preferentially incorporate Ta over Nb resulting in a lowNb/Ta restite
with corresponding high Nb/Ta partial melt during crustal melting.
In contrast, micas such as biotite and high-Ti phengite were found to
prefer Nb over Ta, producing a high Nb/Ta restite with correspond-
ing low Nb/Ta partial melt. Amphibole was also noted to preference
Nb; however, the overall effect on Nb/Ta is small given the very low
compatibility of Nb in amphibole. Low Nb/Ta values with
decreasing Ti are therefore inferred to be the signature of the
fractionation of mica (Stepanov et al. 2014; Ballouard et al. 2016;
Sun et al. 2019; Halley 2020).

Zr–Hf Systematics

Numerous studies have observed wide variations in Zr/Hf across a
range of compositions and magmatic settings. These include;
MORB and ocean island basalt (Pfänder et al. 2007), abyssal
peridotites and harzburgites (Weyer et al. 2003; Niu 2004),

Fig. 1. Geological map of the Mount Read
Volcanic belt in western Tasmania. Major
lithostratigraphic units, structures and
mineral deposits are shown (Gifkins et al.
2005).
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carbonatites (Dupuy et al. 1992; Andrade et al. 2002), chondrites
and lunar material (Ahrens 1962; Ehmann et al. 1975), alkali
granites and pegmatites (Van Lichtervelde et al. 2009; Fulmer et al.
2010; Kynicky et al. 2011) and peraluminous granites and
pegmatites (Dostal and Chatterjee 2000; Claiborne et al. 2006;
Zaraisky et al. 2008; Van Lichtervelde et al. 2009).

Studies by Bea et al. (2006) and Claiborne et al. (2006) found
that zircons formed in late-stage, lower-temperature, high-silica
granitic melts are Hf-rich, with the highest concentrations of Hf
found in the rims of zircon that formed at the lowest temperature
according to Ti-in-zircon geothermometry (Watson et al. 2006).
This was interpreted to reflect the fractional crystallization of early,
Zr-rich zircons which, after melt segregation, left behind a residual
partial melt with a higher proportion of Hf. Subsequent crystalliza-
tion of lower-temperature zircon enriched in Hf produce lower
zircon Zr/Hf values. This effect is exaggerated by water and other
complexing ligands such as fluorinewhich depolymerize the melt to
allow for more efficient segregation of early zircon and to lower the
temperature at which melt can exist, promoting Hf enrichment in the
zircon and prolonging the zircon formation window (Keppler 1993;
Linnen 1998; Linnen and Keppler 2002; Van Lichtervelde et al.
2009; Aseri et al. 2015; Shao et al. 2019).

Melts exhibiting decreasing Zr/Hf with increasing silica are
interpreted to be due to the fractional crystallization of zircon
(Linnen and Keppler 2002; Bea et al. 2006; Claiborne et al. 2006;
Zaraisky et al. 2008; Deering and Bachmann 2010; Wang et al.
2010; Breiter et al. 2014; Wu et al. 2017; Yan et al. 2018).

Sample preparation

A total of 654 samples from the MRV have been included in the
study (Table 1). The samples included a combination of rock chips
and drill core from the Mineral Resources Tasmania (MRT) core
library and the University of Tasmania, Centre for Ore Deposit and
Earth Sciences (CODES) rock collection. Samples were chosen to
cover as much of the stratigraphy and the geographic extent of the
province as possible and included all rock types (coherent and
volcaniclastic facies) and varying degrees of alteration. All samples
were analysed at Australian Laboratory Services (ALS), Perth,
Western Australia by 4AD-ICP-MS (method name –ME-MS61L™
and MS61L-REE™) while 410 samples were also analysed at ALS
(Perth) by AFADICP-MS (method name – ME-MS81s™). Ten
samples were analysed at CODES Analytical Laboratories (CAL),
at the University of Tasmania using a two-step multi-AD (Yu et al.
2001; Table 1).

