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A B S T R A C T

Rock glaciers are an important component of the cryosphere and are one of the most visible manifestations of permafrost. While the significance of rock glacier
contribution to streamflow remains uncertain, the contribution is likely to be important for certain parts of the world. High-resolution remote sensing data has
permitted the creation of rock glacier inventories for large regions. However, due to the spectral similarity between rock glaciers and the surrounding material, the
creation of such inventories is typically conducted based on manual interpretation, which is both time consuming and subjective. Here, we present a novel method
that combines deep learning (convolutional neural networks or CNNs) and object-based image analysis (OBIA) into one workflow based on freely available Sentinel-2
optical imagery (10m spatial resolution), Sentinel-1 interferometric coherence data, and a digital elevation model (DEM). CNNs identify recurring patterns and
textures and produce a prediction raster, or heatmap where each pixel indicates the probability that it belongs to a certain class (i.e. rock glacier) or not. By using
OBIA we can segment the datasets and classify objects based on their heatmap value as well as morphological and spatial characteristics. We analysed two distinct
catchments, the La Laguna catchment in the Chilean semi-arid Andes and the Poiqu catchment in the central Himalaya. In total, our method mapped 108 of the 120
rock glaciers across both catchments with a mean overestimation of 28%. Individual rock glacier polygons howevercontained false positives that are texturally
similar, such as debris-flows, avalanche deposits, or fluvial material causing the user's accuracy to be moderate (63.9–68.9%) even if the producer's accuracy was
higher (75.0–75.4%). We repeated our method on very-high-resolution Pléiades satellite imagery and a corresponding DEM (at 2 m resolution) for a subset of the
Poiqu catchment to ascertain what difference image resolution makes. We found that working at a higher spatial resolution has little influence on the producer's
accuracy (an increase of 1.0%), however the rock glaciers delineated were mapped with a greater user's accuracy (increase by 9.1% to 72.0%). By running all the
processing within an object-based environment it was possible to both generate the deep learning heatmap and perform post-processing through image segmentation
and object reshaping. Given the difficulties in differentiating rock glaciers using image spectra, deep learning combined with OBIA offers a promising method for
automating the process of mapping rock glaciers over regional scales and lead to a reduction in the workload required in creating inventories.

1. Introduction

Globally, the cryosphere is in a state of rapid change, for example
mountain glaciers have lost 335 ± 144 Gt of mass per year between
2006 and 2016 (Zemp et al., 2019). As a consequence, many regions of
the world are expected to undergo changes in seasonal and long-term
water availability (Kehrwald et al., 2008; Immerzeel et al., 2010; Piao
et al., 2010; Huggel et al., 2020), with the strongest effects being felt in
arid and semi-arid environments (Huss and Hock, 2018; Pritchard,
2019).

Rock glaciers are typically tongue- or lobate-shaped landforms,
consisting of poorly sorted, angular debris and ice-rich sediments, are
commonly found in semi-arid and arid mountains. Rock glaciers can

contain significant amounts of ice and are a visible manifestation of
permafrost (Barsch, 1996; Haeberli et al., 2006; Rangecroft et al., 2014;
Jones et al., 2018a).

Rock glaciers are generally categorised as active rock glaciers that
contain sufficient ground ice to permit measurable ice deformation and
therefore surface movements, inactive rock glaciers or transitional rock
glaciers that contain ice, but not enough to actively deform, and relict
rock glaciers that contain minimal to no ice (Barsch, 1996; Cremonese
et al., 2011; Colucci et al., 2019). Rock glaciers are more resilient to
climate change than other components of the cryosphere as both the
rocky material and the active layer insulate the ice contained within the
landform. As such they may become an important future water source,
especially for arid and semi-arid regions, where in some cases the
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demand for water has been increasing while future climate scenarios
predict a decrease in precipitation (Bolch and Marchenko, 2009; Azocar
and Brenning, 2010; Rangecroft et al., 2015; Schaffer et al., 2019).
Although studies are scarce, some estimates put current rock glacier
contribution to annual streamflow as high as 13–30% for some catch-
ments (Geiger et al., 2014; Schaffer et al., 2019). It is therefore im-
portant to create and maintain up-to-date and accurate inventories of
rock glaciers.

Mountain glaciers can typically be semi-automatically delineated
with high-resolution satellite imagery, such as Landsat, ASTER, or
Sentinel-2 (Paul et al., 2013; Pope and Rees, 2014) using a combination
of band ratios between the visible and shortwave infrared sections of
the electromagnetic spectrum for clean glacier ice, and a mixture of
topographic and Synthetic Aperture Radar (SAR) coherence datasets for
debris-covered ice (Bolch et al., 2007; Racoviteanu and Williams, 2012;
Paul et al., 2015; Robson et al., 2015). These methods are however not
applicable to the identification of rock glaciers, which are both spec-
trally inseparable from the surrounding paraglacial terrain and are
deforming at rates sufficiently low to maintain SAR coherence. His-
torically, the majority of rock glacier inventories have been created
based on manual interpretation of aerial or very high-resolution sa-
tellite imagery. The earliest rock glacier inventories were produced
solely using manual interpretation of aerial photography (Wahrhaftig
and Cox, 1959; Outcalt et al., 1965; Gorbunov and Titkov, 1989).
Manual interpretation of high-resolution satellite or aerial imagery re-
lies on identifying surface features indicative of rock glaciers, such as
furrows, ridges and steep frontal slopes, and separating them from the
surrounding terrain (Jones et al., 2018b). High-resolution aerial pho-
tography in conjunction with high-resolution Digital Elevation Models
(DEMs) has been used to create inventories of rock glaciers in several
mountain ranges (Esper Angillieri, 2009; Scotti et al., 2013; Onaca
et al., 2017).

The prohibitively high cost of sub-metre-scale satellite imagery and
elevation products however means in regions without accessible na-
tional aerial photography datasets, Google Earth imagery is often the
best alternative in case of limited budget, for example Rangecroft et al.
(2014), Jones et al. (2018b), and Pandey (2019). The use of Google
Earth imagery however impedes automation of workflows, and analysis
is restricted to the manual creation of polygons within the software.

Many recent rock glacier inventories have been produced with the
aid of auxiliary data, for example topographic datasets can be used to
help distinguish rock glaciers by their morphology (Falaschi et al.,
2014; Rangecroft et al., 2014; Bolch et al., 2019), while Differential
Interferometric Synthetic-Aperture Radar (DInSAR) can be used to
identify areas that are actively deforming (Liu et al., 2013; Barboux
et al., 2014; Bodin et al., 2016; Necsoiu et al., 2016; Villarroel et al.,
2018). DInSAR however cannot be directly used for automatically de-
tecting rock glaciers due to its sensitivity to atmospheric disturbances
and ability to only observe deformations in the satellite line of sight
(LOS). Additionally foreshortening, layover, and shadowing can cause
problems in mountainous terrain. Additionally, DInSAR is only able to
distinguish actively deforming land surfaces which could include other
kinds of surface deformations such as solifluction.

The creation of rock glacier inventories is often subjective, with
results varying due to the datasets used, the image interpreter, and
landform definitions chosen (Bolch and Gorbunov, 2014; Brardinoni
et al., 2019). As such, an automated methodology is needed. Some
studies have made advances in automated identification of rock gla-
ciers. The methods developed thus far typically rely on surface textures
or rock glacier morphological characteristics (Janke, 2001; Brenning,
2009; Brenning et al., 2012). To date, these methods have only been
applied to regions with a relatively small number of rock glaciers and
have not been widely applied to larger regions.

Finally, recent studies have used remote sensing data combined
with existing rock glacier inventories to distinguish active rock glaciers
from inactive and relict rock glaciers. Bertone et al. (2019) used multi-

temporal Sentinel-1 derived backscatter and coherence rasters to dif-
ferentiate between moving and non-moving rock glaciers. Similarly,
Kofler et al. (2019) used Sentinel-2 imagery, a LiDAR DTM within three
classifiers (logistic regression (generalized linear model – GLM), sup-
port vector machine (SVM) and random forest (RF)) and assigned rock
glaciers in the South Tyrolean Alps in Italy to be either intact or relict.

Convolution Neural Networks (CNNs), also known as deep learning,
in conjunction with Object-Based Image Analysis (OBIA) presents a
possibility for automated identification of rock glaciers. CNNs are a
branch of machine learning that are increasingly being applied to re-
motely sensed imagery. CNNs rely on large sample datasets to train the
algorithm to recognise recurring patterns within datasets and are ty-
pically utilised in applications where spectral characteristics are not
sufficient, such as landslides and avalanches (Ding et al., 2016; Yu
et al., 2017; Bianchi et al., 2019; Ghorbanzadeh et al., 2019), perma-
frost thaw slumps (Huang et al., 2020), urban mapping (Längkvist
et al., 2016; Mahdianpari et al., 2018; Zhang et al., 2018), and ship
identification in various sea and ice conditions (Bentes et al., 2016;
Gallego et al., 2018).

OBIA is an image analysis method that relies on near-homogeneous
objects created through image segmentation as the basis for classifica-
tion, as opposed to individual pixels. Analysis at the object-level rather
than the pixel-level allows classifications to utilise contextual, hier-
archical, and spatial characteristic of image objects in addition to solely
using spectral information. In recent years OBIA has proven to be a
useful method for automating the delineation of natural phenomena
including clean-ice and debris-covered glaciers (Rastner et al., 2013;
Robson et al., 2015). Using CNNs together with OBIA is likely to pro-
vide a novel and powerful technique to automatically identify rock
glaciers in mountainous landscapes.

