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A B S T R A C T

Geothermal energy resources are highly available but under-utilized throughout the world. Previous studies
have sought to understand reservoir response to geothermal production and optimize production rates to
maximize lifetime profits of geothermal reservoirs; however, these studies largely overlook the uncertainty in
subsurface structure, such as the number of preferential flow pathways (e.g., fractures) that are available for
fluid and heat transport. We present a combination of simple analytical models that maximize the profits of an
idealized synthetic geothermal reservoir, while considering reservoir structural uncertainty, using expected net
present value. For a typical case, we find that effective reservoir transmissivity and inter-well spacing exert the
largest controls on the lifetime profitability of an idealized geothermal reservoir, and for a given reservoir there
exists a critical number of hydraulically active fractures beyond which additional fractures provide no increase
in lifetime profits. Given initial reservoir characterization data, our model simulates reservoir performance that
predicts financial outcomes, which operators can use during initial exploration stage. These predictions are also
useful during normal operations to consider strategies, such as drilling make-up wells, to mitigate the effects of
production-induced thermal drawdown.

1. Introduction

1.1. Purpose and scope

Geothermal energy is a ubiquitous energy resource that is largely
untapped throughout the world. It is estimated that further develop-
ment of Enhanced Geothermal Systems (EGS) in the United States has
the potential to produce approximately 100 GW of geothermal energy,
which could supply 10% of the country’s energy demand (GTO, 2016).
To realize this potential and bring geothermal energy production to
operational status requires significant up-front capital investment to
install and develop the necessary infrastructure (wells, power con-
verters, pipes, etc...). To acquire the necessary capital investments for
resource development, private companies must show that predicted
long-term operational profits will exceed initial capital investments and
long-term operations and maintenance (O&M) costs. Similarly, long-
term forecasting models can guide operators’ decisions about tuning
extraction rates to ensure future reservoir sustainability. For instance,
operators may have questions about whether pursuing an aggressive
extraction approach – possibly at the expense of long-term sustain-
ability – or taking a more conservative approach will be more profitable
over the useful lifetime of a reservoir. Simplified models that

incorporate both subsurface processes and plant operational parameters
can provide a defensible platform for making such predictions and
decisions.

Geothermal power plants commonly utilize re-circulating systems to
pump hot water from the reservoir, extract thermal energy, and then
return the cooled water to the subsurface. These re-circulating systems
require site operators to determine the optimal pumping rate that al-
lows profitable energy extraction while preventing “thermal break-
through” of the injected cooled water into the feed zone accessed by
production wells. To understand the dominant physical properties that
impact thermal breakthrough due to cold water injection in geothermal
fields, Patterson (2018) conducts a sensitivity analysis as a means of
constraining the useful life of fully re-circulating geothermal opera-
tions. Using a simple analytical solution to simulate the movement of a
thermal front away from injection wells, this analysis concludes that the
surface area available for heat exchange (i.e., the number of hy-
draulically active flow paths) exerts the largest control on thermal
breakthrough time, which is consistent with previous studies – e.g., Li
et al. (2016).

Predictions of future profits – and thus the economic case for in-
vesting in and tuning geothermal site operations – can be generated
using a physical model of subsurface and power-plant processes tied to
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an economic model for power generation profits (Li et al., 2016).
However, models of subsurface processes are subject to notoriously
high uncertainty, largely due to limited available information about
subsurface hydraulic properties and the associated flow pathways. In
the case of deep geothermal systems, where heat is extracted from
nearly impermeable rock, the characteristics of the fracture network
that is transmitting fluid – such as the number of fractures and the
associated fracture apertures – will exert strong controls on the rate at
which heat can be extracted from the reservoir, and thus lifetime
profits.

The subsurface structure of geothermal reservoirs represents a large
source of uncertainty during reservoir characterizations efforts.
Operators in active EGS systems may be able to estimate the number of
available flow paths in their reservoir based on the number of stimu-
lations; however, the number of hydraulically active fluid flow

pathways that connect injection and extraction wells is extremely dif-
ficult to constrain in enhanced or natural reservoirs. Initial data col-
lection efforts during reservoir prospecting typically includes esti-
mating reservoir transmissivity via flow testing, and/or well-to-well
connectivity interpreted through tracer testing. While these experi-
ments provide effective hydraulic properties, they do not delineate the
number of hydraulically active flow paths (i.e., fractures) in a reservoir.

A commonly-applied conceptual model describes a geothermal re-
servoir as a series of parallel faults or fractures that transmit fluid,
which are intersected by wellbores (Fig. 1). While this model represents
a drastic simplification of subsurface fracture networks, it allows effi-
cient modeling of analytical solutions to simulate heat extraction as
cooler water moves through the reservoir. Using site characterization
information such as the overall reservoir transmissivity, T [m /s]2 , and
associated rock thermal properties, we can develop site-specific models

Nomenclature

List of Variables

Q is the volumetric flow rate in m3/s
q is the volumetric flow rate per fracture in m3/s
n is the number of fractures in the reservoir

T tΔ ( ) is the difference in production and injection water tem-
perature in ℃

Cw is the specific heat capacity of water in J/(kg ℃)
ρw is the density of water in kg/m3