At ALS, samples were weighed, crushed and pulverized to >85%
passing 75 microns. For the samples that were analysed by 4AD
ICP-MS, a 0.25 g aliquot of pulverized material was dissolved in a
solution of nitric, perchloric and hydrofluoric acid at 185°C. The
residual solution was then leached and diluted in a hydrochloric acid
solution. The final solution was then analysed by ICP-MS and ICP-
atomic emission spectroscopy.

For the AFAD method, a 0.1 g aliquot was added to a lithium
metaborate/lithium tetraborate flux (LiBO2/Li2B4O7) and fused in a
furnace at 1025°C. The glass was then cooled and dissolved in an
acid mixture of nitric, hydrochloric and hydrofluoric acids and then
analysed by ICP-MS.

For analyses at CAL, the existing pulp material as delivered by
ALS was used. The pulp was re-pulverized in an agate vessel to
ensure homogeneity in the sample. Major element oxides were
analysed by XRFwhile trace elements were analysed by a multi-AD
(Digestion Acid System, PicoTrace®; Yu et al. 2001) followed by
ICP-MS.

This two-step digestion process is specifically designed to
dissolve resistate minerals (Yu et al. 2001). This is achieved by
digesting the sample at high temperatures and pressures and
extending the digestion times to allow for all the resistate minerals to
dissolve. This process is not practicable for high-throughput
commercial laboratories and is not a standard method
undertaken by ALS. Further method details can be found in the
Supplementary material.

Results

Data obtained for the eight elements being assessed (Zr, Hf, Nb, Ta,
Ti, V, Sc and Eu) by the three methods are presented in Figures 2, 3
and 4 and in the Supplementary data. Summary statistics for the
4AD and AFAD data are presented in Table 2. Ten samples
analysed at CAL were chosen from those analysed by 4AD and
AFAD to provide an independent dataset (Table 1). These were
chosen to cover a range of values as determined by the different
methods. There is generally good consistency between the CAL and
AFAD results; however, several outliers are notable.

Sample 143563 had consistently higher AFAD values
compared to the CAL value in all eight elements. Sample
WSP5_01 had different vanadium values for all three methods
with 1.2, 7.12 and 18 ppm for the 4AD, CAL and AFAD
methods respectively. Sample 143557 reported >20% variation in
the AFAD value and 143544 reported >20% variation in the 4AD
value from the CAL value for Sc. The CAL results for Nb, Ta
and Ti were all higher in sample HEC6637_01. All outliers have
concentrations outside the range of error for the method. This lack
of agreement between methods is therefore best explained due to
heterogeneities in the pulverized samples. Re-pulverization of the
CAL samples may have produced smaller, more digestible grains,
improving recovery.

V, Sc and Eu performed the best of all elements as indicated by a
1:1 correlation between the AFAD and 4AD data (Fig. 2). The slope
of the line of best fit for V, Sc and Eu is 1.06, 1.04 and 1.02
respectively and all three elements have an R2 value of 0.99
(Table 3). Although these illustrate a general indication of how well
the methods performed relative to each other, the gradient values
can be misleading as they are more influenced by higher
concentrations and can ‘overlook’ variations at low concentration.
This is evident for the Nb and Ta diagrams which appear to fit well
to a 1:1 correlation with gradients of 1.0 and 0.98 respectively;
however, there is significant variation at lower concentrations
(Fig. 3a–e). Additionally, gradients <1 (i.e. recovering more from
the 4ADmethod relative to the AFADmethod) are not considered to
be real effects and are within the method error.

For V, consistency between the methods deteriorates at low
concentrations as can be seen in Figure 2b. This is likely a result of
the higher detection limits associated with the AFAD method. This
effect is also noted in the Sc results, but not in the Eu results owing
to sufficiently high sensitivity for Eu in both methods. At higher
values (>150 ppm), V starts to show a systematic bias towards the
AFAD method. The CAL results are consistent with both methods,
falling within 10% of each other. The only exceptions to this were
samples 184302 and 137997, which at 3.8 and 2.6 ppm, had the
lowest concentrations and are likely approaching the sensitivity
limit of the 4AD method.

