

XVIII Congreso Peruano de Geología

Exploración Litogeoquímica e Isótopos Radiogénicos de U-Pb, Hf, Nd y Sr del Batolito de la Costa, Zona entre Ica y Huancavelica, Perú

Carlos Javier Collado Medina¹

¹ Southern Perú, Av. Caminos del Inca 171. Urb. Chacarilla del Estanque Santiago de Surco, Lima, Perú (cardok@hotmail.com)

1. Marco Geológico Regional

El estudio está comprendido entre las localidades de San Juan de Yanac y Santiago de Chocorvos (Fig. 1), entre Ica y Huancavelica, en el segmento Arequipa del Batolito de la Costa. La geología regional (Fig. 1) está representada principalmente por secuencias volcánico sedimentarias de edades jurásica y cretácica; e intruídas por las Superunidades intrusivas del Batolito de la Costa, entre ellas la de Tiabaya e Incahuasi principalmente (INGEMMET, 2016); las cuales son parte de este trabajo de investigación.

2. Metodología

Se utilizó el programa IGPET-06, para el tratamiento de la información litogeoquímica a partir del método CCP-PKG01, del laboratorio ALS Minerals (Perú), e información litogeoquímica bibliográfica referencial (Collado C., 2014), efectuados en el laboratorio AcmeLabs Ltd (Canadá). Isótopos radiogénicos de U-Pb, Hf, Nd y Sr fueron analizados en el Laboratorio de Geocronología de la Universidad de Brasilia (Brasil).

3. Litogeoquímica

En la Figura 2, la zona estudiada del batolito está representado por rocas en el rango de composición de diorita a granito, intruídos por diques y cuerpos algunas veces de textura porfirítica entre diorita a granodiorita, y diques más básicos gabroicos. Son subalcalinos, dentro de la serie calcoalcalina con tendencia a calcoalcalina de alto potasio. Son metaluminosos del tipo I y S. Presencia de diques más ácidos subvolcánicos riolíticos no poseen las

Figura 1. Mapa geológico regional mostrando zona de estudio y localización de muestras de investigación, INGEMMET, 2016. Sistema de coordenadas WGS84, 18S.

Región	Diagrama TAS SiO2 vs K2O+Na2O (Composición de roca)	SiO2 vs K2O+Na2O (Alcalinas- subalcalinas)	SiO2 vs K2O (Subdivisión subalcalina)	Diagrama AFM FeO, alcalis, MgO (Subdivisión subalcalina)	Saturación de alúmina (ASI)	Diagrama de Whalen Y vs 10 ⁴ Ga/Al (Magmas del tipo I, S, A)	Otros	Referencias
Andes	Diorita a cuarzomonzonita- conteniendo hornblenda y/o biotita	Subalcalinas	Calcoalcalinas a calcoalcalinas de alto K	Calcoalcalinas	~1	Magmas tipo I	Magmas oxidados de la serie magnetita	John, D.A. et al, 2010; Reich and others, 2003; Muñoz and others, 2008.
Batolito: rango de composición de diorita a granito	Diorita, granodiorita, granito	Subalcalina	Calcoalcalina a calcoalcalina de alto K	Calcoalcalina	0.85-1.1	I-S	Débil magnetita primaria	Este trabajo de investigación
Diques y cuerpos: composición de diorita a granodriorita	Diorita a granodiorita	Subalcalina	Calcoalcalina con tendencia a calcoalcalina de alto K	Calcoalcalina	0.85-1.05	I-S	Débil magnetita primaria	Este trabajo de investigación
Diques máficos gabroicos	Gabro, diorita	Subalcalina	Calcoalcalina con tendencia a calcoalcalina de alto K	Calcoalcalina	0.82-0.94	I-S		Este trabajo de investigación
Diques subvolcánicos riolíticos	Granito	Subalcalina	Calcoalcalina de alto K con tendencia a shoshonítica	Calcoalcalina	1.0	I-S-A		Este trabajo de investigación

Tabla 1. Comparación de las características petrológicas de los magmas productivos de pórfidos de Cu en los Andes, con las rocas del área de estudio.

características antes mencionadas. Todos son de arco volcánico.