γplant is plant efficiency as a fraction of total energy rate
γpump is pump efficiency as a fraction of input energy rate
g is acceleration due to gravity in m/s2

hΔ is the hydraulic head difference between production and
injection wells in m

p is the Laplace parameter
θ is a dimensionless energy potential given by Eq. 3
b is the fracture aperture in m
D is the reservoir thickness in m
d is the fracture half-spacing in m
ξ is dimensionless distance given by Eq. 5
td is dimensionless time given by Eq. 6
λ is the thermal conductivity in W / (m ℃)
η is porosity [-]

ρ Cw w is the water volumetric heat capacity in J/(m3 ℃)
ρ Cf f is the fracture volumetric heat capacity in J/(m3 ℃)
ρ Cr r is the reservoir rock volumetric heat capacity in J/(m3 ℃)
T t( )D is the dimensionless temperature at the production well
T t( )prod is the production water temperature in ℃
Tinj is the injection water temperature in ℃
T0 is the initial production water temperature in ℃
x y( , )prod prod are the spatial coordinates of the production well
x y( , )inj inj are the spatial coordinates of the injection well
x y( , ) are the spatial coordinates of the point of interest

Φ0 is a specified discharge potential at a specified point in the
reservoir in m3/s

Τ is transmissivity in m2/s
f is the friction factor [-]
τ is the pipe tortuosity factor [-]
rpipe is the inner radius of the pipe
V is water velocity in m/s
μ is the dynamic viscosity in kg/(m s)
Rj is the revenue at time step j in $
Ėj is the power produced during time step j in MW
M is the selling price of energy in $/MW-h
P is installed power plant capacity in MW
i is the annual discount rate
m is the number of time steps

Fig. 1. Conceptual model showing reservoir geometry used to simulate production well water temperatures.
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that are consistent with available observations – e.g., flow, pressure,
and temperature.

In such conceptual models, a fundamental source of uncertainty is
the number of hydraulically active fractures contributing to this
transmissivity. For example, fluids may flow along a single fracture
allowing greater flow or along several fractures allowing less flow in
each fracture. To address this uncertainty, we take a probabilistic ap-
proach to predictions that recognizes this uncertainty is warranted.
Here, we apply the concept of expected net present value (ENPV),
which determines expected profits across multiple realizations of
aquifer structure with varying numbers of hydraulically active frac-
tures, each with an assumed probability. In this study, we present a
strategy for simulating and optimizing geothermal production while
accounting for the uncertainty associated with the number of hy-
draulically active fractures in the reservoir, using this concept of ENPV.

1.2. Optimizing geothermal systems

Understanding the production potential of geothermal reservoirs,
given some initial characterization data, commonly utilizes computa-
tional modeling simulations – analytical and/or numerical – to predict
future reservoir performance and inform on-site decision making
(Samin et al., 2018) While computational models are more cost-effi-
cient than testing reservoir performance in the field, they can become
very complex, requiring significant costs in time, money, and compu-
tation. These modeling efforts commonly seek to improve heat extrac-
tion or efficiency or evaluate the long-term thermal and commercial
reservoir potential using initial energy extraction data (Samin et al.,
2018). As a first step, here we present a simple analytical model that
uses available energy extraction data to evaluate the long-term value of
an idealized hypothetical geothermal reservoir.

Recent studies have sought to optimize the thermal sustainability of
geothermal systems using various techniques. Li et al. (2016) use the
analytical solution developed by Gringarten et al. (1975) to optimize
the NPV of a synthetic EGS reservoir, and find that reservoir NPV in-
creases as the number of stages (i.e., the surface area available for heat
transfer) increases; however, they use a deterministic optimization that
does not consider the uncertainty in the model parameters. Specifically,
their study assumes that fluid flow occurs along one fracture for each
stage (i.e., five stages represent five fluid flow paths). Consequently, the
optimized models do not account for the uncertainty in the number of
fractures transferring fluid and heat. Furthermore, their analysis also
considers neither operational costs associated with geothermal pro-
duction nor installed plant capacity, both of which impose an upper
limit on the total revenue expected over the lifetime of the reservoir.

Through the use of numerical simulations Juliusson and Horne
(2013) use operational control modeling to present an efficient opti-
mization method to maximize NPV by varying injection rates and
timing. This study investigates two synthetic reservoirs with differing
complexity to determine the distribution of injection rates through time
across a given number of injection wells that maximizes NPV. Like Li
et al. (2016), this study does not consider uncertainty in subsurface
structure by assuming that flow occurs in all reservoir fractures. They
also neglect operational costs during their simulations, which has the
effect of assuming the reservoir is profitable throughout the entire si-
mulation.

Operational control models are well studied in the oil-and-gas re-
servoir modeling literature; however, these studies overwhelmingly
neglect uncertainty in subsurface structure. Jansen et al. (2008) and
van Essen et al. (2009) consider subsurface uncertainty while using
operational modeling to optimize NPV of synthetic reservoirs. However,
these studies both utilize gradient-based optimization algorithms with
data assimilation, requiring greater computation time compared with
the analytical modeling presented in this work.