Sc results are consistent among all three datasets with differences
between AFAD and CAL data within 5%. Figure 5 demonstrates

Table 1. Sample analysis methods and laboratories for MRV samples

Method Sample Count Laboratory

4AD 654 ALS
AFAD 410 ALS
Two-step multi-AD 10 CAL

4 Z. Zivkovic et al.
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Fig. 2. Comparison plots of V (a)–(c), Sc (d)–(f ) and Eu (g) –(i). 4AD results are displayed on the x-axis. AFAD and CODES Analytical Laboratories
(CAL) data are on the y-axis. Left-hand plots are linear while the right-hand plots are in log-scale. Inset plots demonstrate the performance of the AFAD
data against the CAL data. Dashed lines indicate ±10% of the solid 1:1. Large variances between AFAD and CAL data are indicated by the dashed boxes.
Gradient (m) and R2 values are given for the data cloud in the left-hand plots.
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Fig. 3. Comparison plots of Nb (a) –(c), Ta (d)–(f ) and Ti (g)–(i). Symbols and layout as per Figure 2. Large biases towards the AFAD method are noted
in Nb, Ta and Ti. This is a result of 4AD under-reporting rather than AFAD over-reporting as demonstrated by the inset plots.
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Fig. 4. Comparison plots of Zr (a)–(c) and Hf (d)–(f ). Symbols and layout as per Figure 2. A significant bias to the AFAD method is shown. This is a
result of 4AD under-reporting rather than AFAD over-reporting.

Table 2. Summary statistics for the four-acid digestion (4AD) and alkali fusion/acid digestion (AFAD) methods

4AD V (ppm) Sc (ppm) Eu (ppm) Nb (ppm) Ta (ppm) Ti (ppm) Zr (ppm) Hf (ppm)

Mean 79.39 13.84 1.43 10.07 0.71 2441.37 144.48 4.17
Median 51.95 11.20 1.29 10.10 0.72 2215.00 145.50 4.10
S.D 79.88 10.11 1.08 3.97 0.35 1218.53 57.26 1.55
P10 4.82 3.72 0.72 5.51 0.33 991.00 69.47 2.16
P25 13.83 6.72 1.05 7.62 0.50 1580.00 99.50 3.06
P75 128.75 18.66 1.61 12.06 0.90 3200.00 187.00 5.24
P90 202.00 28.97 2.11 14.34 1.06 4218.00 219.00 6.09

AFAD V (ppm) Sc (ppm) Eu (ppm) Nb (ppm) Ta (ppm) Ti (ppm) Zr (ppm) Hf (ppm)

Mean 85.15 14.67 1.45 10.38 0.73 2749.72 189.45 5.12
Median 55.00 11.90 1.31 10.50 0.75 2580.00 191.25 5.11
S.D 84.13 10.25 1.12 3.61 0.31 1395.68 65.89 1.70
P10 7.00 4.41 0.71 6.23 0.38 1019.00 105.10 3.12
P25 16.75 7.38 1.01 8.25 0.53 1700.00 142.38 3.81
P75 134.00 18.73 1.65 12.39 0.90 3602.50 239.00 6.33
P90 215.60 30.92 2.15 14.10 1.02 4699.00 271.90 7.27
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that there is very little change in whole-rock V/Sc between the two
methods, with the average V/Sc values differing by <5%.

Eu data perform moderately well with 73% of the data falling
within 10% of the 1:1 line (Fig. 2g, h). Beyond this range, 13% was
biased towards AFAD and 13%was biased towards 4AD. The CAL
data are more consistent with the AFAD method with most values
fitting within 10% of each other, whereas half of the 4AD samples
were >10% lower in concentration than the CAL data. This suggests
the bias towards AFAD in the Eu data is a result of under-reporting
in the 4AD data.