The main objective of this study is to develop a novel method based
on deep learning and OBIA to extract the location and extent of rock
glaciers in two catchments, namely the La Laguna catchment in
Northern Chile, and the Poiqu catchment in Central Himalaya. We as-
certain the accuracy and transferability of our Convolutional Neural
Network Object-Based Image Analysis method by comparing our results
with reference outlines of rock glaciers based on manual interpretation
of orthorectified Pléiades imagery (henceforth referred to as RG_Man).
We assess both Sentinel 2 imagery (spatial resolution 10m, henceforth
referred to as CNN_OBIA) and very-high resolution Pléiades imagery
(resolution 0.5 m, resampled to 2m, henceforth referred to as
CNN_OBIA_Ple).

2. Background – deep learning

Deep learning is a rapidly emerging area within the fields of remote
sensing and geoinformatics (Zhang et al., 2016; Li et al., 2018; Ma et al.,
2019). Deep learning, as well as other machine learning or artificial
intelligence methods, attempt to interpret imagery in the same way as a
human operator would, relying not only on pixel values but reoccurring
patterns and textures (Ma et al., 2019). As such, deep learning can be
used to extract information from complex situations where normal
classification methods are not sufficient (Li et al., 2018).

In this study we restrict our analysis to CNNs which are the most
widely used deep learning model and are well suited to multispectral
satellite imagery (Ma et al., 2019). CNNs are made up of three com-
ponents: convolution layers, pooling layers, and fully connected layers.
The input data, for example a multispectral image, is first convolved
with a moving window of a fixed size (for example a 5× 5 or 3×3
pixel kernel). This then creates the first convolution layer. Each kernel
is repeated several times, each one looking for a different distinct tex-
ture or pattern. These are referred to as feature maps. A convolution
layer is often expressed in terms of its pixel size in X and Y dimensions,
and its number of feature maps in the Z dimension, for example, a
convolution of 5× 5×40 refers to an image being convolved by a
5×5 kernel producing 40 feature maps.
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CNNs are typically composed of multiple convolution layers. These
convolution layers are often interspaced by pooling layers (Fig. 1). A
pooling layer acts to aggregate pixels in a layer, thereby producing a
new layer of reduced dimensions. The most common type of pooling,
and the type used in this analysis, is max pooling. Max pooling simply
uses a 2×2 kernel and takes the highest value and outputs it to the
new layer. Lastly, a fully-connected layer brings all the previous layers
together, and determines which feature maps are most useful at iden-
tifying the landform or class that the CNN is aiming to classify (for
example a rock glacier). The output from a fully-connected layer is a
prediction raster, also known as a heatmap, where pixels range between
0 and 1, with higher values indicating a given pixel has a greater cer-
tainty of belonging to the desired class. A simplistic schematic ex-
planation of a CNN is shown in Fig. 1.

2.1. Object-based image analysis (OBIA)

OBIA is an established method within remote sensing (Blaschke
et al., 2014). OBIA works by segmenting imagery into near-homo-
geneous objects, which serve as the basis for subsequent classification.
Image segmentation is perhaps the most critical step within OBIA and
can strongly influence the final classification result (Drăguţ et al., 2014;
Jozdani and Chen, 2020). If the objects created are too large then
multiple features can be treated as single objects, while too small ob-
jects reduce the effectiveness of using shape and contextual constraints
within the classification (Rastner et al., 2013; Robson et al., 2015).
Image segmentation is a bottom-up process, where additional image-
object levels can be created by segmenting existing image objects.

Conducting the analysis at the object-level rather than the pixel-
level allows spatial, contextual, hierarchical and textural information to
be used instead of solely relying on spectral reflectance values (Lang,
2008). Additionally, OBIA permits the integration of many data types
(optical, radar, topographic, point cloud, vector) within the analysis.
OBIA has been shown to be well-suited for the mapping of natural
phenomena such as debris-covered glaciers (Rastner et al., 2013,
Robson et al., 2015), landslides (Hölbling et al., 2012; Hölbling et al.,
2016) and flood extents (Mallinis et al., 2013; Dao and Liou, 2015). By
utilising the spatial and contextual properties of image objects, it is
possible to automate an element of the classification post-processing
using OBIA, for example removing irregularly shaped, or asymmetrical
image objects (Rastner et al., 2013, Robson et al., 2015).

3. Study sites and data

3.1. Study area

We conducted our analysis in two distinct periglacial catchments
(Fig. 2). The study areas were chosen due to the availability of VHR

Pléiades satellite imagery, as well as each site including rock glaciers of
a variety of sizes and activity.

3.1.1. La Laguna catchment, Chile
The La Laguna catchment (~30o11’53 S, 69o56’15W) is situated at

the headwaters of the Elqui River catchment, with glaciers and rock
glaciers contributing between 4 and 13% of the annual streamflow
(Favier et al., 2009; Pourrier et al., 2014). The study area is situated
between ~4000 and 6000m a.s.l. The catchment is ~140 km2 in size
and contains 105 rock glaciers (~ 14.8 km2) according to the Chilean
National Water Directorate (DGA) inventory. Tapado Glacier
(1.26 km2) is the largest glacier in the catchment and contains a clean
ice section, a debris-covered glacier section, and a rock glacier tongue.
Precipitation falls mainly as snow and is concentrated within the austral
winter. The area is semi-arid and cold, and at an elevation of ap-
proximately 3100m a.s.l. has a mean precipitation rate of 167mm per
year measured between 1970 and 2009, and a mean annual air tem-
perature (MAAT) of 8 °C between 1974 and 2011. The MAAT has been
reported to be rising by 0.17 °C per decade between 1974 and 2011
(Monnier et al., 2014).

3.1.2. Poiqu catchment, Central Himalaya
The Poiqu catchment (~28o N, 85o E) is a transboundary watershed

that drains through the Himalayas to Nepal and ultimately into the
river Ganges. The catchment has a drainage area in excess of 2000 km2

and ranges in elevation from ~1100 to> 8000m a.s.l. (Mt.
Shishapangma, 8027m). It contains an assortment of clean-ice, debris-
covered glaciers, and rock glaciers. The mean annual precipitation
(measured at Nyalam, 3750m a.s.l.) is ~650mm and is influenced by
the Indian monsoon, with most precipitation falling in the autumn
(September to November). Mean annual temperatures at Nyalam range
from 10.7 °C to −3.4 °C with temperatures typically below freezing
between November and March (Xiang et al., 2014). We restricted our
study to approximately 1500 km2 of the Poiqu catchment that ac-
cording to the inventory created P. Rastner (Bolch et al., 2020) contains
~140 rock glaciers (~ 21 km2 in total) with sizes varying from<0.01
to> 1 km2. A smaller subset (~ 63 km2) centred around the Mulaco
massif in the centre of Poiqu catchment, an area that contains a total
rock glacier area of 3.5 km2, was chosen for repeating the analysis using
Pléiades imagery. The areas processed for both subsets are shown in
Fig. 2.

3.2. Data

For both study areas, we used freely available Sentinel-2 imagery
(Blue, Green, Red, NIR and SWIR bands) as well as SAR coherence data
generated from interferometric Sentinel-1 imagery (Table 1). We in-
cluded the coherence data as the lower coherence values over debris-

Fig. 1. A simplified example of a Convolutional Neural Network workflow. A convolution based on a 6× 6 moving window is applied to an input image, resulting in
the first convolutional layer. Max pooling, and an additional convolution are then applied. The heatmap shows the probability that a pixel belongs to a given class.
Note that the process has been simplified and most CNNs would involve additional convolution and pooling layers, feature maps, and additional input bands.
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Fig. 2. Overview of the study sites, namely La Laguna catchment in the semi-arid Chilean Andes (A) and the Poiqu catchment on the Tibetan Plateau with the subset
used for the Pléiades analysis highlighted (B). The approximate locations of the two study sites within South America and the Indian subcontinent are shown in (C)
and (D). Glacier outlines shown are from the Randolph glacier inventory (Pfeffer et al., 2014), rock glacier outlines are from the Schaffer and Macdonell (2020)
inventory for A and from Bolch et al. (2020) in B. In both A and B, Pléiades satellite imagery overlaying Sentinel-2 imagery is shown. The background data for C and
D are elevation tinted hillshade models accessed through ArcGIS Online. Pléiades, 2018–9, different acquisition dates, © CNES (2018), and Airbus DS (2018), all
rights reserved.
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covered glaciers helped separate them from rock glaciers, which can in
some cases be spectrally similar.

All Sentinel data was downloaded through the Copernicus Open
Access Hub. Topographic data is important in rock glacier mapping,
and while a high-resolution, freely available DEM was available for the
Poiqu catchment (namely the 8m resolution High Mountain Asia DEM
(Shean, 2017)) it was necessary to have consistent and comparable
datasets for both study regions that would also be applicable at other
sites for future implementation. For that reason, we used tri-stereo
Pléiades satellite imagery from 2018 and 2019 to generate DEMs over
both study areas (Table 1).

Reference rock glacier outlines were used for the generation of
training data. For both study areas we used manually delineated out-
lines based on orthorectified Pléiades imagery and hillshade models
based on the Pléiades DEMs. For the La Laguna catchment these were
the outlines created by Schaffer and Macdonell (2020) and for the
Poiqu catchment the outlines are those created by P. Rastner (Bolch
et al., 2020).