Se comparó en la Tabla 1, la petrología relacionada a depósitos tipo pórfido en los Andes (Jhon, DA et al, 2010), con los tipos de roca en la zona de estudio; y se observó, que todos son similares a las rocas generadoras de pórfidos de Cu; excepto, los diques subvolcánicos riolíticos que poseen algunas diferencias.

Una señal adaquítica (Jhon, DA et al, 2010) con características geoquímicas: $SiO_2 \ge 56wt.\%$, $Al_2O_3 \ge 15wt.\%$, MgO<~3%wt.%, Na₂O>~3%wt.%, Sr>~300ppm, Y<~10ppm, Sr/Y>~20, Yb<~1ppm, La/Yb>~20, y HFSE's-Nb,Ta empobrecidos; indican magmas fértiles de depósitos tipo pórfido de Cu. Se compararon con los resultados de elementos mayores, trazas y ultratrazas de las muestras litogeoquímicas en este trabajo (Anexo 1); y se obtuvo un tipo de prospectividad: baja, moderada o alta de nuestra clasificación de rocas (Tabla 2).

4. Isótopos radiogénicos

4.1. U-Pb

En la edad de los granitos, los zircones más jóvenes representan las últimas etapas de cristalización; las otras poblaciones de mayor edad fueron considerados como zircones magmáticos heredados. Tres dataciones fueron obtenidas: 70.6 ± 1.0 Ma, 71.0 ± 1.0 Ma, y 67.75 ± 0.8 Ma (Tabla 3, Fig. 3, Collado C., 2014).

SEÑAL ADAQUÍTICA											
Litelegía	Prospectividad	Prospectividad									
Litologia	Superunidad Incahuasi	Superunidad Tiabaya									
Batolito: rango de composición de diorita a granito	Moderado-alto	Alto									
Diques y cuerpos: composición de diorita a granodriorita	Moderado-alto	Alto									
Diques máficos gabroicos	Вајо										
Diques subvolcánicos riolíticos	Bajo										

Tabla 2. Comparación de las características adaquíticas de los magmas, con las rocas del área de estudio.

4.2. Hf

Los valores TDM varían dentro de 460 y 740 Ma (Fig. 4), e indican un trend similar de evolución. Los valores de ϵ Hf(T) calculados varian entre -0.28 y +6.65, los cuales son coherentes con magmas derivados del manto, con contribución de corteza continental (Dickin, A.P., 2005, Fig. 4).

	Edad (U-Pb)	143Nd/144Nd (i)	87Sr/86Sr (i)	εHf f(T)	TDM(Ma)	Este	Norte
AY-45	$70.6\pm1.0~\mathrm{Ma}$	0.512704	0.70472			402350	8535509
AY-22	$71.0 \pm 1.0 \ Ma$	0.512641	0.70469	+0.51 - +6.65	460-740	401908	8537276
AY-21	$67.75\pm0.8~\mathrm{Ma}$	0.512581	0.70468	-0.28 - +4.75	520-730	402318	8536654
AY-05		0.512614	0.70455			402371	8536350
AY-39		0.512709	0.70464			402098	8536755
AY-19		0.512645	0.70459			402416	8536765
AY-32		0.512589	0.70451			402085	8536789
AY-14		0.512519	0.70778			402146	8537157
AY-03		0.512604	0.70464			402146	8536305
AY-42		0.512653	0.70471			402609	8537157
AY-40		0.512659	0.70461			402146	8536932
AY-41E		0.512726	0.7045			402217	8537138

Tabla 3. Cuadro resumen de datos isotópicos (recopilados de Collado C., 2014). Sistema de coordenadas WGS84, 18S.

Figura 3. Edades de roca, usando zircones, U-Pb.

Figura 4. Diagrama de evolución isotópica del ε Hf(T) a través del tiempo con el modelo de evolución del CHUR y el manto empobrecido). Collado C., 2014. La línea roja punteada representa la media de los datos isotópicos recopilados de Hf en zircones de Perú (Boekhout F. et al, 2015).