A value of the amount under-reported or, ‘UR%’ can be
calculated as:

(CAFAD � C4AD)�100=CAFAD: (1)

This is a measure of the percentage of mass that is not recovered in
the 4AD analysis relative to the AFAD analysis. Applying this to V
and Sc data, the average UR% is 12.7% and 8.4% respectively. This
improves to 9.6 and 7.25% respectively when V AFAD values
<10 ppm are filtered out to account for the lower sensitivity of the
AFAD data.

Calculating the Eu UR% shows that individual samples could
have as much as 58% of Eu not recovered from the 4AD method
(Fig. 6). However, the average under-reporting overall is only
0.09%. Despite the large deficit in recovery for individual samples,
the Eu anomaly, Eu/Eu* (after Taylor andMcClennan 1985), shows
no bias with recovery with <2% difference between the average
AFAD and 4ADEu/Eu* values (Fig. 6). This might be explained by
how Eu* is calculated:

Eu� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SmN � GdN

p
(2)

where normalization factors 0.087, 0.231 and 0.306 were used for
Eu, Sm and Gd respectively (after Taylor and McClennan 1985).
Since Eu, Sm and Gd would be expected to be hosted in the same
minerals (i.e. zircon), any loss in recovery would be expected to
similarly affect all three elements. This produces a covariation at
approximately 1:1 which preserves Eu/Eu* in the 4AD method.

Nb, Ta and Ti all behave in a similar manner (Fig. 3). The data
show larger deviations from 1:1 compared to V, Sc and Eu resulting
in lower R2 values (Table 3). Both Nb and Ta have c. 70% of the
data within 10% of the nominal 1:1 line (Fig. 3a–e). Titanium has
only 59%within 10% of the 1:1 line, with most of the values outside
of this range strongly biased (98%) towards the AFAD method
(Fig. 3g, h). This is also seen in the Nb and Ta plots, but to lesser
extents (Fig. 3a–e). As with the Eu data, the consistency between the
AFAD and CAL data is suggestive of under-reporting in the 4AD
method.

The AFAD values for sample 137997 were c. 16 and 24% below
the CAL values in both Nb and Ta respectively. This variation was
not seen in the Ti data. The concentrations required to bring the
values back within the 10% error range are 2.5 and 0.7 ppm for Nb
and Ta respectively. Variations at this scale are well within the range
of uncertainty for the method and are not considered true outliers.

Under-report percentage calculations revealed that the maximum
UR% for Nb, Ta and Ti was 71% for all three elements, with
averages of 3, 3 and 10% respectively. The ratio of the UR%
between all three elements is linear at an approximate 1:1 ratio
(Fig. 7a). This appears to suggest that a single mineral phase is
controlling the recovery of these elements (e.g. rutile or titanite).

Figure 7b demonstrates the relationship between whole-rock Nb/
Ta and the Ti UR%. Despite some samples not recovering up to
70% of their Nb, Ta and Ti, the effect on whole-rock Nb/Ta is
negligible. This is expected given that the recovery of these
elements covary at an approximate one-to-one ratio. This suggests
that lithogeochemical techniques utilizing Nb/Ta or Ti/Nb ratios in
this dataset will be valid regardless of whether the AFAD or 4AD
method is used.

Zr and Hf data have the largest differences between the AFAD
and 4AD methods (Fig. 4). This is consistent with these elements
being dominantly hosted in highly resistant zircon. A conspicuous
bias towards the AFAD values in both elements is noted with more
than half of all data falling outside of the 10% error range. Only five
samples (1.2% of the data) were biased >10% towards the 4AD
method and are considered within error. Comparisons of the AFAD
and CAL data show that most samples are consistent and the 4AD

Fig. 6. Eu anomaly (Eu/Eu*) compared to Eu under-reported value UR%.
Despite under-reporting by up to 60% for individual samples, the
difference in average Eu anomaly between the methods is <2%.