Chen and Jiang (2015) study various well placements to understand
the well field arrangement that maximizes the thermal sustainability of

a hypothetical geothermal reservoir. Similar to Li et al. (2016), this
study neglects subsurface uncertainty and uses a deterministic ap-
proach during optimization. The authors find that well-field arrange-
ment exerts a significant impact on thermal sustainability of the re-
servoir; however, they do not investigate the effects of well spacing for
a given well field arrangement on thermal sustainability, which has
been shown to be a significant control on thermal breakthrough at
production wells (Chen et al., 2015; Li et al., 2016).

In a variation of the study by Chen and Jiang (2015); Chen et al.
(2015) use a statistical model, named multivariate adaptive regression
spline (MARS), to optimize well placement at the Superstition Mountain
Prospect near the Salton Sea in Southern California, USA. Unlike the
studies mentioned above, Chen et al. (2015) consider subsurface un-
certainty, with fault length and height, fault permeability, and well
injection as uncertain parameters during optimization. While this study
does account for subsurface uncertainty, it assumes that the number of
preferential flow paths used for fluid and heat transport is known a
priori and that transport occurs only along the primary faults in the
geothermal reservoir; thereby neglecting the potential of additional
faults and fractures in the system, which may be critical for fluid and
heat transport as well as long-term reservoir performance.

The well placement optimization problem is also well-studied in the
oil-and-gas reservoir modeling literature. Forouzanfar and Reynolds
(2014) present a well placement problem in a synthetic oil reservoir
seeking to find injection well locations and rates that optimizes the NPV
of the reservoir. The authors develop a gradient-based optimization
algorithm to determine the optimal injection locations and production
rates that maximizes NPV. Like Chen and Jiang (2015), this analysis
neglects subsurface uncertainty and uses a numerical approach re-
quiring longer computation times compared to the analytical models we
present in this work.

Samin et al. (2018) conduct an optimization study that seeks to
minimize thermal drawdown and total reservoir costs, while max-
imizing total thermal power extraction of a hypothetical geothermal
reservoir based on the Spa Ulrach geothermal system discussed in
Watanabe et al. (2010). Their approach couples a finite-element nu-
merical model with a genetic algorithm that optimizes several para-
meters including, total reservoir depth, well spacing, reservoir perme-
ability, and injection pressure. The finite-element model considers a
simplified reservoir geometry, utilizing effective flow parameters, (e.g.,
porosity, permeability) as opposed to explicitly including fractures and
faults that would act as preferential fluid flow pathways.

By utilizing deterministic approaches to maximize the long-term
thermal, and thus, economic performance of geothermal reservoirs,
most of the studies discussed above neglect the inherent uncertainty
that exists in reservoir physical parameters and geometries. While
previous studies have investigated the effect of reservoir parameter
uncertainty on thermal sustainability, these studies have treated the
number of preferential flow pathways in a reservoir as a known quan-
tity. Consequently, they neglect the fact that information about the
subsurface is intrinsically uncertain. For example, premature thermal
breakthrough, in which cooled fluids begin flowing through previously
unknown fractures, can be particularly problematic. Indeed, the study
by Li et al. (2016) shows how the distribution of these flow paths in
fractured or faulted reservoirs controls the lifetime profitability of the
reservoir. Building on these studies, we develop a simple and compu-
tationally-efficient analytical model that considers the uncertainty in
the number of preferential flow paths and optimizes the thermal and
financial sustainability of geothermal reservoirs.

2. Modeling approach

Our modeling approach links two simplified models – a physical
model of the geothermal reservoir and associated power plant, with an
economic model of plant costs and profits – allowing for fast calculation
of expected reservoir profits under uncertainty. The physical model,
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based on simplified reservoir geometries and geothermal plant de-
scriptions, allows reservoir temperature and pressure predictions under
a given scenario of production and recirculation rates, and also predicts
the temperature of the extracted water. The economic model simulates
revenues (from thermal extraction) and costs (from pumping and on-
going O&M activities) throughout the profitable lifetime of the re-
servoir using results from the physical model as inputs.

When reservoir parameters are uncertain, as described in Section 3,
these simplified analytical models can run many plausible scenarios
quickly, allowing expected profits (i.e., profits averaged across multiple
scenarios) to be optimized. Such a simplified model may be highly
useful, for example, during early stages of site development, after initial
wells have been drilled and pump testing has provided initial hydraulic
characterization information.

2.1. Reservoir conceptual model

We present a simplified conceptual model that simulates thermal
front movement throughout a reservoir containing horizontal fractures.
The numerical simulations presented in this study consider a geo-
thermal system of a given thickness, D [m], with a fully penetrating
well doublet, separated by a distance, L [m] (Fig. 1). The well doublet is
connected by a number, n, of horizontal parallel planar fractures of
infinite areal extent. Each fracture has a constant aperture, b, and may
be partially filled by solids (i.e. fractures can have a porosity less than
1). Individual fractures are separated by an equivalent vertical spacing,
that is the fracture half-spacing =( )d D

n , and the surrounding country
rock is assumed to be impermeable (Fig. 1).

The re-injection well injects cold water at a specified temperature,
℃T [ ]inj , into the reservoir at a given volumetric flow rate, Q [m /s]inj

3 ,
which we assume to be constant throughout the simulation period.
Under these assumptions, the total injection rate is divided equally
among each fracture =( )qi.e. , inj

Q
n
inj . In reality we expect flow would

likely be divided among the fractures based on the transmissivity of
each fracture. To maintain mass balance in the system, we assume
perfect recirculation such that the water removed from production
wells at a volumetric flow rate of = −Q Qprod inj.