4.3. Nd y Sr

El diagrama de la Figura 5, todos los magmas poseen un ϵ Nd desde -1.11 a 1.72, y 87 Sr/ 86 Sr(i) de 0.70450 a 0.70472, indicando un origen mayormente relacionado al manto empobrecido, con excepción de los diques más ácidos

Figura 5. Diagrama de correlación isotópica ¹⁴³Nd/¹⁴⁴Nd(i) vs. ⁸⁷Sr/⁸⁶Sr(i), Rollinson (1993). El área verde representa los ratios de valores para el magmatismo de la zona central de los Andes, Winter (2001).

Batolito de composición de diorita a granito,
+ △ diques y cuerpos de composición diorita a granodiorita, diques máficos gabroicos.

Diques subvolcánicos riolíticos.

riolíticos con un ɛNd de -2.33 y ⁸⁷Sr/⁸⁶Sr(i) de 0.70778, señalando una fuente derivada de material con afinidad crustal (Dickin, A.P., 2005, Fig. 5).

5. Conclusiones

El Batolito de composición diorita a granito, los diques y cuerpos con textura algunas veces porfirítica de composición diorita a granodiorita y los diques máficos gabroicos; son petrológicamente afines a características generadoras de pórfidos de Cu en los Andes. Presencia de diques más ácidos subvolcánicos riolíticos no poseen estas características.

Por su señal adaquítica; las rocas de las superunidades Incahuasi y Tiabaya de composición diorita a granito, y los diques y cuerpos con textura algunas veces porfirítica de composición diorita a granodiorita; poseen de moderada a alta prospectividad. A una edad promedio de 69.8 Ma., en un ambiente de subducción, el manto litosférico podría ser la fuente del magma de todas las unidades litológicas de este trabajo, excepto de los diques subvolcánicos riolíticos, originados probablemente a partir de sedimentos supracrustales de la corteza continental.

Agradecimientos

Este trabajo fue posible gracias a la Universidad Nacional San Agustín de Arequipa, al soporte financiero de la Coordinación de Capacitación de Personal de Nivel Superior (CAPES) de Brasil, a los comentarios invalorables de las profesoras Márcia Abrahão y Natalia Hauser de la Universidad de Brasilia, y a la empresa Southern Perú.

Referencias

- Boekhout, F.; Roberts, N.M.W.; Gerdes, A.; Schaltegger, U., 2015, A Hf-isotope perspective on continent formation in the south Peruvian Andes. In: Roberts, N.M.W., (ed.) *Continent formation through time.* Geological Society of London, 305-321. (Geological Society Special Publications, 389).
- Collado C., 2014, Geología, Geocronología, Petrología y Metalogénesis del Prospecto Cu-Mo Yanac, Ica, Perú; Tesis para optar Título de Maestría, Universidad de Brasilia, 117 pp.
- Dickin, A.P., 2005, Radiogenic Isotope Geology. Cambridge University Press, Cambridge, 510 pp.
- INGEMMET, 2013, Mapa Geológico del Perú: Instituto Geológico Minero y Metalúrgico del Perú (http://geocatmin.ingemmet.gob.pe/geocatmin/).
- John, D.A., Ayuso, R.A., Barton, M.D., Blakely, R.J., Bodnar, R.J., Dilles, J.H., Gray, Floyd, Graybeal, F.T., Mars, J.C., McPhee, D.K., Seal, R.R., Taylor, R.D., and Vikre, P.G., 2010, Porphyry copper deposit model, chap. B of Mineral deposit models for resource assessment: U.S. Geological Survey Scientific Investigations Report 2010–5070–B, 169 p.
- Muñoz, M., Charrier, R., Maksaev, V., and Fanning, M., 2008, Tracing petrogenetic crustal and mantle processes in zircon crystals from rocks associated with the El Teniente porphyry Cu-Mo deposit in the high Andes of central Chile—Preliminary results: 7th International Symposium on Andean Geodynamics (ISAG 2008, Nice), extended abstracts, p. 357–360.
- Reich, Martin, Parada, M.A., Palacios, C., Dietrich, A., Schultz, F., and Lehman, B., 2003, Adakite-like signature of Late Miocene intrusions at the Los Pelambres giant porphyry copper deposit in the Andes of Central Chile— Metallogenic implications: Mineralium Deposita, v. 38, p. 876–885.
- Rollinson, Hugh R., 1993, Using Geochemical Data: Evaluation, Presentation, Interpretation. Harlow, Essex, England: Longman Scientific & Technical. Print.