Table 3.Method comparison gradient (m) and R2 values for plots of AFAD
against 4AD (through origin)

AFAD/4AD m R2

Zr 1.24 0.92
Hf 1.17 0.94
Ti 1.12 0.98
V 1.06 0.99
Sc 1.04 0.99
Eu 1.02 0.99
Nb 1.00 0.98
Ta 0.98 0.98

Gradient values close to 1 indicate agreement between the methods and the R2 value
gives an indication of the variability between the two methods. By this measure, V, Sc
and Eu all show the strongest agreement, while Zr and Hf show the weakest agreement
between the methods.

Fig. 5. Whole-rock V/Sc ratios are mostly similar between the AFAD and
4AD methods.
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data are under-reporting, sometimes significantly, with up to 85% of
the Zr in the sample not being recovered. In fact, the summed
concentrations from 4AD analysis for Zr and Hf for all 410 samples
is 76 and 82% of the AFAD value respectively.

When comparing the UR% between Zr and Hf, there is more Zr
under-reporting relative to Hf (Fig. 8a). This has a drastic effect on
whole-rock Zr/Hf values which show significant bias towards low
Zr/Hf with increasing Zr UR% (Fig. 8b). This renders the 4AD
method unfit for purpose when assessing Zr-Hf ratios for
lithogeochemical data interpretations.

These results are consistent with those of Pashkova et al. (2019)
who found the 4ADmethod to be ineffective in fully recovering Nb,
Ta, V, Zr, Cr and Hf due to resistate accessory minerals in ultramafic
meimechites when compared to XRF results. Underestimation of
the concentration by 4AD were reported as much as 80% for Nb,
70% for Ta, 50% for V, 40% for Zr and Hf and 20% for Cr. The
porphyritic nature of the rocks, as well as the presence of resistate
minerals such as Cr-spinel and perovskite were believed to be the
main cause in the low recovery of the 4AD (Pashkova et al. 2019).

In each case presented here where a bias was determined, the bias
was found to be due to lower recovery in the 4AD method. The
elements Sc and V were found to have no significant bias between
the methods. While there are several causes for under-estimation in
the 4AD method, the most cited cause is the presence of acid-
resistant minerals. Minerals rich in HFSE such as zircon,
baddeleyite, tantalite, columbite, rutile, ilmenite, titanite, garnet
and monazite have long been documented in the literature for their
resistance to the 4AD procedure (Ito 1962; Hoops 1964; Jarvis

1990; Chao and Sanzolone 1992; Eggins 2003; Senda et al. 2014;
Potts et al. 2015). The AFADmethod is therefore the recommended
method for the accurate determination of Zr, Hf, Nb, Ta, Ti, Eu and
Eu* in these samples.

Discussion

Having established the improved recovery and therefore increased
accuracy of the AFAD over the 4AD method for Zr, Hf, Nb, Ta, Ti
and Eu, a brief lithogeochemical interpretation of the MRV dataset
utilizing these elements will demonstrate their utility and their
shortcomings when used with the 4AD method.

Figure 9 shows how plagioclase fractionation can be identified
and relative oxidation states might be inferred between different
magma compositions. For the MRV data there is minimal change in
the Eu anomaly at higher Sc concentrations. At Sc < 10 ppm, a
change in composition is noted where the negative Eu anomaly
begins to rapidly increase as the rocks become more depleted in Eu.
Within this range, a trend to a positive Eu anomaly at low Sc values
is dominated by crystalline samples (e.g. porphyry, granite) whereas
a negative Eu anomaly is mostly characteristic of volcanic rocks.
This suggests that the most evolved felsic volcanic compositions
were derived from magmas that precipitated significant amounts of
plagioclase, removing Eu from the melt during crystal separation.
This also has implications for the oxidation state of the magma
reservoir at this point and suggests a more reduced environment
with more pronounced negative Eu anomalies (Drake and Weill
1975; Burnham et al. 2015).

