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0. Abstract. 
Hydrocarbon reservoir calculations demands high accuracy and consequently hard work. There are two 
ways to obtain these results: numerical and graphical methods. Numerical methods cover several 
correlations and usually they have become trustworthy in the field. There are also several software 
provided by the oil industry, although they are usually expensive. On the other hand, graphical methods 
use diagrams in which accuracy depends upon designer’s point of view. 
The purpose of this project is to develop a practical tool for calculating one of the most common and 
important factors in Hydrocarbon Reservoir Engineering: the gas deviation factor, z . It will be necessary 
to use Newton’s and the Secant Numerical Methods, and also it will include the development of a 
program in C++ or VBA. Some widely used software in the Petroleum Industry, such as Pipephase, 
NPTop use similar algorithms. 
  
0.1. Importance of this project 
The main objective of this project is to develop a simple and very practical tool for calculating the gas z  
factor based on numerical methods (Newton’s and the Secant). There is software that can be easily found 
in websites, but this project not only computes the gas z  factor, but also explains the theory supporting 
this equation. 
 
0.2. Methodology 
- Review theoretical background of gas z factor 
- Review the Dranchuk and Abou-Kassem Equation of State for calculating Gas z Factor. 
- Apply Newton’s and the Secant methods to solve this equation. 
- Develop algorithms and flowchart for any language programming. 
- Software development (C++ or VBA) 
- Test its results theoretically and compare them with those obtained by Standing and Katz Graphical 
Correlation. 
- Make recommendations for its applicability. 
 
0.3. Application. 
Due to gas z  factor is a very common input data for several correlations, it can be easily used on them, 
for example in the Cullendar and Smith Method (BHFP). 
 
1. Theoretical background of gas z factor. 
1.1 Ideal-Gas Law. An equation describing the relationship between the volume occupied by a gas and 
the pressure and temperature is called an equation of state (EOS). Combining Boyle’s and Charles’ laws, 
we obtain the EOS for an ideal gas: 

TRnVp ⋅⋅=⋅  (Eq. 1.1) 
Where p = pressure [psia]; V = volume [ft3]; n = number of pound-moles of gas; R = universal gas 
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; and T = absolute temperature, oR.  

 
1.2 Real-gas behavior. The Real-gas law is simply the pressure/volume relation predicted by the ideal-
gas law modified by a correction factor that accounts for the nonideal behavior of the gas. The real-gas 
law is: 



 

 

TRnzVp ⋅⋅⋅=⋅  (Eq. 1.2) 
Where z = dimensionless quantity called the z factor. This corrects the simple Equation of State (EOS) for 
an ideal gas and allows us to describe the behavior of a real gas. 
 
1.3 Principle of Corresponding States. Several gas properties have the same values for similar gases at 
identical values of reduced pressure and temperature. Reduced pressure and reduced temperature for pure 
compounds are defined as: 
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For gas mixtures , pr and Tr are called Pseudoreduced pressure and pseudoreduced temperature and they 
are defined as: 
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Where pc = critical pressure for a pure gas, [psia]; ppc = pseudocritical pressure for a gas mixture, [psia]; 
Tc = critical temperature for a pure gas, [oR]; and Tpc = pseudocritical temperature for a gas mixture, [oR]. 
The critical point cc Tp ,  for a pure substance is the pressure and temperature at which the properties of 
the liquid and vapor phases become identical. At pressures above pc, liquid and gas cannot coexist, 
regardless of the temperature; at temperatures above Tc, the substance cannot be liquefied, regardless of 
the pressure. For pure substances, pc and Tc are determined experimentally. For mixtures, ppc and Tpc 
either are computed with some consistent set of mixing rules or are estimated from correlations. 

 
Graph 1.1. 

1.4. Sutton’s Method for Calculating Pseudocritical Properties. When gas composition is unknown, 
the Sutton’s method is a good device to estimate both Pseudocritical Temperature )( cT  and 
Pseudocritical Pressure )( cp . Sutton’s method uses the following equations: 



 

 

26.31318.756 ggcp γγ ⋅−⋅−=  (Eq. 1.7) 
2745.3492.169 ggcT γγ ⋅−⋅+=  (Eq. 1.8) 

Where gγ  is the Specific Gravity of gas which is defined as the ratio of the densities of the gas and dry 
air when both are measured at the same pressure and temperature. 
 
1.5 Standing and Katz Graphical Correlation. It is a function of the pseudoreduced pressure, rp , and 
pseudoreduced temperature, rT . The algorithm for this procedure is simple: after calculating rp , and rT , 
these values are entered in respective axis and in the intersection, it is obtained the z  factor. This 
apparently easy procedure becomes tedious when repeating over and over again in correlations which 
need to calculate z  factor. 

 
2. The Dranchuk and Abou-Kassem Equation of State for calculating Gas z Factor. 
This is based in the following equations: 
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The constants A1 through A11 are as follows: 
A1=   0.32650 
A2= -1.07000 
A3= -0.53390 
A4=   0.01569 
A5= -0.05165 
A6=   0.54750 
A7= -0.73610 
A8=   0.18440 
A9=   0.10560 
A10=   0.61340 
A11=   0.72100 
 
Dranchuk and Abou-Kassem fitted the EOS to 1,500 data points with an average absolute error of 0.486% 
when the z factor is a function of rT  and rρ . The z factor based on EOS is accurate within engineering 
accuracy over the following ranges: 302.0 <≤ rp , 0.30.1 ≤< rT  
The Dranchuk and Abou-Kassem EOS must be solved iteratively because the z factor appears on both 
sides of the equation. The solution to this problem can be obtained by use of a root solving technique, 
such as Newton’s method, or the secant method. The root solving procedure requires that we rearrange 
(Eq. 2.1) to the form. 