XVIII Congreso Peruano de Geología, p. xxx-xxx (2016)

Anexo 1: Elementos mayores y menores de roca total, valores de óxidos mayores expresados en porcentaje en peso y elementos traza en ppm.

		SUPERUNIDAD INCAHUASI													SUPERUNIDAD TIAB					<u>۱</u>											
					B	ATOLITO							DI	QUES, CU	ERPOS DE		AGRANC	DIORITA	(DCDG)			DIQUES	GABROI	cos 🛛	D.MONZ.	(DCD	G)		BATOL	по	
%	477047	177048	477053	477054	AY-01	AY-45	AY-22	AY-05	AY-39	AY-19	AY-21	477045	477049	477050	477052	477055	477056	AY-03	AY-32	AY-40	AY-41E	477046	477051	AY-42	AY-14	477057	477058	477059	477062	477060	477061
SiO ₂	60.9	61.9	58.2	63.3	63.87	63.19	65.95	59.72	62.19	63.42	65.14	61.4	67.5	68.1	65.6	61.6	62.8	61.2	57.33	56.23	54.24	51.1	56	49.52	68.31	65.4	66.1	61.3	65.2	78.2	75
	0.68	0.68	0.73	0.63	0.48	0.43	0.45	0.5	0.42	0.48	0.41	0.4	0.39	0.32	0.41	0.5	0.47	0.52	0.74	0.7	0.8	0.73	0.77	0.97	0.29	0.5	0.49	0.52	0.4	0.09	0.11
Fe O	16.55	16.5	17.1	16.1	16.93	16.88	16.79	17.44	1/	17.24	16.67	15.8	15.5	15.25	15.95	17.35	1/	17.2	17.77	18.1	18.57	18.7	18.35	18.32	15.24	17.55	17.55	17.7	17.25	12.35	12.6
MnO	0.11	5.9	0.17	5.49	4.73	4.66	3.98	4.85	4.83	4.7	4.37	4.61	4.80	3.55	4.27	5.89	5.4	4.82	7.74	7.78	7.84	9.47	8.07	10.12	2.63	4.56	4.57	4.63	3.81	0.77	0.79
MgO	2.25	2 29	2.50	1 0.1	1.62	1.67	1.16	1.92	1.67	1 72	1 41	1.26	1.47	1.06	1.26	1 79	1.7	1 71	2.05	2.09	2.60	2.09	2 42	4.51	0.00	1.5	1.52	1.52	1.16	0.02	0.02
CaO	5.1	5.14	5.84	4.54	4.91	4.92	4.6	5.87	5.22	5.24	4.64	4.59	3.27	3.82	4.32	5.51	5.41	5.32	6.99	7.09	7.27	7.28	8.03	8.24	1.38	4.64	4.76	5.12	4.42	0.78	0.81
Na ₂ O	3.58	3.64	3.37	3.81	3.44	3.55	3.79	3.76	3.71	3.64	3.63	3.51	3.63	3.58	3.56	3.57	3.5	3.62	3.29	3.16	3.9	3.32	3.79	3.07	4.06	4.3	4.19	4.25	4.33	3.05	3.12
K ₂ O	3.2	3.07	2.64	3.02	2.49	2.32	2.37	1.76	2.15	2.18	2.43	2.36	3.45	2.91	2.42	2.03	2.3	1.96	1.36	0.99	1.61	1.17	0.62	1.23	5.53	1.65	1.5	2.13	1.83	4.84	4.99
P ₂ O ₅	0.18	0.17	0.21	0.18	0.17	0.15	0.16	0.19	0.18	0.17	0.17	0.15	0.11	0.11	0.12	0.21	0.2	0.16	0.21	0.15	0.29	0.24	0.27	0.22	0.06	0.19	0.18	0.19	0.14	0.01	0.02