Fig. 8. Comparison of Zr and Hf UR% (a) and the whole-rock Zr/Hf plotted against Zr UR% (b). A clear bias towards low whole-rock Zr/Hf is seen
associated with higher Zr UR%.

Fig. 7. UR% for Ti and Nb (a). Ta behaves similar to Nb. The 1:1 relationship between UR% for Nb, Ta and Ti results in Nb/Ta ratios being unaffected
despite lower recoveries (b).
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Halley (2020) demonstrated the value of plotting elements such
as Sc and Ti against Th, Nb and Zr in discriminating magma
compositions as well as the use of Sc as a general indication
for maficity, where mafic rocks generally have more Sc than
felsic rocks.

A plot of Ti/Nb v. V/Sc is effective in not only discriminating the
bulk compositional populations (e.g. mafic v. felsic) but, under
certain conditions, can also indicate whether fractional crystalliza-
tion has occurred and what the temperature and pressure conditions
might have been at the time of crystallization. Figure 10
demonstrates how at V/Sc values >5, the Ti/Nb value becomes
more variable with over an order of magnitude difference in values
for the same V/Sc value. At V/Sc values <5, a gradual decrease in
Ti/Nb and V/Sc is noted. To understand what is controlling this
relationship, a plot of Sc v. SiO2 is required (Fig. 11).

Only 98 samples in the dataset have both AFAD and 4AD
analysis in addition to SiO2 (analysed by XRF at MRT on splits
from the same samples used here). This dataset follows the trend
observed by Halley (2020) who noted that Sc decreases with

increasing SiO2. In Figure 11, the highest Sc values are generally
associated with lower silica values, consistent with mafic composi-
tions and lower Sc values are generally consistent with higher silica,
felsic compositions. The subset coloured in orange represents all
samples with Sc values <10 ppm. These are classified as ‘high
silica’ and represent the most evolved rocks in the dataset. This
explains the trend towards low Ti/Nb and low V/Sc in Figure 10.
Since Nb is more incompatible than Ti, it will enrich relative to Ti in
evolved magma compositions. Additionally, Sc is removed during
magma evolution, resulting in an overall reduction in Ti/Nb and
V/Sc (Fig. 10).

We can now use this 10 ppm Sc cut-off to classify the remainder
of the data that do not have SiO2 assays as a proxy for ‘high-silica’
evolved compositions. Figure 12 compares Ti/Nb v. Zr/Hf between
the AFAD (Fig. 12a) and 4AD (Fig. 12b) digestion methods. The
‘high-silica’ samples are coloured orange and intrusive samples are
represented by open diamonds. Two features are noted in this
diagram. Firstly, orange, low-Sc samples are also low in Ti/Nb and
Zr/Hf. This can be interpreted to be a result of fractional
crystallization. However, this alone does not explain the ‘high-
silica’ results at higher Ti/Nb and Zr/Hf and hints at additional
controls. The other feature of note is that Ti/Nb is largely unaffected
by analysis method. This result was anticipated since it has been
shown that Ti and Nb recovery covaries at an approximate 1:1 ratio.
The Ti/Nb ratio is therefore preserved, regardless of under reporting
of the individual elements. This implies that low recoveries are the
result of a single resistate mineral phase affecting both elements
equally. It is assumed that rocks with a variety of Ti–Nb rich
resistate minerals would not be expected to behave this way. In
contrast, Zr/Hf is not preserved between the two digestion methods,
with 4AD Zr/Hf having lower values than AFAD Zr/Hf for the same
sample (Fig. 12b). Again, this is expected based on the Zr and Hf

Fig. 9. Eu Anomaly (Eu*) v. Sc comparing AFAD (a) and 4AD (b). The
digestion method used does not affect Eu/Eu* or Sc.