2.2. Reservoir mathematical model

We use analytical solutions to simulate water temperatures and
reservoir pressures, which are essential for site operations. The re-
servoir water temperature model predicts water temperature evolution
through time at the production well due to cold water injection using
the radial flow solution of Bödvarsson and Tsang (1982). Described
further in Section 2.3, the output of this model is used to calculate
expected profits from geothermal heat extraction. The pressure model
consists of two components which calculate: 1) the pressure difference
between production and extraction well locations (computed as hy-
draulic head); and 2) the additional head losses associated with forcing
fluid along a length of pipe between the extraction and injection wells.
The sum of these two components produces the net head difference
between the wells, which is used to calculate pumping costs within the
economic model.

2.2.1. Reservoir temperature model
The analytical solution by Bödvarsson and Tsang (1982) describes

thermal front movement in a radial direction away from injection wells
in a geothermal reservoir with horizontal parallel planar fractures. This
solution calculates water temperature at a production well (T t( )prod ) as a
function of time (i.e., thermal breakthrough), which assumes that water
flows in a purely radial manner through horizontal fractures of constant
aperture surrounded by impermeable reservoir rock. Heat conduction
within the reservoir rock occurs in the vertical direction only, and,
water temperature within the fracture is in equilibrium at the rock-

water interface (Bödvarsson and Tsang, 1982).
To simulate thermal movement in response to cold-water injection,

the Bödvarsson and Tsang (1982) model requires reservoir rock hy-
draulic properties, reservoir rock thermal properties, fluid thermal
properties, and reservoir geometries as inputs. Using these input para-
meters, we determine the dimensionless water temperature at the
production well as a function of time (T t( )D ):

=
−

−
T t

T t T
T T

( )
( )

D
prod

inj

0

0 (1)

The solution derived by Bödvarsson and Tsang (1982) gives water
temperature at the center of the fracture in the Laplace domain (Eq.
(2)). We numerically invert Eq. (2) for the Laplace parameter (p) with
respect to dimensionless time (td) using the algorithm developed by De
Hoog et al. (1982), which yields T t( )D .

⎜ ⎟= ⎛
⎝

+
+

⎞
⎠

u
p

θp p p ξ
θ

1 exp
[ 2 tanh ( )]

2 (2)

=θ
ρ C b
ρ C D

f f

r r (3)

= + −p C ηρ C η ρ C(1 )f f w w r r (4)

= +ξ λπr θ
QDρ C

(2 )

w w

2

(5)

=t λt
ρ C Dd

r r
2 (6)

2.2.2. Pipe friction model
To calculate head losses along the pipes between the pumping and

injection wells, we use the Darcy-Weisbach equation, which quantifies
energy losses due to frictional resistance (Brown, 2003). Our analysis
includes a tortuosity multiplier (τ) which accounts for the increased
pipe length at the land surface as water is moved from the production
well, through the power plant, to the injection well (Eq. (7)).

⎜ ⎟⎜ ⎟= ⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

h f Lτ
r

V
g2fric

pipe

2

(7)

The unitless friction factor ( f ) is an empirical parameter that is
dependent on pipe roughness and fluid turbulence, which is commonly
determined through the use of Moody diagrams or implicit relation-
ships such as the Colebrook equation (Round, 1980). We employ the
Matlab library function fminsearch to solve the Colebrook equation
implicitly and estimate the value of f .

2.2.3. Parasitic power losses
Our model uses the common assumption that head within a well-

bore is accurately approximated by an analytical solution evaluated at
the wellbore radius. We calculate hydraulic head at the borehole wall
for each well using analytical solutions developed by Haitjema (1995),
which simulates flow between two wells (Eq. (9)).

The total head difference, hΔ [m], between production and injection
wells controls the amount of energy required to pump and circulate
water for thermal power production. The total head difference includes
the difference in hydraulic head (i.e., water level elevations) between
the injection (hinj) and production (hprod) wells as well as frictional head
losses (hfric) due to pipe flow (Eq. (10)).

= ⎛

⎝
⎜

− + −
− + −

⎞

⎠
⎟ +x y Q

π
x x y y

x x y y
Φ( , )

4
ln

( ) ( )
( ) ( )

Φ
prod prod

inj inj

2 2

2 2 0
(8)

=h x y x y
T

( , ) Φ( , )
(9)
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= − +h h h hΔ ( )inj prod fric (10)

This analysis provides an optimistic estimate of power production
losses due to geothermal operations. A more rigorous analysis could
consider other auxiliary power costs associated with geothermal power
production (e.g., cooling towers and gas extractors); however, these
elements are highly site-specific, and therefore, are beyond the scope of
this analysis (Zarrouk and Moon, 2014).

2.3. Simplified economic model

2.3.1. Energy production modeling
We model the net power production rate, Ėnet [W], as the difference

in thermal power production rate (Ėprod) and parasitic power con-
sumption rate (Ėloss) as described by Eq. (11). We impose an upper limit
on the net power production rate by not allowing it to exceed the in-
stalled plant capacity (Fig. 2). Plant operators must balance production
rates accordingly to minimize the amount of lost revenue due to ex-
cessive thermal power extraction, while maximizing plant revenues and
reservoir longevity.