LOI	0.76	0.66	1.57	0.68	1	1.8	0.4	3.8	2.3	0.8	0.8	4.29	1.23	0.63	0.96	1.19	0.82	3.2	1.1	1.4	1.3	3.72	0.87	3.4	1.8	1.14	0.75	0.85	0.88	0.4	0.52
Sum	99.53	100.2	99.11	99.95	99.72	99.69	99.73	99.74	99.77	99.73	99.76	98.78	101.64	99.58	99.25	99.9	99.9	99.75	99.74	99.77	99.76	99.08	100.42	99.76	99.74	101.67	101.86	98.54	99.69	100.7	98.25
ppm	1																														
Ba	1115	926	1025	1045	932	855	945	788	713	794	833	1085	996	1070	1150	929	1000	792	510	303	584	233	281	357	964	658	808	969	980	1025	1115
Co	14	14	15	11	8	48.1	4.7	6.7	4.4	7.6	6.8	9	4	5	7	6	5	6.8	14.8	17.4	15.3	10	12	22.3	2.3	7	8	8	4	0.5	0.5
Cr	10	10	20	20	30	10	40	10	30	20	40	5	20	10	20	10	10	40	10	50	10	5	10	10	20	10	10	10	20	30	10
	2.96	4.16	5.65	6.27	1.3	5.5	3.7	1.3	1	1.6	6.1	2.24	4.48	2.08	2.01	4.37	3.67	2.5	2.1	3.9	1.6	2.52	2.08	9.7	2.4	3.47	2.53	1.49	1.91	1.7	1.92
Uf	22	21.8	22.2	21.9	17.8	15.1	1/	17.1	15.8	17.4	15	19.9	20	18.6	20	21	21.6	17.2	18.1	16.7	18.1	23.3	23.5	18.1	14.1	22.1	22.5	22.3	22.3	14.7	15.5
Nb	6.9	6.1	13.9	6.9	2.9	2.3	55	2.3	2.1	2.6	1.7	2.4	2.5	2.7	2.6	2.6	2.7	3.2	2.7	2.9	5.0	2.1	2.6	1.7	11.6	3.1	4.2	2.8	3	3.4	2.6
Rb	110.5	114	86.8	126.5	59.9	4.2	61.4	41.2	52 5	48.5	61.9	4.5	145 5	69.9	4.5	53.4	4.J 51	50.5	36.9	39.4	41.8	60.7	28.6	50.7	183.3	56.6	52.1		50.9	120.5	9.4 99.9
Sc	110.5	114	13	11	6	7	5	8	7	7	6	5	6	4	5	7	6	7	13	17	14	12	14	22	6	6	5	50.5	4	120.5	1
Sn	0.5	0.5	0.5	0.5	107	3	5	12	4	8	5	0.5	0.5	0.5	0.5	0.5	0.5	15	4	5	4	0.5	0.5	4	10	0.5	0.5	0.5	0.5	0.5	0.5
Sr	591	570	660	529	551	530.4	617.4	613.9	557.5	587.1	508	657	511	526	597	726	720	568.8	553.1	500.6	514.2	639	866	513.9	177.8	752	744	760	746	129.5	142
Та	0.5	0.5	0.4	0.6	1.2	0.4	0.6	0.5	0.4	0.5	0.3	0.4	0.4	0.5	0.6	0.4	0.4	0.6	0.4	0.3	0.5	0.2	0.3	0.1	1	0.3	0.4	0.4	0.3	0.6	0.5
Th	14.45	12.55	13.25	18.35	7.1	6.1	5.6	4.8	4.4	5.8	5.8	4.97	6.63	6.4	6.37	3.82	3.93	5.5	3.6	3.3	6.9	1.23	3.61	1.8	21.5	3.01	3.38	3.05	3.13	10.25	9.5
U	3.59	2.84	3.33	5.33	1.4	2	1.3	1.1	1.8	1.4	1.6	1.34	1.51	1.54	1.29	1.07	1.21	1.5	1	0.7	2.2	0.57	1.06	0.6	5.9	0.93	0.87	0.91	0.92	2.91	2.41
V	145	140	159	120	75	70	62	80	70	78	70	83	99	69	87	99	93	79	131	155	136	172	194	246	13	83	87	88	72	14	13