It should be noted that in Chile, both glaciers and rock glaciers are
typically incorporated into one inventory (Nicholson et al., 2009). As
such, we excluded clean-ice glaciers from our analysis. We did, how-
ever, include two landforms (Tapado Glacier and an unnamed landform
(CL104300033)) that have both an identified debris-covered glacier
component as well as a rock glacier component (Monnier et al., 2014).

4. Methods

The methods used in this paper can be split into three sections
(Fig. 3): (A) pre-processing of imagery and generation of training data,
(B) image classification, and (C) post-processing and accuracy assess-
ment. Full details about the thresholds and parameters used are given in
Fig. 3. A combination of ArcGIS 10.7, eCognition 9.5, PCI Geomatica
2018, the European Space Agency's Sentinel Application Platform
(SNAP) and Correlation Image Analysis Software (CIAS) (Kääb and
Vollmer, 2000) were used.

4.1. Data pre-processing

The Pléiades tri-stereo stereo images were processed in PCI
Geomatica 2018. DEMs were produced using the Rational Polynomial

Coefficients (RPCs) provided with the imagery, as well as between 100
and 200 automatically generated tie points per tri-stereo pair. The
DEMs were extracted at both 10m and 2m postings using a Semi-
Global Matching algorithm, which has been shown to outperform
normalised cross-correlation and thereby produce cleaner DEMs
(Hirschmuller, 2007). For the Poiqu catchment, the resulting ten DEMs
were mosaicked together. The multispectral imagery was panchroma-
tically sharpened using a multi-resolution analysis (MRA) fusion that
uses wavelet decomposition to preserve spectral fidelity (González-
Audícana et al., 2005). The pan-sharpened images were then orthor-
ectified and mosaicked together. As a prerequisite to running the CNN
on the data, it was necessary to convert all the satellite imagery and
DEMs into 32-bit floating rasters with pixel values normalised between
0 and 1.

SAR coherence rasters were generated for both study areas using
SNAP. For each location, two Sentinel-1 single look complex (SLC)
images in interferometric wide (IW) swath mode with a temporal
baseline of 12 days were co-registered together using a DEM-assisted
co-registration based on the Pléiades DEMs. The resulting image stacks
were then deburst before the coherence was generated. The resulting
rasters were then multilooked using ten pixels in range and two in
azimuth, before being converted to ground range and exported as a
GeoTiff.

The RG_Man outlines were used for training data. We extracted 30%
of RG_Man for training data based on a random number generation.
Given the small number of rock glaciers in the subset covered by the
Pléiades imagery, 50% of the polygons were used as training. This re-
sulted in 2.3 km2 (n=11) and 6.1 km2 (n=41) of rock glaciers for the
La Laguna catchment and Poiqu catchment, respectively, and 0.7 km2

(n=8) for the Pléiades subset. The remaining polygons (n=50 for La
Laguna, n=117 for Poiqu, n=7 for Poiqu Pléiades subset) were used
for accuracy assessment. In both study areas, adjacent rock glacier
polygons were merged, and small polygons (< 0.05 km2) were re-
moved. Approximately 300 random training points were generated
within the rock glacier training outlines. Points were also generated for
debris-covered glaciers, clean ice glaciers and stable (i.e. not related to
fluvial, glacial or periglacial processes) terrain. All data were projected
into UTM 19 S for La Laguna catchment, and UTM 45 N for the Poiqu
catchment.

Table 1
Data used in this study. Pan refers to the panchromatic band, SWIR refers to the shortwave infrared band, MS refers to multispectral bands. Note that for sensors that
contain bands of different resolution, both are given.

Date Sensor Scene ID Spatial resolution (m) Purpose

La Laguna catchment
20.04.2019 Sentinel-1 S1B_IW_SLC__1SDV_20190420T232000_20190420T232027_015896_01DDD0_92A7 5×20 SAR coherence generation
08.04.2019 Sentinel-1 S1B_IW_SLC__1SDV_20190408T231959_20190408T232027_015721_01D808_F654 5×20 SAR coherence generation
31.01.2019 Pléiades DS_PHR1A_201901231457145_FR1_PX_W070S31_0120_01956 0.5 (pan), 2 (MS) DEM generation
04.04.2018 Sentinel-2 S2A_MSIL1C_20180404T143751_N0206_R096_T19JCG_20180404T180352 10 (20 SWIR) Image classification
04.04.2018 Sentinel-2 S2A_MSIL1C_20180404T143751_N0206_R096_T19JDG_20180404T180352 10 (20 SWIR) Image classification

Poiqu catchment
04.11.2018 Pléiades DS_PHR1A_201811040503518_FR1_PX_E085N28_1108_01768 0.5 (pan), 2 (MS) DEM generation, image classification
03.11.2018 Pléiades DS_PHR1B_201811030511344_FR1_PX_E085N28_0715_03053 0.5 (pan), 2 (MS) DEM generation, image classification
22.10.2018 Pléiades DS_PHR1B_201810220504174_FR1_PX_E086N28_0102_01804 0.5 (pan), 2 (MS) DEM generation, image classification
15.10.2018 Pléiades 201810150507481_FR1_PX_E085N28_1103_02921 0.5 (pan), 2 (MS) DEM generation, image classification
15.10.2018 Pléiades DS_PHR1B_201810150507593_FR1_PX_E086N27_0123_00862 0.5 (pan), 2 (MS) DEM generation, image classification
03.10.2018 Pléiades DS_PHR1B_201810030500231_FR1_PX_E086N28_0309_02182 0.5 (pan), 2 (MS) DEM generation, image classification
02.10.2018 Pléiades DS_PHR1A_201810020508169_FR1_PX_E085N28_0911_05204 0.5 (pan), 2 (MS) DEM generation, image classification
27.09.2018 Pléiades DS_PHR1A_201809270456239_FR1_PX_E086N28_0510_01804 0.5 (pan), 2 (MS) DEM generation, image classification
26.09.2018 Pléiades DS_PHR1B_201809260504010_FR1_PX_E086N28_0105_05430 0.5 (pan), 2 (MS) DEM generation, image classification
29.09.2017 Sentinel-1 S1A_IW_SLC__1SDV_20170925T122202_20170925T122230_018532_01F3B1_BE41 5×20 SAR coherence generation
10.07.2017 Sentinel-1 S1A_IW_SLC__1SDV_20171007T122203_20171007T122231_018707_01F8FC_032F 5×20 SAR coherence generation
12.09.2016 Sentinel-2 S2A_MSIL1C_20161209T045202_N0204_R076_T45RUM_20161209T045602 10 (20 SWIR) Image classification
12.09.2016 Sentinel-2 S2A_MSIL1C_20161209T045202_N0204_R076_T45RUM_20161209T045602 10 (20 SWIR) Image classification
12.09.2016 Sentinel-2 S2A_MSIL1C_20161209T045202_N0204_R076_T45RUL_20161209T045602 10 (20 SWIR) Image classification
12.09.2016 Sentinel-2 S2A_MSIL1C_20161209T045202_N0204_R076_T45RVL_20161209T045602 10 (20 SWIR) Image classification
25.09.2018 Pléiades DS_PHR1A_201809250511185_FR1_PX_E085N28_1110_03316 0.5 (pan), 2 (MS) DEM generation
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4.2. Image classification

The entire image classification procedure (training of the CNN,
applying to the entire imagery, OBIA reshaping) was conducted within
eCognition 9.5 (Fig. 3). The CNN model used in this study, Google
Tensorflow, is free and open source; however, by running the process
through eCognition it was possible to have the CNN and OBIA re-
shaping components in one seamless workflow.

4.2.1. Sentinel-2 analysis
We trained the CNN using the Sentinel 2 (Red, Green, Blue, NIR,

SWIR), Sentinel-1 SAR coherence, as well as the DEM and curvature for
the classes of rock glacier, debris-covered glacier, clean ice, stable terrain,
and shadows. Additionally, we found it beneficial to also include the
NDVI (Normalised Difference Vegetation Index), MNDWI (Modified
Normalised Difference Water Index) (Xu, 2006) and SAVI (Soil Adjusted
Vegetation Index) (Alba et al., 2011) within the analysis.

As a first step, the pixels with the lowest 5% reflectance in a mean of
all the multispectral channels were classified as shadows and masked
out. A 10-m buffer was constructed around the training point files for
each and used to generate sample patches measuring 30× 30 pixels
using all the multispectral channels, the DEM and the curvature. Both

the number of sample patches as well as the distribution of used can
influence the output of a CNN. Some studies have chosen the number of
sample patches per class based on the prevalence of each class (e.g.
Guirado et al., 2017; Csillik et al., 2018; Zhang et al., 2020). In our case,
we manually chose the number of sample patches used for training the
model based on a combination of relative spectral distinction between
classes (for example clean ice, debris-covered ice, and shadows re-
quiring less samples than rock glaciers or stable ground) and the pre-
valence of a class (for example stable ground covering most of the
image). Five thousand sample patches were collected for rock glaciers,
3000 for clean ice, debris-covered ice, and shadows, and 15,000 for
stable ground.