= −E E E˙ ˙ ˙net prod loss (11)

=E Qρ Cp T t γ˙ Δ ( )prod w w plant (12)

=E
Qρ g h

γ
˙ Δ
loss

w

pump (13)

Power losses due to turbines, generators, and heat loss in water
during pipe flow have been shown to be a function of reservoir tem-
perature, reservoir enthalpy, and chosen plant type (Bodvarsson, 1974;
Nathenson, 1975; Zarrouk and Moon, 2014). While water does lose
thermal energy during pipe flow, Zarrouk and Moon (2014) show that
the losses are commonly less than 1% and can be considered negligible
for most analyses. Our simplified energy production model assumes
that power plant operators have a working understanding of total plant
efficiency, which incorporates all of the above factors; therefore, we do
not determine them individually. In situations where power production
has yet to begin, a more thorough analysis could estimate the individual
components and total plant efficiency based on initial characterization
data using established analytical expressions – e.g., Zarrouk and Moon
(2014).

2.3.2. Operational costs
Numerous studies report that geothermal reservoir development

benefits from economies of scale with respect to capital and labor as
initial capital investments can be recouped more easily with larger
plant capacities and labor costs become more efficient per MW with
increasing plant capacities (Lovekin, 2000). Consistent with the
economies of scale, operational costs have been shown to decrease in an
exponential manner as a function of installed plant capacity (Chamorro
et al., 2012; Sanyal, 2004). To simulate monthly operational costs, we
use the exponential expression described by Chamorro et al. (2012) that
describes unit operational costs (cO M& ) in $/MWh as a function of in-
stalled power plant capacity, P [MW] (Eq. (14)).

= − −c P20exp( 0.0025( 5))O M& (14)

2.3.3. Generated profits
We use standard net present value (NPV) analysis to determine the

generated income at monthly time steps (Eq. (15)) using an assumed
energy price (M) in $/MWh. While NPV analysis commonly occurs on
an annual basis, we utilize monthly time steps in our analysis because
we assert that it is unreasonable to assume a constant water tempera-
ture in geothermal production wells over a one-year period; therefore,
we choose smaller monthly time steps, which we argue is a more rea-
sonable time period over which we can assume an approximately

constant temperature for the production water.

=
+

R
E t M

i

˙ Δ
( 1)j
net j j

j (15)

Our model calculates the profits (Eq. (16)) at a given time step by
considering the difference in monthly generated revenue R( )j and
monthly operational costs c( )O M& . The profits are then integrated across
the total time series to determine NPV (Fig. 3). Our model assumes that
any negative profit represents the end of thermal power production. At
this point in time, integration stops when calculating NPV for an in-
dividual realization (Fig. 3). Physically, negative monthly profits re-
present a situation requiring plant operators to modify their current
production strategy, commonly drilling new production wells while the
previous wells are allowed to recover or decreasing the production rate
to a point where the well can recharge while still producing. More
complex numerical models can account for these dynamic changes in
production strategy; however, our simple analytical model does not
account for this and assumes that production ceases when the plant is
no longer profitable.

∑= −
=

NPV R E c t( ˙ Δ )
j

m
j net j O M j1 & j (16)

2.4. Optimization under uncertainty

Our optimization strategy seeks to find the production rate that
maximizes ENPV of an idealized synthetic reservoir by calculating the
NPV across a range of realizations with varying numbers of hy-
draulically active fractures. Due to the large uncertainty in the number
of hydraulically active fractures in a given reservoir, we assume that the
number of fractures being accessed for fluid flow, and thus heat
transport, are equally likely, which equates to ENPV being the ar-
ithmetic mean of NPV across all realizations (Eq. (17)).

∑=
=

ENPV Pr NPV
k

realizations
k k1

#
(17)

We assume the geothermal field is operating under normal pro-
duction conditions (i.e., beyond the exploration and initial character-
ization stages) and that site operators have an understanding of re-
servoir physical properties, including, primarily, reservoir effective
transmissivity, rock thermal conductivity, and rock volumetric heat

Fig. 2. Power production rate, parasitic power consumption, and power plant
capacity throughout the 30-year simulation period showing the extracted
thermal power available for energy conversion and revenue generation. Red
regions indicate revenue loss due to over / under production.
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capacity. Given these known reservoir parameters (Table 1), we utilize
a two-level optimization scheme (Fig. 4) which seeks to maximize
ENPV given these reservoir parameters, m, by varying the volumetric
flow rate (Eq. (18)). To conduct the optimization, we employ the MA-
TLAB function fminsearch (MATLAB, 2016). This algorithm uses the
simplex method, which is a non-gradient based direct search algorithm
as described by Lagarias et al. (1998). We maintain the non-negativity
constraint on Q by perturbing ln(Q) during the optimization.

mE NPV Q( | )max [ ]
Q (18)

subject to:

>Q 0

3. Example application scenario

In this section we present an example application of the above de-
scribed models in an idealized synthetic geothermal reservoir with as-
sumed known physical parameters (Table 1), many of which are based
on the analysis presented by Li et al. (2016). Our analysis simulates
plant profits over a 30-year time period, which is a common time frame
for studies seeking to understand the thermal sustainability, and thus
profitability, of geothermal reservoirs. While longer simulations may be
informative, their usefulness is limited because they potentially extend
beyond the useful lifetime of production equipment (e.g., pumps, gen-
erators, turbines, etc…). Similarly, longer simulations do not account
for the rapid progression and incorporation of technological advances
by site operators. Due to these factors, changes to geothermal produc-
tion and infrastructure are typical beyond the 30-year timeframe
(Patterson, 2018).