W	1	1	1	2	2.6	324.5	0.9	1.3	0.9	2	1.8	1	1	1	1	2	2	1.1	1.5	1.5	1.1	11	3	0.8	2.4	4	3	1	1	2	2
Zr	203	202	496	201	97	75.4	80.1	87.5	64	94.7	64.7	74	72	82	73	76	89	98.2	76	57.9	105.1	72	89	64.9	286.3	100	97	91	103	71	61
Y	17.5	17.2	18.5	21.9	9.5	10	9.9	11.8	10.6	14.5	9	12	8.5	8.2	9.9	11.4	11.3	9.7	15	13.1	17.7	18.3	14.8	16.5	27.7	8.7	9.5	9	7.5	4	5.4
Δσ	0.35	0.25	0.25	0.25	0.05	0.05	0.05	0.05	0.05	0.1	0.05	0.25	0.25	0.25	0.35	0.35	0.25	0.05	0.2	0.2	0.05	0.6	0.25	0.5	0.05	0.25	0.35	0.25	0.25	0.25	0.35
<u> </u>	1.1	1.7	1.4	0.23	0.03	0.05	0.05	0.03	0.03	0.1	0.03	0.25	2.23	1.7	0.23	0.23	0.25	0.03	0.2	0.2	0.03	0.0	1.4	2.4	0.03	0.25	0.23	0.25	0.23	0.25	0.23
Bi	0.02	0.02	0.03	0.01	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.01	0.02	0.01	0.01	0.04	0.01	0.05	0.05	0.05	0.05	1.74	0.02	0.05	0.05	0.01	0.01	0.01	0.01	0.01	0.01
Cd	0.25	0.25	0.25	0.25	0.05	0.05	0.1	0.4	0.1	0.05	0.2	0.25	0.25	0.25	0.25	0.25	0.25	0.2	1.4	0.5	0.6	0.25	0.25	0.6	1	0.25	0.25	0.25	0.25	0.25	0.25
Cu	49	62	57	37	56.5	20.6	36	71.3	18.2	190.9	23.9	32	43	14	126	477	107	15.5	89	295.8	24.7	437	537	164	17.8	418	288	34	396	151	144
Mo	0.5	1	0.5	0.5	0.1	0.5	1.9	0.5	4.8	0.6	0.3	0.5	0.5	0.5	0.5	0.5	0.5	1.6	0.3	0.4	0.2	0.5	0.5	0.8	0.3	1	0.5	0.5	0.5	15	0.5
Ni	9	8	8	5	2.2	2.2	1.9	2.2	1.9	2.1	2.2	2	13	3	2	3	1	2.7	1.9	7.5	5.4	2	9	4.5	0.9	4	4	4	2	2	0.5
Pb	17	11	12	9	0.8	8.2	1	1.3	1.3	0.7	1.4	12	8	10	14	8	4	1.2	9.5	1.4	1	8	6	31.1	3.1	6	6	5	7	17	14
Sb	0.12	0.12	0.22	0.21	0.05	0.1	0.05	0.05	0.05	0.05	0.05	0.11	0.4	0.13	0.08	0.17	0.1	0.05	0.05	0.05	0.05	1.03	0.3	0.05	0.05	0.025	0.025	0.025	0.025	0.05	0.08
Se	0.6	0.1	0.5	0.2	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.3	0.2	0.1	0.1	0.3	0.1	0.25	0.25	0.25	0.25	0.2	0.2	0.25	0.25	0.5	0.4	0.2	0.2	0.1	0.1
70	0.16	0.12	0.05	0.16	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.03	0.05	0.02	0.02	0.15	0.14	0.05	0.05	0.05	0.05	0.03	0.15	0.05	0.05	0.19	0.17	0.07	0.08	0.02	0.02
211	58	54	110	59	18	40	16	55	1/	19	26	59	39	32	52	56	74	28	248	76	63	100	61	94	59	53	37	54	38	5	8