It is still an ongoing debate within the machine learning community
how to tune a CNN for optimal performance (Csillik et al., 2018;
Schratz et al., 2019). In the absence of other studies that have applied
CNNs to identify rock glaciers, we experimented with the simplest CNN
architecture (a one-layer model) and adapted the kernel sizes, the
number of convolutional layers and feature maps by a trial and error
approach on the data covering the La Laguna catchment. In order to
ascertain the transferability of our method we then applied the same
ruleset on the Poiqu catchment without modifications. We found that
having more convolutions with relatively small kernel sizes produced a

Fig. 3. Flowchart showing the methods used in this study. The methods can be split into three sections, the first (A) involved generating the Pléiades imagery to
produce a DEM and the orthorectified mosaic, (B) the CNN workflow and (C) the OBIA refinement and reshaping. Acronyms used: NDVI (Normalised Difference
Vegetation Index), MNDWI (Modified Normalised Difference Water Index) and SAVI (Soil Adjusted Vegetation Index). Criteria that have shown a range of thresholds
reflect a fuzzy criterion.
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cleaner heatmap than having fewer layers with larger kernels. In the
end, a CNN with five convolutional layers gave the cleanest heatmap
with the most contrast between rock glaciers and other classes. Our
final CNN had the architecture 3×3×70, 7× 7×40, 3× 3×20,
1× 1×12, 3× 3×12 with max pooling applied to the third and fifth
layers. The trained CNN model was then applied producing a predictive
heatmap, with each pixel indicating the probability (ranging from 0 to 1
of rock glacier presence. The heatmap was then smoothed with a 7× 7
Gaussian filter.

4.2.2. Pléiades imagery analysis
We repeated our analysis using the four Pléiades multispectral (Red,

Green, Blue, NIR) bands at 2m resolution for a subset of the Poiqu
catchment. We chose to not use the 0.5m pan-sharpened imagery due
to the memory demands of processing at such a resolution. As the
Pléiades satellite imagery does not include a shortwave infrared (SWIR)
spectral band, the analysis had to be modified. This also meant that
certain multispectral indices such as the MNDWI could not be included.
Due to the finer resolution we however opted to include a canny edge
detection filter on the slope raster in the analysis. The rest of the
classification procedure was the same as for the Sentinel-2 imagery.

4.2.3. OBIA reshaping
The reshaping of image objects in order to create rock glacier out-

lines was also performed in eCognition. As is common with OBIA,
parameters in the image segmentation as well as thresholds in the
image classification were chosen subjectively (Hay and Castilla, 2008;
Blaschke et al., 2014).

A three-level image segmentation was conducted based on the
multispectral bands as well as the slope. We found that having a multi-
level segmentation helped group rock glaciers into larger objects,
thereby making the reshaping simpler to perform. The resulting objects
were then classified using a combination of the mean deep learning
heatmap, the morphology (mainly the slope, and the standard deviation
of the slope which was used to gauge the surface roughness), object
shape and contextuality. Details of the thresholds used are given in
Fig. 3. Objects were classified as rock glaciers using a combination of
fixed and fuzzy criteria. The resulting outlines were expanded using a
pixel-based growing algorithm based on a 5× 5 kernel. Objects were
expanded if 50% of the kernel had a heatmap value greater than 0.3.
This helped include more irregularly shaped parts of the rock glaciers,
such as the sections next to the headwall of the mountain. Lastly, the
outlines were smoothed using a 7×7 kernel pixel-based growing and
shrinking algorithm before being exported as ESRI Shapefiles.

4.2.4. Accuracy assessment
Assessing the accuracy of remote sensing classifications can be

troublesome and is heavily dependent on the quality of the validation
data. For both study regions, RG_Man outlines were used based on or-
thorectified Pléiades imagery and accompanying DEM to map rock
glaciers geomorphologically, following the criteria set out by Delaloye
et al. (2019). A national rock glacier inventory exists for Chile
(Dirección General de Aguas (DGA), 2012, Barcaza et al., 2017),

however when we visually inspected the inventory there were several
cases of over- and underestimates of rock glacier size and missing
polygons. As such our accuracy assessment was exclusively based on
the Pléiades derived outlines. We computed accuracies for the Sentinel-
2 classifications over both catchments. An accuracy assessment was also
performed for a subset of the Poiqu catchment using both Pléiades and
Sentinel-2 imagery.

We determined accuracies in two ways. In both cases our accuracy
assessment was based on the rock glacier outlines and rock glacier
absence (i.e. clean ice, debris-covered glaciers, shadows, or stable ter-
rain), The first method is a simplistic approach to quantifying classifi-
cation accuracies based on the percentage overestimation or under-
estimation when compared to RG_Man. Many studies on automated
glacier and rock glacier inventories use this method (for example Paul
et al. (2004), Alifu et al. (2015), Mithan et al. (2019)). This however
can be too simplistic, and neglects errors of omission and commission,
which over larger areas can conceivably cancel each other out. As such
we portioned our data into a training and validation set in which we
determined errors of omission and commission; namely a user's accu-
racy (the percentage of the CNN_OBIA classification that is actually a
rock glacier) and a producer's accuracy (the percentage of total rock
glaciers that were classified by the CNN_OBIA method). Given that our
analysis using the Pléiades data had a different extent to the catchment-
scale analysis of Poiqu, we also computed accuracies for the Sentinel-2
analysis using the same extent as the Pléiades analysis to compare ac-
curacies.

Many papers addressing machine learning on remote sensing ima-
gery typically adopt cross-validation techniques (e.g. Brenning (2009),
Brenning et al. (2012), Knevels et al. (2019)) which are less affected by
spatial autocorrelation (Schratz et al., 2019). Cross-validation was dif-
ficult to implement within this study owing both to the computational
challenges of re-running our analysis multiple times, as well as the
OBIA refinement that we performed being based on subjective thresh-
olds Our validation techniques are however in line with other studies
that integrate CNN with OBIA (Csillik et al., 2018; Fu et al., 2019;
Ghorbanzadeh et al., 2019; Zhang et al., 2020) although we do ac-
knowledge that by not accounting for spatial autocorrelation, our ac-
curacy assessment may be over-optimistic.

5. Results

For the validation data over both study sites, the CNN_OBIA clas-
sification mapped in total 108 rock glaciers (26.0 km2) out of 120
(20.3 km2) in RG_Man. This corresponds to an overestimation of 28.0%
(Table 2). The user's and producer's accuracies were 65.9% and 71.4%
respectively, indicating that a moderately high proportion of the total
rock glacier was identified yet the classification contains false positives.

5.1. La Laguna catchment

When looking at the validation data, our CNN_OBIA detected 26 of
the 39 rock glaciers with a mean size of 0.2 km2 (Fig. 4). In total
4.42 km2 out of 4.39 km2 were detected, representing a mean

Table 2
Classification accuracies for the CNN_OBIA classification for the La Laguna catchment, Poiqu catchment and Poiqu catchment using Pléiades imagery based on the
validation set of the data. Note that in order to assess the impact of using higher-resolution Pléiades imagery, we also present the accuracy of the Sentinel-2
classification for the same subset as the Pléiades analysis. The mean over/underestimation of total rock glacier area is shown for both catchments combined is also
shown.

Classification User accuracy (%) Producer accuracy (%) Over/Underestimation (%)

La Laguna 63.9 75.4 +0.6%
Poiqu 68.8 75.0 +43.6
Poiqu subset (Sentinel-2) 62.9 87.4 99.2
Poiqu subset (Pléiades) 72.0 88.4 +23.2
Total (Sentinel) 65.9 71.4 +28.0
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overestimation of 0.6%. Of those detected, the three largest landforms
are rock glaciers CL104300054 (1.50 km2), CL104300039 (Tapado rock
glacier; 1.01 km2), and CL104300038 (0.63 km2). Rock glaciers were
detected at elevations ranging from 3814 to 4948m a.s.l. Individual
estimations of rock glacier area range considerably. Generally larger
rock glaciers were classified with lower classification errors, with gla-
ciers between 0.1 and 0.2 km2 being on average underestimated by
6.8%, while rock glaciers less than 0.1 km2 in area were overestimated
by an average of 115.9%. We determined a user's accuracy of 63.9%
and a producer's accuracy of 75.4%.

5.2. Poiqu catchment

When compared to the validation data, CNN_OBIA mapped 82 rock
glaciers (18.0 km2) out of 90 (12.5 km2) resulting in an overestimation
of the area by 43.6% (Fig. 5). There was a large variability of over- and
underestimations between individual rock glacier polygons, from rock
glaciers that were underestimated by>90% to those that were vastly
overestimated by more than 450%, although it should be noted that
these rock glacier polygons were generally the smallest found in the
RG_Man inventory. Generally, the smallest rock glaciers (< 0.05 km2)
were mapped with the lowest accuracies (overestimations of 207.5%).
The magnitude of error decreased as the mean rock glacier area in-
creased, with rock glaciers between 0.2 and 0.3 km2 being under-
estimated by an average of 42.8%, while rock glaciers with areas be-
tween 0.3 and 0.5 km2 were underestimated by 11.3%. The largest rock
glaciers in the region however were overestimated by 37.4%. The user's
accuracy was 68.9% indicating that the classification contained false
positives within the classification. The producer's accuracy was 75.0%
with a user's accuracy of 56.5%.

5.2.1. Pléiades imagery classification
The validation data for the portion of the Poiqu catchment that was

classified with the Pléiades imagery contained seven rock glaciers to-
talling 2.1 km2. Of these the CNN_OBIA_Ple classification identified all

seven rock glaciers (total area 2.6 km2) with an overestimation of rock
glacier area of 23.2%, as visible in Fig. 6. It seems that three rock
glacier outlines were misclassified and grouped as a single polygon
(Fig. 6). The misclassified landforms has a morphology that is similar to
the rock glaciers, causing a high probability heatmap score resulting in
CNN_OBIA_Ple grouping the landforms as one. It can be difficult to
reliably determine from the satellite imagery if these landforms are
periglacial, glacial or fluvial in nature When evaluating the influence of
running the classification on Pléiades imagery instead of Sentinel-2
imagery, we found that the producer accuracy remains approximately
the same (87.4% with Sentinel-2, 88.4% with Pléiades), however the
user accuracy increases with the use of higher-resolution imagery
(62.9% with Sentinel-2, 72.0% for Pléiades).When comparing the rock
glaciers found in the validation data for both classifications, CNN_O-
BIA_Ple outperformed CNN_OBIA on 3 polygons, was equivalent on 1
polygon, and performed worse on 2 polygons. The rock glaciers on the
southern slope of the Mulaco massif were generally delineated with
higher accuracies (74.4%) than those on the northern slopes (44.4%).