We prescribe water density and viscosity values consistent with
what would be expected at the injection wells after heat extraction, in
line with the analysis by Li et al. (2016). This decision is consistent with
our temperature model which describes radial flow away from injection
wells and determines cold water breakthrough at production wells at a
given radial distance. A brief analysis shows that using the lower fluid
density and viscosity values expected at production wells – again using
values from Li et al. (2016)– results in a negligible difference in ENPV ,
implying that our model is insensitive to these parameters, and pro-
vided that reasonable density and viscosity values are chosen, their
impact on predicted outputs are negligible.

Li et al. (2016) establish a water temperature threshold of 150℃ at
which geothermal operations cease; however, our study takes a dif-
ferent approach, in that we do not use a water temperature threshold
for production cessation. In contrast, we use simulated monthly profits
as our termination threshold. That is, our model assumes the power
plant remains operational as long as monthly revenues (Eq. (14)) ex-
ceed monthly O&M costs (Eq. (13)), shown by the shaded area in Fig. 3.
More simply, the plant is assumed to remain operational as long it is
generating profits.

As discussed above in 2.3.1, total plant efficiency is based on many
factors. Our analysis assumes that total plant efficiency is well known
by site operators; therefore, we do not determine component con-
tributions to efficiency on an individual basis. Our analysis uses a total
plant efficiency of 10 % to simulate the profit time series curves, which
is based on an approximate average value of the temperature – effi-
ciency relationships as presented by Zarrouk and Moon (2014).

We set the electricity selling price at 0.10 $/kW-hr, which is based
on the average selling price of electricity across all sectors within the
U.S. in 2017, (United States Energy Information Administration, 2018).
Present value analysis commonly assumes an annual discount rate of
2–3 percent consistent with expected inflation rates; however, because
geothermal energy represents a high-risk capital investment, discount
rates trend significantly higher. Mines and Nathwani (2013) present a
variable discount rate approach based on operational stage, starting at
30 % during exploration, 15 % during well development and comple-
tion, and 7% under normal production conditions. Our analysis assumes
the reservoir is beyond the well completion stage and energy produc-
tion has started; therefore, we use a 7 % discount rate. The analysis of Li
et al. (2016) applies a discount rate of 16 %; however, the higher dis-
count rates associated with geothermal exploration and production are
front-loaded in the first ∼5 years, making 7 % a more reasonable rate
for longer-term present value analysis occurring on decadal time scales
(Mines and Nathwani, 2013). It is worth noting that the discount rate is
applied only to plant revenues. We chose not to apply the discount rate
to O&M costs so that our analysis represents more conservative profit
predictions.

4. Results and discussion

4.1. Production optimization – base case

Fig. 5 shows simulated thermal breakthrough curves at the pro-
duction well for a 30-year time period using the optimization scheme
shown in Fig. 4 and the parameters in Table 1. As expected, we see
slower declines in water temperature (i.e., delayed thermal break-
through) as the number of fractures in the reservoir increases. Fig. 6a
shows simulated profit time series for the entire 30-year period, with
the black dot – at a time of 24 years – indicating the point when pro-
duction would cease due to the geothermal field no longer being
profitable. Under this scenario, we find an ENPV of $170 million with
an optimal production rate of 0.65 m3/s (Fig. 6a). It should be noted
that not all realizations are shown in Figs. 5 and 6a due to the fact that
the thermal breakthrough and profit curves would overlie each other
when considering realizations with more than three fractures in the

Fig. 3. Annual revenues and annual O&M costs throughout the 30-year time
period. The shaded region represents the integrable area used to determine NPV
for individual realizations.

Table 1
Base case reservoir input parameters used to simulate power plant profits over a
period of 30 years.

λ 3.0 [W/(m ℃)] T 0.013 [m2/s]

ρr 2500 [kg/m3] ρw 983 [kg/m3]
Cr 1000 [J/(kg ℃)] μw 0.00047 [kg/(m s)]
Tinj 80 [℃] Cw 4000 [J/(kg ℃)]
Tprod 190 [℃] D 1000 [m]
τ 1.5[−] L 1500 [m]
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reservoir under this scenario.
As with previous studies (Li et al., 2016; Patterson, 2018), we see

that as the number of fractures accessed for fluid transport increases
and the surface area available for heat exchange increases, temperature
declines in the production well are delayed (Fig. 5) thereby increasing
plant profits and maximum NPV (Fig. 6b). However, as the number of
hydraulically active fractures increase, we also observe a non-linear
decrease in the amount by which the maximum NPV , and thus ENPV ,
increases before becoming constant beyond three fractures. We attri-
bute this behavior to the installed plant capacity imposing a ceiling on
the maximum amount of thermal energy that can be converted to
electrical energy (Fig. 2), thereby placing a ceiling on the lifetime
profits that a reservoir can produce.