Fig. 10. AFAD Ti/Nb v. V/Sc
discrimination plot. Ti/Nb and V/Sc
undergo rapid decrease when Ti/Nb
<200. Open diamonds indicate crystal-
rich rocks such as porphyries and
granites while closed circles indicate
crystal-poor rocks such as volcanics
and volcaniclastics.

Fig. 11. Sc v. SiO2. Sc shows a systematic decrease with increasing SiO2.
Samples <10 ppm Sc are highlighted in orange.
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UR% values (Fig. 8a, b) which demonstrated a bias towards greater
Zr under-reporting, resulting in lower Zr/Hf values with intrusive
rocks particularly affected by this (Fig. 12b). This has implications
for fertility assessments based on Zr/Hf and Nb/Ta which have been
used to identify highly fractionated intrusives enriched in
incompatible elements (Linnen and Keppler 1997; Linnen 1998;
Selway et al. 2005; Zaraisky et al. 2008; Stepanov et al. 2014; Li
et al. 2015; Ballouard et al. 2016; Moreno et al. 2016; López-Moro
et al. 2017; Simons et al. 2017; Gonçalves et al. 2019; Chandler and
Spandler 2020). The bias towards lower Zr/Hf in 4AD analyses
from Figure 12b produces false-positive anomalies, making the
4AD method unfit for purpose for the interpretation of Zr/Hf. The
corollary to this conclusion is that partial digestion of zircon might
actually amplify the whole-rock Zr/Hf signal by only digesting the

Hf-rich rims. However, without knowing whether partial digestion
has occurred or what extent the zircons were dissolved, Zr/Hf cannot
reliably be used in 4AD methods.

Additional indicators for magmatic fertility include La/YbN and
Sr/Y fractionation (Richards 2011; Loucks 2014; Jamali 2017;
Möller and Williams-Jones 2017; Elliott 2018; Zozulya et al. 2022)
whose recovery can be heavily affected by resistate mineralogy such
as zircon and garnet (Sholkovitz 1990). Preliminary results indicate
that the 4AD method is also prone to producing artificially high Sr/
Y ratios, likely due to resistate mineralogy. This has implications for
porphyry copper exploration which utilize Sr/Y to identify fertile
intrusions (Richards 2011; Loucks 2014).

To investigate the changes to rock classification with analysis
method, a volcanic rock classification diagram can be used (Fig. 13;
Pearce 1996). This figure shows the 4AD data coloured according to
the Pearce classification using the AFAD data. Polygons represent
the data extents for each composition from the AFAD data. Black
arrows indicate the translation of the classification mean from 4AD
to AFAD. This figure shows that, while there is broad agreement
between the main compositional classifications, there appears to be
a trend in the 4AD data towards more mafic and alkaline
classifications compared to the AFAD data. This classification
diagram performs poorly with the 4AD data because the UR% for
Zr and Ti do not covary (unlike Ti and Nb). This relates to the
resistate mineralogy where different minerals are independently
controlling recovery such as zircon for Zr and Y and rutile for
Ti and Nb.

These conclusions are in agreement with Pashkova et al. (2019)
who found that lithogeochemical interpretations of the geodynamic
settings of whole-rock samples with known resistate mineralogy
were drastically different depending on whether a fusion-based
method or an AD method was used. This further highlights the
importance of using appropriate analytical methods that are fit for
purpose for the intended application.

Figure 13 highlights the potential pitfalls of using trace element
discriminant plots produced from 4AD methods that rely on
immobile trace elements that tend to concentrate in resistate
minerals that are impacted by low recovery. For more accurate
composition classifications using HFSE, fusion-based methods
such as AFAD are required. If, however, only 4AD data are
available, discrimination plots using immobile trace elements that
experience similar levels of under-recovery (i.e. Nb and Ti) and
elements that are not concentrated in resistate phases (i.e. Sc and V)
can be used (Fig. 10).

The comparison between 4AD and AFAD methods in interpret-
ing geochemical data highlights how some of the most informative
elements, and their ratios, used in lithogeochemistry are also the
most susceptible to under-reporting with the 4AD method.