6. Discussion

6.1. Use of deep learning to classify rock glaciers

On average, our CNN_OBIA classification managed to map rock
glaciers in two distinct periglacial environments with a mean over-
estimation of 28%. The user accuracy ranges from 63.9 to 68.9% in-
dicating that the final classified polygons included false positives that
were not rock glaciers. The producer accuracies were 75.4% and 75.0%
for the La Laguna and Poiqu catchments respectively, indicating that
even although the individual rock glacier polygons were in most cases
overestimated, a large proportion of the total rock glaciers were suc-
cessfully identified. The CNN itself is only capable of identifying fea-
tures large enough to be detected after the convolution. In our case, we
convolved our image five times and applyied max pooling twice to
reduce noise, meaning that a rock glacier approximately 30×30 pixels

Fig. 4. Comparison of automatically generated rock glacier outlines (CNN_OBIA) with the manually corrected outlines (RG_Man) for the La Laguna catchment.
Polygons used for training and validation are shown. The background image is a false colour Sentinel-2 dataset from 04/04/2018.
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in size (300×300m) would be visible as 3×3 (30×30m) pixels on
the generated heatmap, which is below the 0.025 km2 (i.e.
158×158m) threshold used in the OBIA refinement. As such, due to
the finer spatial resolution the Pléiades classification was able to clas-
sify much smaller landforms with more subtle, smaller-scale morpho-
logical patterns that were not visible on the Sentinel-2 imagery. The
higher producer's accuracy of CNN_OBIA_Ple therefore suggests that
higher resolution satellite imagery is more suitable for identifying
smaller rock glaciers, or rock glaciers with less prominent surface fea-
tures.

While our method worked well in both of our study catchments, the
flexible nature of machine learning methods, such as CNNs, means we
cannot be certain that our method will work equally well in other
periglacial catchments.

The probability heatmap corresponds well with RG_Man and it ap-
pears that the heatmap value relates to the prominence of the surface
morphology, with landforms exhibiting marked morphology such as
ridges and furrows (for example Fig. 7A) having higher probability
heatmap values than those areas without prominent morphology (for
example Fig. 7B). This infers that our method is more suitable for
identifying active rock glaciers with prominent surface morphology.

The heatmap produced from the deep learning itself could be used
as auxiliary data to aid the creation of rock glacier inventories. Our
CNN_OBIA method could be used to reduce the uncertainty associated
with manual inventories due to inter-user inconsistencies and personal
subjectivity. Our method could provide a rock glacier outline base
product which could be refined manually to create a finalised rock
glacier inventory, thereby reducing the amount of manual digitisation
required.

6.2. Comparison with other rock glacier inventory methods

The majority of rock glacier inventories are compiled with manual
interpretation of high-resolution imagery, often complimented with
auxiliary data (morphological or kinematic) (e.g. Villarroel et al.

(2018), Bolch et al. (2019)). It is not straightforward to compare these
classifications to ours, as in the absence of reference data these studies
do not provide accuracy assessments. Additionally, the scale of analysis
differs, some of the rock glacier inventories created manually have been
conducted over regional scales (for example Wang et al., 2017;
Villarroel et al., 2018) compared to our catchment scale. We can
however compare the strengths and weaknesses of the methods in-
volved.

The most common recent form of auxiliary data used in the creation
of rock glacier inventories is surface velocities or kinematics derived
from SAR interferometry (Liu et al., 2013; Bodin et al., 2016; Wang
et al., 2017; Villarroel et al., 2018). Our CNN_OBIA method has a
couple of key advantages over the use of interferometry. Firstly, it is
possible to identify inactive rock glaciers which would not be identified
using velocities alone since they are essentially not flowing. These
features however are still important for the local hydrology and are a
physical manifestation of permafrost. Additionally, our CNN_OBIA
method is not reliant on VHR and costly satellite imagery, and instead
runs on freely available 10m resolution Sentinel-2 imagery. In our case
we produced a DEM from commercial stereo imagery, however many
regions of the world are covered by freely available DEMs of compar-
able resolutions. Unlike interferometry, our CNN_OBIA method is not
restricted to analysing rock glaciers that are oriented in the LOS of the
satellite, is less influenced by atmospheric disturbances, and does not
depend on maintaining high SAR coherence between multiple acquisi-
tions. This latter point means that the CNN_OBIA methodology can be
equally be applied to regions where vegetation is growing either within
the vicinity of rock glaciers, or on the rock glaciers themselves, pro-
viding a solution to the problem encountered by Bertone et al. (2019)
when working in the Italian Alps. Finally, DInSAR is dependent on the
perpendicular and temporal baselines making it easier to calculate over
a larger area, whereas the CNN_OBIA method does not have this lim-
itation.

Our method builds on the work of Brenning et al. (2012) who used
textural filters on IKONOS imagery to identify rock glaciers based on

Fig. 5. Comparison of automatically generated rock glacier outlines (CNN_OBIA) with the manually corrected outlines (RG_Man) for the Poiqu catchment. Polygons
used for training and validation are shown. The background image is a false colour Sentinel-2 dataset from 09/12/2016.
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surface morphology indicative of flow patterns It is not possible to
compare accuracies due to differences in validation (computation of
AUROC (Area Under the Receiver Operating Characteristic) as well as
masking of areas by topography, bedrock, and landcover). Importantly
though, our method was applied using freely available Sentinel-2
imagery available worldwide. As such we believe that analysis of tex-
tural signatures shows promise for identifying rock glaciers.

Our method is however not without limitations. One shortcoming is
that sufficient and reliable inventory data must be available for a given
region in order to train the CNN model. The training data does not need
to be spatially complete, but nevertheless this can be challenging for
completely unstudied periglacial regions. Secondly, since the CNN re-
lies on identifying recurring spectral patterns and textures, it can mis-
classify debris flows, rock avalanche deposits and fluvial environments
as rock glaciers which share some spectral, textural and morphological
properties. This was problematic for both the Sentinel-2 classification
and the Pléiades classification. The OBIA reshaping however helps
mitigate these false positives to an extent, in a way that cannot be
achieved solely using CNNs. OBIA allows objects to be excluded that are
irregularly shaped, or by their spectral or morphological properties. As
such, while the raw probability heatmap can assist an analyst to iden-
tify rock glaciers manually, by running the whole procedure through
OBIA, it is possible to segment the imagery and obtain individual rock
glacier polygons in an automated way.

6.3. Potential methodological developments

Our method shows promise yet there further development is needed
before the method can be used to create rock glacier inventories over
large areas without significant manual editing. At present, our method
is prone to misclassifying landforms with similar textural characteristics
such as rock avalanche deposits. However, these landforms can also be
visually difficult to distinguish from rock glaciers without additional
information. One possible solution to this could be including surface
velocity data, either derived from feature tracking or from SAR inter-
ferometry, albeit with the limitation of LOS movements as discussed
earlier. This would have the additional advantage of being able to
classify rock glaciers based on their level of activity and would likely
reduce the number of false positives in the classification. Using a
combination of CNNs and OBIA could also be useful for other landforms
that are hard to identify using image spectra alone, such as debris-
covered glaciers, lava flows, and landslides.

7. Conclusion

Studies of rock glaciers over catchment to regional scales are
hampered by inventories of variable quality that are based on sub-
jective criteria and prone to inter-user inconsistencies. In this study we
have presented a semi-automated workflow to map rock glaciers based
on freely available Sentinel data and a high-resolution DEM using a

Fig. 6. Comparison of automatically generated rock glacier outlines based on the Pléiades imagery. (CNN_OBIA_Ple) with the manually corrected outlines (RG_Man)
for a subset of the Poiqu catchment. The panels on the right show a subset of the area (shown with a red outline on the left panel) that was misclassified (upper) along
with the corresponding probability heatmap (lower). Background imagery shows orthorectified Pléiades imagery © CNES (2018), and Airbus DS (2018), all rights
reserved.
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combination of CNNs and OBIA. We trialled our method in two
catchments, the La Laguna catchment in the semi-arid Andes of Chile,
and the Poiqu catchment in central Himalaya. Our method managed to
map rock glaciers across both catchments with a mean overestimation
of 28.0% with the freely available remote sensing data. Producer ac-
curacies were higher than user accuracies indicating that the classifi-
cation successfully identified many of the rock glaciers in each catch-
ment, yet the rock glacier outlines created contained false positives that
must be removed manually. We found that better detection rates are not
necessarily obtained from using VHR Pléiades satellite data, although
the rock glaciers identified are mapped with a higher user accuracy.
There are also some limitations with texturally similar landforms such
as debris flows, avalanches, and fluvial deposits that become mis-
classified as rock glaciers. Nevertheless, our method produced pro-
mising results, runs as one workflow, and reduces the amount of
manual work required. Further advances in machine learning methods
are likely to lead to refined identification of rock glacier surface tex-
tures, as such we recommend the continued use of deep learning to
semi-automatically identify rock glaciers and believe that OBIA pro-
vides a good framework for conducting and further automating the
analysis.