While it has been shown that increasing heat exchange surface area
prolongs the thermal lifetime and profitability of a reservoir, our ana-
lysis implies there is a maximum number of hydraulically active frac-
tures above which profits are not improved. These findings are in
contrast to those of Li et al. (2016), who found that NPV consistently
increased with an increasing number of EGS stages (i.e., hydraulically
active fractures). We attribute this difference in findings to a combi-
nation of two things. First, their analysis and conclusions are based on
the assumption that all the extracted thermal energy is converted to
electrical energy, minus some conversion efficiency, with no upper
limit. Our study enforces a maximum lifetime profit by assuming that
energy production is limited by the installed capacity of a power plant,
thereby limiting the amount of electrical energy that can be produced
and sold any given year (Fig. 3). This cap implies that for a system with
a known transmissivity, there exists a point at which there is no addi-
tional increase in revenue with an increasing number of available fluid
flow pathways (Fig. 6b).

Second, we assume the overall reservoir transmissivity is a known
value and remains constant, regardless of the number of fractures
considered; therefore, the transmissivity of individual fractures de-
creases as the total number of fractures in the reservoir increases. In
contrast, Li et al. (2016) assumes that reservoir transmissivity increases
as the number of stages increases, that is the total reservoir transmis-
sivity is the sum of individual fracture transmissivities. The increasing
transmissivity has the effect of increasing the maximum production
rate, thus improving ENPV . However, the increase in ENPV seen with
increasing transmissivity is negligible when compared to the effect of
placing an upper limit on annual revenue by considering the installed
capacity of a power plant. (We discuss this point in more detail in
Section 4.2)

As discussed above in Section 3, Li et al. (2016) established a
temperature floor of 150℃ below which geothermal production ceased,
and their analysis found it took more than a decade for thermal
drawdown at the production well to reach this temperature. Our si-
mulations show that water temperature at the production well declines
to this temperature floor in as short as two years and as long as ten
years as the number of fractures in the reservoir increases (Fig. 5).
Nonetheless, our analysis demonstrates that the plant remains profit-
able for a period of 24 years with water temperatures at the production
well below 150 ℃ (Fig. 5). Had our analysis enforced the floor tem-
perature as in previous studies, the ENPV under this scenario would
have decreased by approximately $34 million, compared to our base-
line scenario. Accordingly, we argue that the profit analysis produced
by our model provides a useful metric that can be adapted for a specific
reservoir to support decision-making about ceasing production.

4.2. Sensitivity analysis

Following the base case, we conduct a brief sensitivity analysis to
determine the physical parameters that exert the largest influence on
the financial sustainability of our idealized reservoir. Although it is well
known that a chosen discount rate has a large effect on net present
value calculations, we do not consider the discount rate in our

Fig. 4. Flow chart describing optimization scheme. Inner loop determines NPV
across multiple realizations. E[NPV] calculation and flow-optimization occur in
the outer loop.

Fig. 5. Production well water temperature profiles through the 30-year simu-
lation period for realizations up to 3 hydraulically active fractures.
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sensitivity analysis, as these rates are controlled by multiple non-phy-
sical factors. Since our analysis focuses on reservoir physical properties
that control ENPV by changing the thermal regime within the reservoir,
the effects of discount rates are beyond the scope of this work.

Our sensitivity analysis finds that changes to well spacing (L) and
reservoir effective transmissivity (T) exert the largest effect on ENPV .
We varied well spacing over a range of two km, from 500 m to 2500 m.
Despite the fact that transmissivity values can vary over a range of ∼15
orders of magnitude, we restricted our analysis of effective transmis-
sivity values to two orders of magnitude, since this range clearly il-
lustrates the sensitivity of ENPV to this parameter.

Changes to ENPV occur by changing thermal breakthrough time at
the production well – directly impacting plant revenues – or by con-
trolling the production rate – affecting the power production rate and
parasitic power requirements to pump water from production to in-
jection wells. Increasing well spacing increases the radial distance the
cold-water front must travel to reach the production well, thereby in-
creasing the amount of time the plant can produce at maximum capa-
city and generate maximum profits. In contrast transmissivity controls
the head gradient between the two wells, and thus, the maximum

production rate the plant can sustain, which directly affects the power
production rate and power inputs necessary to pump water from pro-
duction wells.

Fig. 7 shows surfaces of optimal production rate and ENPV for the
range of transmissivity and well spacing pairs analyzed during the
sensitivity analysis. We see that for any given reservoir effective
transmissivity, changing the well spacing has little impact on the op-
timal production rate (Fig. 7a); however, a small change to well spacing
yields a large impact on ENPV (Fig. 7b). In contrast, we see that for any
given well spacing, changing transmissivity yields large changes to the
optimal production rate (Fig. 7a), while changes to ENPV are small
across the range of transmissivity values (Fig. 7b).

Increasing well spacing prolongs the time to thermal breakthrough
at the production well, accounting for the observed high sensitivity of
ENPV to well spacing. Delaying thermal breakthrough increases the
amount of time the power plant can operate at its installed capacity,
thereby increasing profits and ultimately ENPV . As discussed above,
increased well spacing yields increased production rates, which has the
effect of increasing ENPV – to a much lesser extent than delaying
breakthrough – by increasing the power production rate (Eq. (12)).