0)( =zf  (Eq. 2.7) 
Rearranging (Eq. 2.1) gives 
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Newton’s and the secant methods require the first derivative of (Eq. 2.8) with respect to z at constant 
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 Newton’s method assumes that the derivative is evaluated 

analytically by explicit differentiation of the function )(zf . The procedure to derivate (Eq. 2.8) with 
respect to z is: 
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(Eq. 2.12) in (Eq. 2.11) 
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Using (Eq. 2.15) and (Eq. 2.16) in (Eq. 2.13) 
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Using (Eq. 2.9) and (Eq. 2.13) in (Eq. 2.17) 
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Using (Eq. 2.9) and (Eq. 2.18) in (Eq. 2.10) 
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 (Eq. 2.19) 

 
 
3. Newton’s and the Secant methods. 
3.1. Derivative. Geometrically, the derivative of a function can be interpreted as the slope of the graph of 
the function. Its calculation derives from the slope formula for a straight line, except that a limiting 

process must be used for curves. The formula for the slope of a straight line is 
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)tan(θ  (see Graph 1). For a curve, this ratio will depend upon where the points are 

chosen, reflecting the idea that a curve has a different slope at different points. To find the slope at a 
desired point, the choice of the second point needed to calculate the ratio represents a difficulty, because, 
in general, if the second point is far from the first, the ratio will represent an average slope along the 
portion of the curve cut off, rather than the slope at either point (see Graph 2). To get around this 
difficulty, a limiting process is used whereby the second point is not fixed but specified by ii xx −+1 . 
When ii xx −+1  approaches 0 , the limiting ratio will represent the actual slope at the given point. 
To sum up, the derivative of )( ixf , if this limit exists, is defined as: 
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 (Eq. 3.1) 

 



 

 

 
Graph 3.1.  

Graph 3.2. 
 
3.2. Approximation and Round–Off Errors. Truncation error are those resulting from using 
approximate estimates in place of the exact mathematical procedures. When analytically solutions are 
available, we have true error. When they are not available, we have apparent error. Round–Off error or 
computer error are those caused for computers because they can only represent quantities with a finite 
number of digits. There are other types of errors, including blunders, formulation or model error, and data 
uncertainty. 
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As the apparent or true error becomes smaller, the closer the solution is to the true value. We use absolute 
value for the error. Due to iterative character of error estimation, a limit can be reached where in a 
tolerance can be specified sε  

sa εε <  (Eq. 3.4) 

sε  is linked with the number of significant figures as follows: 
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Where, n  is the number of significant figures (those can be used with confidence) 
 
3.3. Taylor Series Expansion. Let us consider the following Graph: 
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Graph 3.3. 

 

The Taylor’s theorem states that any smooth function can be approximated by a polynomial. i.e. if the 
function f  and its first 1+n  derivatives are continuous on an interval containing ix  and 1+ix , then the 
value of the function at 1+ix  is given by: 
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Where nR  is defined as remainder. If nR  is neglected, then (Eq. 3.6) becomes the Taylor Polynomial 
Approximation to )( 1+ixf . Taylor series is said to provide means to predict the value of function at one 
point in terms of the function value and its derivatives at another point: 
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The term prediction can be used for both to predict the future or to predict the past. (Eq. 3.6) is used to 
predict the future and it is classified as Forward Difference Approximation. On the other hand, to predict 
the past, (Eq. 3.6) can be modified to give the Backward Difference Approximation. 
 
3.4. The Newton-Raphson Method. 
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Graph 3.4. 
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3.5. The Secant Method. This method is an extension of Newton – Raphson for cases where )(' xf  can 
not be analytically obtained. 
Using 1st – order Backward Difference Approximation: 
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(Eq. 3.8) in (Eq. 3.7): 
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Notice that the approach requires two initial estimates of x . 
 
 
4. General Algorithms 
4.1. Algorithm for the Newton-Raphson Method. 
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The constants A1 through A11 are as follows: 
A1=   0.32650 
A2= -1.07000 
A3= -0.53390 
A4=   0.01569 
A5= -0.05165 
A6=   0.54750 
A7= -0.73610 
A8=   0.18440 
A9=   0.10560 
A10=   0.61340 
A11=   0.72100 
 
4.2. Algorithm for the Secant Method. 
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All other equations given in the algorithm for the Newton–Raphson method are applicable in this 
algorithm with exemption of (Eq. 4.1) and (Eq. 4.3) 
 
 
 
 
4.3. Flow Charts. 
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Graph 4.1 

 
 
5. Conclusions 
- After 100 tests, this equation fitted well with Standing and Katz graphical correlation, so its results can 
be used trusty as a good alternative. 
- There are small differences (beyond significant figures) between Newton’s Method and Secant. This can 
be explained if we consider these two methods are approximations. 
- If we compare time to compute gas z  factor using Standing and Katz graphical correlation and 
Dranchuk and Abou-Kassem Equation, there is a considerable saving. It takes about one minute as 
average, meanwhile Dranchuk and Abou-Kassem takes just few seconds. 
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