Description of author's responsibilities

The study was conceptualised by BAR, TB, SM and PR. The analysis

was performed by BAR and DH. All authors contributed to writing and
editing the manuscript.

Dedication

This article is dedicated in memory of Michael Williams (1956 -
2020).

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

B Robson was supported by the Meltzer foundation and a University
of Bergen grant. S MacDonell was supported by CONICYT-Programa
Regional (R16A10003) and the Coquimbo Regional Government via
FIC-R(2016)BIP 40000343. D. Hölbling has been supported by the
Austrian Science Fund through the project MORPH (Mapping,
Monitoring and Modeling the Spatio-Temporal Dynamics of Land
Surface Morphology; FWF-P29461-N29). N Schaffer was financed by
CONICYT-FONDECYT (3180417) and P Rastner by the ESA Dragon 4
programme (4000121469/17/I-NB). Thank you to Anna Telegina who

Fig. 7. Comparison between the deep learning heatmap for two areas within the La Laguna catchment (left) with RG_Man rock glacier outlines overlying Sentinel-2
imagery (centre). The right panel shows two field photographxs taken in March 2019 of the surface of Tapado glacier complex (A) and Las Tolas rock glacier (B).

B.A. Robson, et al. Remote Sensing of Environment 250 (2020) 112033

11



read an early version of the manuscript. We are thankful to ESA for the
provision of Sentinel data and CNES/Airbus DS for the provision of the
Pléiades satellite data for a reduced price within the ISIS programme.
We are grateful for the constructive comments from three anonymous
reviewers.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.rse.2020.112033.

References

Alba, M., Barazzetti, L., Scaioni, M., Remondino, F., 2011. Automatic registration of
multiple laser scans using panoramic RGB and intensity images. Int. Arch.
Photogramm. Remote. Sens. Spat. Inf. Sci. 3812, 49–54.

Alifu, H., Tateishi, R., Johnson, B., 2015. A new band ratio technique for mapping debris-
covered glaciers using Landsat imagery and a digital elevation model. Int. J. Remote
Sens. 36, 2063–2075.

Azocar, G.F., Brenning, A., 2010. Hydrological and geomorphological significance of rock
glaciers in the dry Andes, (27 degrees-33 degrees S). Permafr. Periglac. Process. 21,
42–53.

Barboux, C., Delaloye, R., Lambiel, C., 2014. Inventorying slope movements in an Alpine
environment using DInSAR. Earth Surf. Process. Landf. 39, 2087–2099.

Barcaza, G., Nussbaumer, S.U., Tapia, G., Valdés, J., García, J.L., Videla, Y., Albornoz, A.,
Arias, V., 2017. Glacier inventory and recent glacier variations in the Andes of Chile,
South America. Ann. Glaciol. 58 (75pt2), 166–180.

Barsch, D., 1996. Rock Glaciers. Springer, Berlin.
Bentes, C., Frost, A., Velotto, D., Tings, B., 2016. Ship-iceberg discrimination with con-

volutional neural networks in high resolution SAR images. In: Proceedings of EUSAR
2016: 11th European Conference on Synthetic Aperture Radar. VDE, pp. 1–4.

Bertone, A., Zucca, F., Marin, C., Notarnicola, C., Cuozzo, G., Krainer, K., Mair, V.,
Riccardi, P., Callegari, M., Seppi, R., 2019. An unsupervised method to detect rock
glacier activity by using Sentinel-1 SAR interferometric coherence: a regional-scale
study in the Eastern European Alps. Remote Sens. 11 (14), 1711.

Bianchi, F.M., Grahn, J., Eckerstorfer, M., Malnes, E., Vickers, H.J.A.P.A., 2019. Snow
avalanche segmentation in SAR images with fully convolutional neural networks.
arXiv preprint arXiv 1910, 05411.

Blaschke, T., Hay, G.J., Kelly, M., Lang, S., Hofmann, P., Addink, E., Feitosa, R.Q., Van
Der Meer, F., Van Der Werff, H., Van Coillie, F., 2014. Geographic object-based image
analysis–towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 87, 180–191.

Bodin, X., Thomas, E., Liaudat, D.T., Vivero, S., Pitte, P., 2016. Rock Glacier Activity and
Distribution in the Semi-Arid Andes of Chile and Argentina Detected from dInSAR.
Proceedings of the International Conference on Permafrost, Potsdam, Germany, pp.
20–24.

Bolch, T., Gorbunov, A.P., 2014. Characteristics and origin of rock glaciers in Northern
Tien Shan (Kazakhstan/Kyrgyzstan). Permafr. Periglac. Process. 25, 320–332.

Bolch, T., Marchenko, S. (Eds.), 2009. Significance of Glaciers, Rock Glaciers and Ice-Rich
Permafrost in the Northern Tien Shan as Water Towers under Climate Change
Conditions. IHP/HWRP-Berichte, Almaty, Kazakhstan vols. 28-30 Nov. 2006.

Bolch, T., Buchroithner, M.F., Kunert, A., Kamp, U., 2007. Automated delineation of
debris-covered glaciers based on ASTER data. Geoinformation in Europe. In:
Proceedings of the 27th EARSeL Symposium, pp. 4–6.

Bolch, T., Rohrbach, N., Kutuzov, S., Robson, B., Osmonov, A., 2019. Occurrence, evo-
lution and ice content of ice-debris complexes in the Ak-Shiirak, central Tien Shan
revealed by geophysical and remotely-sensed investigations. Earth Surf. Process.
Landf. 44, 129–143.

Bolch, T., Rastner, P., Pronk, J.B., Bhattacharya, A., Liu, L., Hu, Y., Zhang, G.Q., Yao, T.D.,
2020. Occurrence and characteristics of Ice-Debris landforms in Poiqu Basin – Central
Himalaya. In: EGU General Assembly 2020. Geophysical Research Abstracts, Vienna,
Austria.

Brardinoni, F., Scotti, R., Sailer, R., Mair, V., 2019. Evaluating sources of uncertainty and
variability in rock glacier inventories. Earth Surf. Process. Landf. 44 (12), 2450–2466.

Brenning, A., 2009. Benchmarking classifiers to optimally integrate terrain analysis and
multispectral remote sensing in automatic rock glacier detection. Remote Sens.
Environ. 113, 239–247.

Brenning, A., Long, S.L., Fieguth, P., 2012. Detecting rock glacier flow structures using
Gabor filters and IKONOS imagery. Remote Sens. Environ. 125, 227–237.

Colucci, R.R., Forte, E., Žebre, M., Maset, E., Zanettini, C., Guglielmin, M., 2019. Is that a
relict rock glacier? Geomorphology 330, 177–189.

Cremonese, E., Gruber, S., Phillips, M., Pogliotti, P., Böckli, L., Noetzli, J., Suter, C.,
Bodin, X., Crepaz, A., Kellerer-Pirklbauer, A., 2011. An inventory of permafrost
evidence for the European Alps. Cryosphere 5, 651–657.

Csillik, O., Cherbini, J., Johnson, R., Lyons, A., Kelly, M., 2018. Identification of citrus
trees from unmanned aerial vehicle imagery using convolutional neural networks.
Drones 2.

Dao, P., Liou, Y.-A., 2015. Object-based flood mapping and affected rice field estimation
with Landsat 8 OLI and MODIS data. Remote Sens. 7, 5077–5097.

Delaloye, R., Barboux, C., Echelard, T., Bodin, X., Brardinoni, F., Lambiel, C., Wee, J.,
2019. Towards standard guidelines for inventorying rock glaciers (version 2.0). In:
IPA Action Group Rock Glacier Inventories and Kinematics (2018–2020), (Available
Online: unifr.ch/geo/geomorphology/en/research/ipa-action-group-rock-glacier/).

Ding, A., Zhang, Q., Zhou, X., Dai, B., 2016. Automatic recognition of landslide based on
CNN and texture change detection. In: 2016 31st Youth Academic Annual Conference
of Chinese Association of Automation (YAC). 2016. pp. 444–448 11–13 November.

Dirección General de Aguas (DGA), 2012. Chilean National Glacier Inventory. (un-
published data).

Drăguţ, L., Csillik, O., Eisank, C., Tiede, D., 2014. Automated parameterisation for multi-
scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 88,
119–127.

Esper Angillieri, M.Y., 2009. A preliminary inventory of rock glaciers at 30°S latitude,
cordillera frontal of San Juan, Argentina. Quat. Int. 195, 151–157.

Falaschi, D., Castro, M., Masiokas, M., Tadono, T., Ahumada, A.L., 2014. Rock glacier
inventory of the Valles Calchaquíes region (~ 25 S), Salta, Argentina, derived from
ALOS data. Permafr. Periglac. Process. 25, 69–75.

Favier, V., Falvey, M., Rabatel, A., Praderio, E., López, D., 2009. Interpreting dis-
crepancies between discharge and precipitation in high-altitude area of Chile's Norte
Chico region (26–32°S). Water Resour. Res. 45.

Fu, Y., Liu, K., Shen, Z., Deng, J., Gan, M., Liu, X., Lu, D., Wang, K., 2019. Mapping
impervious surfaces in town–rural transition belts using China's GF-2 imagery and
object-based deep CNNs. Remote Sens. 11, 280.

Gallego, A.J., Pertusa, A., Gil, P., 2018. Automatic ship classification from optical aerial
images with convolutional neural networks. Remote Sens. 10, 511.