la	25.2	26	25.4	20.9	21.0	10.4	22.4	17.0	12	28.0	177	19.0	10.2	195	20.2	19.6	10.4	20.4	12.4	12.4	19.2	12.7	197	10.2	25.2	19	20.0	22.2	21	21.7	77 6
Ce	53.4	54.1	52.8	63.4	41.6	36.8	41.3	36.2	25.4	56	31.1	33.2	32.7	33.3	37.2	36.2	37	39	30.2	26	42.8	28.5	36.9	25	71.6	34	39.6	42.2	38.3	34.2	22.0
Pr	6.23	6.26	6.15	7.22	4.21	3.88	4.3	4.02	2.99	6.07	3.45	3.62	3.26	3.32	3.89	4.07	4.23	4.13	3.47	2.8	5.24	3.72	4.18	3.25	8.03	3.86	4.3	4.48	4.08	3.11	3.38
Nd	25.6	24.8	26	29.7	16.1	12.3	16.8	16.4	12	18.4	13.5	14.4	12.1	12.6	14.8	16.7	17.4	13.2	13.4	11.9	23.6	17.4	17.9	14.5	30.7	15.1	16.8	17.8	16	9.8	11.4
Sm	5.02	4.82	4.88	5.79	2.49	2.67	2.94	3.02	2.57	3.87	2.33	2.6	2.12	2.29	2.79	3.18	2.87	2.74	2.98	2.33	4.43	3.95	3.54	3.43	6.01	3.07	2.72	3.02	2.71	1.31	1.53
Eu	1.04	0.87	1.2	0.95	0.78	0.79	0.85	0.89	0.82	1.04	0.77	0.76	0.53	0.67	0.76	0.9	0.84	0.84	1	0.95	1.15	1.27	1.08	0.99	0.86	0.83	0.8	0.88	0.76	0.2	0.28
Gd	3.87	3.78	4.33	4.81	2.16	2.25	2.48	2.55	2.22	3.06	2.13	2.51	1.79	1.89	2.31	2.63	2.65	2.36	2.87	2.61	3.98	4.18	3.39	3.5	5.32	2.19	2.37	2.2	1.95	0.92	1.16
Tb	0.03	0.01	0.01	0.01								0.02	0.01	0.01	0.01	0.01	0.01					0.89	0.01			0.01	0.01	0.01	0.01	0.01	0.01
Dy	3.33	3	3.59	4.29	1.65	2.1	1.62	1.77	2.12	2.42	1.83	2.05	1.5	1.5	1.88	2.01	1.88	1.94	2.51	2.11	3.32	3.43	2.64	2.9	4.72	1.7	1.95	1.65	1.35	0.61	0.83
Ho	0.59	0.58	0.69	0.75	0.32	0.35	0.33	0.33	0.33	0.5	0.32	0.36	0.26	0.27	0.34	0.39	0.38	0.34	0.51	0.43	0.67	0.59	0.54	0.65	0.9	0.3	0.34	0.29	0.26	0.12	0.17
Er T	1.86	1.77	1.95	2.25	0.88	1.02	0.86	1.14	1.16	1.48	0.98	1.15	0.91	0.87	0.98	1.07	1.14	1.02	1.56	1.46	2.01	1.93	1.5	1.75	3.07	0.9	0.94	0.9	0.83	0.4	0.52
	0.26	0.24	0.29	0.32	0.15	0.17	0.14	0.18	0.18	0.21	0.14	0.18	0.14	0.13	0.15	0.15	0.16	0.15	0.22	0.2	0.29	0.27	0.19	0.26	0.41	0.12	0.12	0.13	0.11	0.07	0.09
	1.74	1.7	1.9	2.24	1	0.98	1.07	1.14	1.29	1.49	1	1.04	0.99	0.85	1.06	1.06	1.08	1.16	1.6	1.3	1.67	1.89	1.4	1.74	3.07	0.82	0.91	0.83	0.75	0.48	0.57
LU	0.27	U.25	0.26	U.29	0.17	0.17	0.18	0.19	0.16	0.22	0.17	0.16	U.15	0.14	0.16	0.15	0.18	U.18	U.21	0.17	0.28	0.26	0.2	0.23	0.45	0.14	U.15	0.14	0.1	0.09	0.09