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INTRODUCTION  

Seismicity increase of about eight times is observed in a narrow area, oriented NNW-SSE between 35°S 

and 36°S and close to the Andes axis, comparing periods of 80 days before and after the great Maule 

earthquake (Figure 1). Although earthquake localizations are obtained using only two seismic stations, we 

are able to acceptably define the activated area assuming an average value depth. The area coincides with 

the northern part of a line of Pleistocene Calderas within Las Loicas trough (Ramos y Folguera 2005; 

Folguera et al. 2006). Magnitude Mc varies from 0.7 to 2.5, except for two earthquakes of M=4.1 and 

M=4.4. 

GEOLOGICAL SETTING  

The Neuquén basin is formed by the extension in the Upper Triassic and Lower Jurassic in the western 

Gondwana margin. The basin, during the Triassic-Jurassic experienced extensive cycles and faults were 

generated with N, ENE and NW directions, which controlled the geometry of the subsequent evolution 

(Vergani et al. 1995). A compressive regime was installed between the middle Cretaceous to upper 

Miocene (Vergani et al. 1995; Ramos and Kay 2006). Ramos and Folguera (2005) and Ramos and Kay 

(2006) proposed the existence of different stages of compression and extension during the Cenozoic. 

Between the middle Miocene (~ 17 Ma) to late Miocene a compressive regime was installed (Ramos and 

Folguera, 2005). It has been attributed to a subducted Nazca plate flattening process (Ramos and Kay 

2006) and become responsible for: a) the fold and thrust belt of Malargüe (FPCM) main structure, and b) 

the crystalline San Rafael block exhumation.  FPCM has both a thin and thick-skin tectonic, in the first the 

deformation is controlled by low-angle thrust new structures oriented N-S to NNE, and in the later by 

high-angle reverse faults oriented NNW to NW (Giambiagi et al., 2009) corresponding to the reactivation 

of structures formed during the rifting episodes in the Mesozoic and inverted during Cenozoic. (Giambiagi 

et al, 2005; Giambiagi et al., 2009; Yagupsky et al., 2008). 

During the Pleistocene, due to a slab deepening process, the asthenosphere were able to ascent and reach 

the sector of the Cordillera Principal and as a consequence Las Loicas trough was formed with NNW-SSE 

orientation between latitudes 35°S and 38°S (Folguera et al., 2005a,b; Ramos and Folguera, 2005; 

Folguera et al., 2006). The thick pre-existing crust causes the formation of large calderas and rhyolite 

domes (Ramos and Folguera, 2005).  

 

DATA AND METHODOLOGY 

Data are from two digital stations in the Andean back arc, Mendoza Province, Argentina (Instituto 

Geofisico-Sismologico Ing. F. S. Volponi, Universidad Nacional de San Juan, set the seismic stations at 

the fluorescent stations of Pierre Auger Observatory, Malargüe): COIH (35.11ºS. 60ºW, 1715m) with 

Guralp CMG-EDU intermediate band triaxial sensor and PUMA (35,50ºS, 69,45ºW, 1423m) with three 

S13 Geotech-Teledyne short period sensors (vertical and two horizontals). 

Readings of P and S wave arrival times (“picking”) were made via SEISAN system (Ottemoller et al., 

2011). 
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Localization and P-wave focal mechanisms of the two earthquakes with M>4.0 occurred on 2010/4/3 and 

2010/5/29 were obtained with data from regional stations: a) Argentina: COIH, PUMA, ZON (Instituto 

Geofisico-Sismológico Ing. F.S. Volponi, Universidad Nacional de San Juan), 12 from INPRES (Instituto 

Nacional de Prevención Sísmica); PLCA (Paso Flores, Argentina, Global Telemetered Seismograph 

Network, USAF/USGS-IRIS), and 40 station from Maule Earthquake (Chile) (see TABLE 1)  

For the earthquake Mw=3.5, 01/3/15, data are from CHARGE experiment (Chile Argentina Geophysical 

Experiment, PI Susan Beck, Arizona University). The localization of those three earthquakes were made 

using HYPOCENTER (Lienert et al., 1995). We solved the focal mechanism with the first movements of 

P waves using FOCMEC (Snoke et al., 1984) FPFIT (Reasenberg and Oppenheimer, 1985) and HASH 

(Hardebeck and Shearer, 2002). Both earthquakes with M>4.0 occurred in the northern part of the 

activated area and their mechanisms are normal and strike slip respectively. 

To examine causal plausibility between the great earthquake and the activated seismicity we calculate 

static stress change with Coulomb's criterion (Toda et al., 1998, 2005) and Coulomb 3.3 software 

(http://usgsprojects.org/coulomb). The “source” is the fault plane displacement field of the Maule 

earthquake. We assume types of receiving faults selected from what geologically is known in the region, 

and friction coeficient μ´=0.6. Graven or hemigraven type normal faults are possible, and also faults with 

the same geometry as these faults but with strike slip displacement predominance over the normal one. 
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Figure 1: Events number day by day 
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RESULTS AND CONCLUSIONS 

Focal mechanisms of earthquakes from 35.3°S to the north are in agreement with a northern termination of 

Las Loicas trough at about that latitude. 

Static stress variation in the area of activated seismicity varies from about 5 bars in the north to about 4 

bars in the south (Figure 2). This make plausible that the increased seismicity between ~35.3°S and 36°S 

in Las Loicas trough are caused by the great Mw=8.8, 2/27/2010, Maule earthquake. 

Models of static stress variation in a near central point of the activated area show that the contribution of 

the normal stress is much larger than the shear stress, not only for normal slip but also for cases with strike 

slip predominance. Faults with the same geometry but having reverse slip do not become activated.    

The extension direction, perpendicular to the though, coincides with the direction of extension determined 

by the Maule earthquake coseismic displacements observed with GPS (eg, Delouis et al., 2010, Vigny et 

al., 2011). Thus the activation of seismicity is produced but the “unclumping” of the receiver faults in Las 

Loicas trough. 
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Figure 2:  Coulomb stress change by the Mw=8.8, February 27, 2010, Maule Earthquake 
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Network Station name 

INPRES 
AGREL ARCO SALAG RTUM RTLS RTCT CFAA 

RTLL GUAND CCRUZ SUCO MOGNA 

MAULE 

EARTHQUAKE 

AFTERSHOCK 

EXPERIMENT, 

CHILE 

QC07  AANI U46B U56B U54B U51B U64B U62B 

U69B U65B U43B U67B U71B U61B QC12 U57B 

U63B U32B U66B U34B QC09 U70B U73B QC06 

U68B U59B U29B U28B U60B U26B U74B U35B 

U36B U11B U02B U03B U12B U16B U15B U07B 

CHARGE SJAV PENA CONS NIEB RAFA PENA AREN BARD 

 

TABLE 1: Used stations 
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