Geiger, S.T., Daniels, J.M., Miller, S.N., Nicholas, J.W., 2014. Influence of rock glaciers on
stream hydrology in the La Sal Mountains, Utah. Arct. Antarct. Alp. Res. 46, 645–658.

Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S.R., Tiede, D., Aryal, J., 2019.
Evaluation of different machine learning methods and deep-learning convolutional
neural networks for landslide detection. Remote Sens. 11, 196.

González-Audícana, M., Otazu, X., Fors, O., Seco, A., 2005. Comparison between Mallat's
and the ‘à trous’ discrete wavelet transform based algorithms for the fusion of mul-
tispectral and panchromatic images. Int. J. Remote Sens. 26, 595–614.

Gorbunov, A., Titkov, S., 1989. Kamennye Gletchery Gor Srednej Azii (Rock Glaciers of
the Central Asian Mountains). Akademia Nauk SSSR, Irkutsk.

Guirado, E., Tabik, S., Alcaraz-Segura, D., Cabello, J., Herrera, F., 2017. Deep-learning
versus OBIA for scattered shrub detection with Google earth imagery: Ziziphus lotus as
case study. Remote Sens. 9, 1220.

Haeberli, W., Hallet, B., Arenson, L., Elconin, R., Humlum, O., Kääb, A., Kaufmann, V.,
Ladanyi, B., Matsuoka, N., Springman, S., 2006. Permafrost creep and rock glacier
dynamics. Permafr. Periglac. Process. 17, 189–214.

Hay, G.J., Castilla, G., 2008. Geographic Object-Based Image Analysis (GEOBIA): a new
name for a new discipline. In: Blaschke, T., Lang, S., Hay, G.J. (Eds.), Object-Based
Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing
Applications. Springer Berlin Heidelberg, Berlin, Heidelberg.

Hirschmuller, H., 2007. Stereo processing by semiglobal matching and mutual informa-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328–341.

Hölbling, D., Füreder, P., Antolini, F., Cigna, F., Casagli, N., Lang, S., 2012. A semi-au-
tomated object-based approach for landslidedetection validated by persistent scat-
terer interferometry measures and landslide inventories. Remote Sens. 4, 1310–1336.

Hölbling, D., Betts, H., Spiekermann, R., Phillips, C., 2016. Identifying spatio-temporal
landslide hotspots on North Island, New Zealand, by analyzing historical and recent
aerial photography. Geosciences 6, 48.

Huang, L., Luo, J., Lin, Z., Niu, F., Liu, L., 2020. Using deep learning to map retrogressive
thaw slumps in the Beiluhe region (Tibetan plateau) from CubeSat images. Remote
Sens. Environ. 237, 111534.

Huggel, C., Allen, S., Wymann Von Dach, S., Dimri, A.P., Mal, S., Linbauer, A., Salzmann,
N., Bolch, T., 2020. An integrative and joint approach to climate impacts, hydro-
logical risks and adaptation in the Indian Himalayan region. In: Himalayan Weather
and Climate and their Impact on the Environment. Springer International Publishing,
pp. 553–573.

Huss, M., Hock, R., 2018. Global-scale hydrological response to future glacier mass loss.
Nat. Clim. Chang. 8 (2), 135–140.

Immerzeel, W.W., Van Beek, L.P.H., Bierkens, M.F.P., 2010. Climate change will affect the
Asian water towers. Science 328, 1382–1385.

Janke, J.R., 2001. Rock glacier mapping: a method utilizing enhanced TM data and GIS
modeling techniques. Geocarto Int. 16, 5–15.

Jones, D., Harrison, S., Anderson, K., Betts, R., 2018a. Mountain rock glaciers contain
globally significant water stores. Sci. Rep. 8, 2834.

Jones, D., Harrison, S., Anderson, K., Selley, H., Wood, J., Betts, R., 2018b. The dis-
tribution and hydrological significance of rock glaciers in the Nepalese Himalaya.
Glob. Planet. Chang. 160, 123–142.

Jozdani, S., Chen, D., 2020. On the versatility of popular and recently proposed su-
pervised evaluation metrics for segmentation quality of remotely sensed images: an
experimental case study of building extraction. ISPRS J. Photogramm. Remote Sens.
160, 275–290.

Kääb, A., Vollmer, M., 2000. Surface geometry, thickness changes and flow fields on
creeping mountain permafrost: automatic extraction by digital image analysis.
Permafr. Periglac. Process. 11 (4), 315–326.

Kehrwald, N.M., Thompson, L.G., Yao, T.D., Mosley-Thompson, E., Schotterer, U.,
Alfimov, V., Beer, J., Eikenberg, J., Davis, M.E., 2008. Mass loss on Himalayan glacier
endangers water resources. Geophys. Res. Lett. 35.

Knevels, R., Petschko, H., Leopold, P., Brenning, A., 2019. Geographic object-based image
analysis for automated landslide detection using open source GIS software. ISPRS Int.
J. Geo Inf. 8 (12), 551.

Kofler, C., Steger, S., Mair, V., Zebisch, M., Comiti, F., Schneiderbauer, S., 2019. An in-
ventory-driven rock glacier status model (intact vs. relict) for South Tyrol, Eastern
Italian Alps. Geomorphology 106887.

Lang, S., 2008. Object-based image analysis for remote sensing applications: modeling
reality–dealing with complexity. In: Object-Based Image Analysis. Springer, Berlin,

B.A. Robson, et al. Remote Sensing of Environment 250 (2020) 112033

12

https://doi.org/10.1016/j.rse.2020.112033
https://doi.org/10.1016/j.rse.2020.112033
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0005
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0005
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0005
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0010
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0010
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0010
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0015
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0015
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0015
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0020
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0020
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0025
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0025
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0025
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0030
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0035
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0035
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0035
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0040
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0040
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0040
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0040
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0045
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0045
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0045
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0050
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0050
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0050
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0055
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0055
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0055
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0055
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0060
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0060
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0065
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0065
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0065
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0070
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0070
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0070
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0075
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0075
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0075
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0075
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0080
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0080
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0080
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0080
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0085
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0085
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0090
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0090
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0090
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0095
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0095
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0100
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0100
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0105
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0105
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0105
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0110
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0110
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0110
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0115
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0115
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0120
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0120
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0120
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0120
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0125
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0125
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0125
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0130
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0130
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0135
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0135
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0135
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0140
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0140
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0145
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0145
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0145
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0150
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0150
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0150
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0155
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0155
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0155
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0160
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0160
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0165
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0165
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0170
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0170
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0170
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0175
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0175
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0175
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0180
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0180
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0185
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0185
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0185
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0190
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0190
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0190
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0195
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0195
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0195
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0195
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0200
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0200
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0205
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0205
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0205
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0210
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0210
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0210
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0215
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0215
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0215
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0220
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0220
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0220
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0220
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0220
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0225
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0225
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0230
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0230
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0235
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0235
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0240
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0240
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0245
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0245
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0245
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0250
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0250
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0250
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0250
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0255
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0255
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0255
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0260
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0260
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0260
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0265
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0265
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0265
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0270
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0270
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0270
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0275
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0275


Heidelberg, pp. 3–27.
Längkvist, M., Kiselev, A., Alirezaie, M., Loutfi, A., 2016. Classification and segmentation

of satellite orthoimagery using convolutional neural networks. Remote Sens. 8, 329.
Li, Y., Zhang, H., Xue, X., Jiang, Y., Shen, Q., 2018. Deep learning for remote sensing

image classification: a survey. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 8,
e1264.

Liu, L., Millar, C.I., Westfall, R.D., Zebker, H.A., 2013. Surface motion of active rock
glaciers in the Sierra Nevada, California, USA: inventory and a case study using
InSAR. Cryosphere 7, 1109–1119.

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., Johnson, B.A., 2019. Deep learning in remote
sensing applications: a meta-analysis and review. ISPRS J. Photogramm. Remote
Sens. 152, 166–177.

Mahdianpari, M., Salehi, B., Rezaee, M., Mohammadimanesh, F., Zhang, Y., 2018. Very
deep convolutional neural networks for complex land cover mapping using multi-
spectral remote sensing imagery. Remote Sens. 10, 1119.

Mallinis, G., Gitas, I.Z., Giannakopoulos, V., Maris, F., Tsakiri-Strati, M., 2013. An object-
based approach for flood area delineation in a transboundary area using ENVISAT
ASAR and LANDSAT TM data. Int. J. Digit. Earth 6, 124–136.

Mithan, H.T., Hales, T.C., Cleall, P.J., 2019. Supervised classification of landforms in
Arctic mountains. Permafr. Periglac. Process. 30 (3), 131–145.

Monnier, S., Kinnard, C., Surazakov, A., Bossy, W., 2014. Geomorphology, internal
structure, and successive development of a glacier foreland in the semiarid Chilean
Andes (Cerro Tapado, upper Elqui Valley, 30°08′ S., 69°55′ W.). Geomorphology 207,
126–140.

Necsoiu, M., Onaca, A., Wigginton, S., Urdea, P., 2016. Rock glacier dynamics in Southern
Carpathian Mountains from high-resolution optical and multi-temporal SAR satellite
imagery. Remote Sens. Environ. 177, 21–36.

Nicholson, L., Marín, J., Lopez, D., Rabatel, A., Bown, F., Rivera, A., 2009. Glacier in-
ventory of the upper Huasco valley, Norte Chico, Chile: glacier characteristics, glacier
change and comparison with Central Chile. Ann. Glaciol. 50 (53), 111–118.