Fig. 6. Annual profits through the 30-year simulation period for realizations up to 3 hydraulically active fractures. Black asterisk indicates last year plant is profitable
(A), and maximum NPV for each realization, showing that NPV becomes constant after more than 3 hydraulically active fractures are considered under this scenario
(B).

Fig. 7. A.) Optimal production rate as a function of well spacing and effective transmissivity, and B.) ENPV as a function of well spacing and effective transmissivity.
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The observed sensitivity of Qopt to transmissivity occurs as the two
factors work together to create the pressure gradient between injection
and production wells. More specifically, low-transmissivity reservoirs
yield lower production rates (Fig. 7a) so that the pressure gradient –
and thus parasitic power consumption – is minimized, and high-trans-
missivity reservoirs, experience lower resistance to flow; therefore, they
accommodate a higher production rate while maintaining the necessary
head gradient to minimize parasitic power consumption (Fig. 7a).

When varying transmissivity over two orders of magnitude, tem-
perature breakthrough curves at the production well remain unchanged
(Fig. 8a), implying that heat sweep efficiency is not sensitive to changes
in reservoir transmissivity for a reservoir with a given number of hy-
draulically active fractures. In contrast to the lack of change seen in the
thermal breakthrough curves, a change in transmissivity produces no-
ticeable changes to the net power production rate over the 30-year si-
mulation period (Fig. 8b), directly impacting NPV . As described above,
reservoir transmissivity changes reservoir ENPV by changing the
amount of energy required by the plant to pump water from production
to injection wells. The pressure gradient between wells dictates the
necessary power required for pumping operations, and as this power
consumption increases the plant’s net power production rate – and thus
profits – will decrease (Eq. (11)). We see that the decreased ENPV from
lower transmissivity reservoirs can be overcome with a slight increase
in well spacing (e.g., as little as 100 m), which lowers the pressure
gradient between the two wells, and thus the parasitic power costs
necessary to pump water from production wells (Fig. 8).

5. Conclusions

In this study, we present a combination of simple analytical models
that determine expected profits of an idealized geothermal reservoir
given uncertainty about the subsurface reservoir structure. With very
basic reservoir characterization data, such as effective thermal and
hydraulic reservoir properties, this modeling approach provides plant
operators with a time efficient tool that produces lifetime power plant
profit estimates, which can help guide decision-making processes
throughout all stages of reservoir development. Since the models are
analytic, the calculations are quite fast, taking typically less than one
minute per run. This approach is most useful as an initial assessment
tool prior to more time- and computationally-intensive numerical
modeling approaches, to decide if a reservoir has the potential to yield
the desired return on investment.

One limitation in our analytical model is the assumption of a known
reservoir transmissivity. While this may be a valid assumption in the
case where initial reservoir testing and production has commenced, in

the case where reservoir testing or production are not yet underway,
this assumption is not valid, and transmissivity represents a large
source of uncertainty. Given that transmissivity exerts significant con-
trols on heat transport, it follows that transmissivity should influence
decision-making about installing additional infrastructure. A natural
extension of our analysis would be to consider the case with an un-
known reservoir transmissivity and incorporate this uncertainty into
the optimization by varying production rates and installed plant capa-
city to maximize ENPV . While such an analysis is beyond the scope of
this work, future research in this area would improve the utility of this
modeling approach.

Our model simulations indicate that the lowest ENPV estimates are
slightly more than $60 million for a given well spacing and transmis-
sivity (Fig. 7), which is an order of magnitude larger than the approx-
imate $6 million cost of drilling one make-up well (Lowry et al., 2014).
In light of this result, we argue that such a reservoir could yield enough
profits over 30 years to overcome the cost of drilling make-up wells.
This example demonstrates how quantitative modeling can help re-
servoir operators manage production wells undergoing production-in-
duced thermal drawdown or premature thermal breakthrough.

While our analysis clearly shows that lifetime profits of a reservoir
will provide a return on investment that exceeds well drilling costs by
an order of magnitude, it is less clear that a reservoir will provide
reasonable returns on investment during the initial exploration stages.
To fully understand this issue, a more thorough analysis could be
conducted using numerical software packages that allow for more
complex subsurface fracture geometries, variable well field geometries,
and dynamic production operations that respond to reservoir perfor-
mance. A more robust analysis would also include initial capital costs
related to plant installation and local governmental tax policies, all of
which are beyond the scope of this work.

Consistent with previous studies, Fig. 6 shows that increasing the
surface area available for heat transfer increases the thermal sustain-
ability, and thus the ENPV , of geothermal reservoirs (Li et al., 2016;
Patterson, 2018). Unlike these previous studies we observe a threshold
above which increasing the number of hydraulically active fractures in
a reservoir does not increase NPV of the reservoir, a result imposed by
the plant’s installed production capacity. While it is not reasonable to
generalize a specific number of fractures at which this threshold exists
across a range of geothermal reservoirs, it is a useful concept for plant
operators in an EGS setting to incorporate into the decision-making
process as they consider the potential cost benefits of stimulating a
reservoir. This understanding can help operators decide how many
stages may be necessary to maximize profits, and if there is a point at
which the cost of additional stages will no longer provide a return on

Fig. 8. Production well water temperature profiles in a reservoir with two hydraulically active fractures (left), and net power production rate throughout the 30-year
simulation period in a reservoir with two hydraulically active fractures (right) with varying effective transmissivity.
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