Fig. 12. Comparison of Ti/Nb v. Zr/Hf for AFAD (a) and 4AD (b).
Overall Ti/Nb and Zr/Hf both decrease with decreasing Sc. Ti/Nb values
remain largely unaffected between the different methods. The Zr/Hf ratio
is lower in the 4AD data (b). This is particularly noticeable in the
crystalline rocks (open diamonds) and is likely a result of resistate
mineralogy. This demonstrates that Zr/Hf ratios are unsuitable in 4AD data
while Ti/Nb ratios remain valid.

Fig. 13. Volcanic rock classification after
Pearce (1996). Data coloured by Pearce
classification from AFAD data. Polygons
represent classification extents in the
AFAD data. Black arrows represent the
translation of the classification mean from
the 4AD mean to the AFAD mean.
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Improper use of discrimination plots using 4AD data can lead to
overestimation of maficity and alkalinity as well as potentially
produce false-positive anomalism during geochemical fertility
assessments. These effects can be attenuated with larger-sample
populations as shown by the relatively small translations of the
population centroids between the methods (Fig. 13). For individual
samples, the bias can be large with as much as 45% difference in Zr/
Hf and 81% difference in Zr/Ti values between the two methods.
Careful selection of immobile trace elements can also improve the
accuracy of the discrimination plots when using 4AD data.
Elements such as Nb, Ta and Ti can suffer from incomplete
recovery in the 4AD method but can preserve their ratios when
controlled by a limited number of resistate minerals. Ratios of these
elements will minimize the bias of the incomplete digestion on the
discrimination plot, especially when larger datasets are used for
interpretation. Caution is recommended when attempting to use
immobile trace element plots on the 4AD data where only small
sample populations are available.

Conclusion

HFSE such as Nb, Ta, Ti, Zr, Hf and Eu are commonly used in
lithogeochemical interpretations to make classifications of rock
composition, tectonic setting and magmatic fertility. These same
elements are also commonly found in resistate accessory minerals
and, as a result, are prone to incomplete recovery in some AD
methods such as 4AD. Partial recoveries in the 4AD relative to
samples prepared by AFAD were noted for the elements assessed in
this study except Sc and V which were largely unaffected by
digestion method. On a sample-by-sample basis, these differences
were significant with under-reporting up to 85% for Zr, 77% for Hf,
58% for Eu and 71% each for Nb, Ta and Ti, confirming that these
elements have incomplete recovery when analysed by the 4AD
method. Despite the significant under-reporting for individual
elements, certain element ratios are preserved between the analytical
methods while others are not. Elements that have similar levels of
under-reporting, such as Nb, Ta and Ti, will preserve their element
ratios between analytical methods resulting in discrimination plots
which can be used in both the 4AD and AFAD data. Plagioclase
fractionation modelled using the Eu anomaly behaves similarly
since it is calculated as an interpolant of Gd and Sm for which
under-reporting levels are similar to Eu. In contrast, Zr is
preferentially lost relative to Hf. This results in a bias towards
lower Zr/Hf in the 4AD data and can produce false-positive
anomalies in magmatic fertility assessments. Other common
fertility ratios such as La/YbN and Sr/Y also appear to exhibit a
bias in 4AD making it not fit for purpose in utilizing these ratios.

Commonly used discrimination diagrams such as the Pearce
(1996) Zr/Ti–Nb/Y plot produce inaccurate classifications when
using 4AD data, resulting in samples being classified as more mafic
and alkaline compared to AFAD results. These effects are
attenuated with larger datasets.

For best practice lithogeochemistry utilizing large portions of the
periodic table, multiple digestion methods including combinations
of XRF, AD and fusion-based methods are recommended. When
only 4AD data are available, plots that utilize elements with similar
levels of under-recovery, such as the Ti/Nb v. V/Sc diagram, are
recommended since these element ratios are preserved with
digestion.
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