Onaca, A., Ardelean, F., Urdea, P., Magori, B., 2017. Southern Carpathian rock glaciers:
inventory, distribution and environmental controlling factors. Geomorphology 293,
391–404.

Outcalt, S.I., Benedict, J.B.J., G, J.O., 1965. Photo-interpretation of two types of rock
glacier in the Colorado front range, USA. J. Glaciol. 5 (42), 849–856.

Pandey, P., 2019. Inventory of rock glaciers in Himachal Himalaya, India using high-
resolution google earth imagery. Geomorphology 340, 103–115.

Paul, F., Huggel, C., Kaab, A., 2004. Combining satellite multispectral image data and a
digital elevation model for mapping debris-covered glaciers. Remote Sens. Environ.
89, 510–518.

Paul, F., Barrand, N.E., Baumann, S., Berthier, E., Bolch, T., Casey, K., Frey, H., Joshi, S.,
Konovalov, V., Le Bris, R., 2013. On the accuracy of glacier outlines derived from
remote-sensing data. Ann. Glaciol. 54, 171–182.

Paul, F., Bolch, T., Kääb, A., Nagler, T., Nuth, C., Scharrer, K., Shepherd, A., Strozzi, T.,
Ticconi, F., Bhambri, R., 2015. The glaciers climate change initiative: methods for
creating glacier area, elevation change and velocity products. Remote Sens. Environ.
162, 408–426.

Pfeffer, W.T., Arendt, A.A., Bliss, A., Bolch, T., Cogley, J.G., Gardner, A.S., Hagen, J.-O.,
Hock, R., Kaser, G., Kienholz, C., 2014. The Randolph glacier inventory: a globally
complete inventory of glaciers. J. Glaciol. 60, 537–552.

Piao, S., Ciais, P., Huang, Y., Shen, Z., Peng, S., Li, J., Zhou, L., Liu, H., Ma, Y., Ding, Y.,
2010. The impacts of climate change on water resources and agriculture in China.
Nature 467 (7311), 43–51.

Pope, A., Rees, W.G., 2014. Impact of spatial, spectral, and radiometric properties of
multispectral imagers on glacier surface classification. Remote Sens. Environ. 141,
1–13.

Pourrier, J., Jourde, H., Kinnard, C., Gascoin, S., Monnier, S., 2014. Glacier meltwater
flow paths and storage in a geomorphologically complex glacial foreland: the case of
the Tapado glacier, dry Andes of Chile (30°S). J. Hydrol. 519, 1068–1083.

Pritchard, H.D., 2019. Asia's shrinking glaciers protect large populations from drought

stress. Nature 569, 649–654.
Racoviteanu, A., Williams, M.W., 2012. Decision tree and texture analysis for mapping

debris-covered glaciers in the Kangchenjunga area, Eastern Himalaya. Remote Sens.
4, 3078–3109.

Rangecroft, S., Harrison, S., Anderson, K., Magrath, J., Castel, A.P., Pacheco, P., 2014. A
first rock glacier inventory for the Bolivian Andes. Permafr. Periglac. Process. 25,
333–343.

Rangecroft, S., Harrison, S., Anderson, K., 2015. Rock glaciers as water stores in the
Bolivian Andes: an assessment of their hydrological importance. Arct. Antarct. Alp.
Res. 47, 89–98.

Rastner, P., Bolch, T., Notarnicola, C., Paul, F., 2013. A comparison of pixel-and object-
based glacier classification with optical satellite images. IEEE J. Sel. Top. Appl. Earth
Obs. Remote Sens. 7, 853–862.

Robson, B.A., Nuth, C., Dahl, S.O., Hölbling, D., Strozzi, T., Nielsen, P.R., 2015.
Automated classification of debris-covered glaciers combining optical, SAR and to-
pographic data in an object-based environment. Remote Sens. Environ. 170,
372–387.

Schaffer, N., Macdonell, S., 2020. Rock Glacier Inventory for the La Laguna Catchment
(Unpublished Dataset). CEAZA, La Serena, Chile.

Schaffer, N., Macdonell, S., Réveillet, M., Yáñez, E., Valois, R., 2019. Rock glaciers as a
water resource in a changing climate in the semiarid Chilean Andes. Reg. Environ.
Chang. 19, 1263–1279.

Schratz, P., Muenchow, J., Iturritxa, E., Richter, J., Brenning, A., 2019. Hyperparameter
tuning and performance assessment of statistical and machine-learning algorithms
using spatial data. Ecol. Model. 406, 109–120.

Scotti, R., Brardinoni, F., Alberti, S., Frattini, P., Crosta, G.B., 2013. A regional inventory
of rock glaciers and protalus ramparts in the central Italian Alps. Geomorphology
186, 136–149.

Shean, D., 2017. High Mountain Asia 8-Meter DEM Mosaics Derived from Optical
Imagery, Version 1. Nasa National Snow and Ice Data Center Distributed Active
Archive Center, Boulder, Colorado USA.

Villarroel, C.D., Tamburini Beliveau, G., Forte, A.P., Monserrat, O., Morvillo, M., 2018.
DInSAR for a regional inventory of active rock glaciers in the dry Andes mountains of
Argentina and Chile with sentinel-1 data. Remote Sens. 10, 1588.

Wahrhaftig, C., Cox, A., 1959. Rock glaciers in the Alaska range. GSA Bull. 70 (4),
383–436.

Wang, X.W., Liu, L., Zhao, L., Wu, T. H., Li, Z. Q. & Liu, G. X., 2017. Mapping and
inventorying active rock glaciers in the Northern Tien Shan of China using satellite
SAR interferometry. Cryosphere 11, 997–1014.

Xiang, Y., Gao, Y., Yao, T., 2014. Glacier change in the Poiqu River basin inferred from
Landsat data from 1975 to 2010. Quat. Int. 349, 392–401.

Xu, H., 2006. Modification of normalised difference water index (NDWI) to enhance open
water features in remotely sensed imagery. Int. J. Remote Sens. 27 (14), 3025–3033.

Yu, H., Ma, Y., Wang, L., Zhai, Y., Wang, X., 2017. A landslide intelligent detection
method based on CNN and RSG_R. In: 2017 IEEE International Conference on
Mechatronics and Automation (ICMA). 2017. pp. 40–44 6–9 Aug.

Zemp, M., Huss, M., Thibert, E., Eckert, N., Mcnabb, R., Huber, J., Barandun, M.,
Machguth, H., Nussbaumer, S.U., Gärtner-Roer, I., 2019. Global glacier mass changes
and their contributions to sea-level rise from 1961 to 2016. Nature 568 (7752),
382–386.

Zhang, C., Sargent, I., Pan, X., Li, H.P., Gardiner, A., Hare, J., Atitinson, P.M., 2018. An
object-based convolutional neural network (OCNN) for urban land use classification.
Remote Sens. Environ. 216, 57–70.

Zhang, C., Yue, P., Tapete, D., Shangguan, B., Wang, M., Wu, Z., 2020. A multi-level
context-guided classification method with object-based convolutional neural network
for land cover classification using very high resolution remote sensing images. Int. J.
Appl. Earth Obs. Geoinf. 88, 102086.

Zhang, L., Zhang, L., Du, B., 2016. Deep learning for remote sensing data: a technical
tutorial on the state of the art. IEEE Geosci. Remote Sens. Mag. 4, 22–40.

B.A. Robson, et al. Remote Sensing of Environment 250 (2020) 112033

13

http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0275
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0280
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0280
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0285
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0285
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0285
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0290
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0290
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0290
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0295
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0295
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0295
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0300
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0300
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0300
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0305
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0305
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0305
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0310
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0310
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0315
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0315
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0315
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0315
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0320
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0320
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0320
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0325
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0325
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0325
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0330
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0330
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0330
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0335
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0335
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0340
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0340
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0345
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0345
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0345
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0350
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0350
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0350
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0355
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0355
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0355
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0355
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0360
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0360
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0360
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0365
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0365
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0365
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0370
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0370
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0370
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0375
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0375
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0375
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0380
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0380
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0385
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0385
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0385
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0390
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0390
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0390
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0395
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0395
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0395
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0400
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0400
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0400
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0405
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0405
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0405
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0405
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0410
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0410
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0415
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0415
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0415
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0420
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0420
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0420
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0425
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0425
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0425
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0430
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0430
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0430
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0435
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0435
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0435
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0440
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0440
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0445
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0445
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0445
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0450
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0450
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0455
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0455
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0460
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0460
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0460
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0465
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0465
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0465
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0465
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0470
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0470
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0470
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0475
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0475
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0475
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0475
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0480
http://refhub.elsevier.com/S0034-4257(20)30403-X/rf0480

	Automated detection of rock glaciers using deep learning and object-based image analysis
	Introduction
	Background – deep learning
	Object-based image analysis (OBIA)

	Study sites and data
	Study area
	La Laguna catchment, Chile
	Poiqu catchment, Central Himalaya

	Data

	Methods
	Data pre-processing
	Image classification
	Sentinel-2 analysis
	Pléiades imagery analysis
	OBIA reshaping
	Accuracy assessment


	Results
	La Laguna catchment
	Poiqu catchment
	Pléiades imagery classification


	Discussion
	Use of deep learning to classify rock glaciers
	Comparison with other rock glacier inventory methods
	Potential methodological developments

	Conclusion
	Description of author's responsibilities
	Dedication
	Declaration of Competing Interest
	Acknowledgements
	Supplementary data
	References




