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Abstract
Geological process models typically simulate a range of dynamic processes to 
evolve a base topography into a final two-dimensional cross section or three-
dimensional geological scenario. In principle, process parameters may be up-
dated to better align with observed geophysical or geological data. However, it 
is hard to find any process model realisations that fit all observations if data sets 
are complex and sparse in space or time because the simulations typically de-
pend highly non-linearly on base topography and dynamic parameters. As an 
alternative, geophysical probabilistic tomographic methods may be used to esti-
mate the family of models of a target subsurface structure that are consistent both 
with information obtained from previous experiments and with new data (the 
Bayesian posterior probability distribution). However, this family seldom embod-
ies geologically reasonable images. Here we show that the posterior distribution 
of tomographic images obtained from travel time data can be fully geological by 
injecting geological prior information into Bayesian inference and that we can 
do this near-instantaneously by using trained mixture density networks (MDNs). 
We invoke two geological concepts as prior information about the possible depo-
sitional environment of an imaged target structure: a braided river system and a 
set of marine parasequences. Each concept is parameterised by the latent param-
eters of a generative adversarial network. Data from a target structure can then 
be used to infer the family of compatible latent parameter values using either 
geological concept using MDNs. Our near-instantaneous MDN solutions closely 
resemble those found using relatively expensive Monte Carlo methods. We show 
that while the use of incorrect geological conceptual models provides signifi-
cantly less accurate results, a classifier neural network can infer which geological 
conceptual model is most consistent with the data. It is thus demonstrated that 
even apparently barely related geophysical data may contain information about 
abstract geological concepts, and that geological conceptual models are key to 
creating reasonable images from geophysical data.
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1   |   INTRODUCTION

Geological process models simulate dynamic processes 
to evolve an initial topography into a geologically plausi-
ble two-dimensional cross section or three-dimensional 
geological model (Burgess et al., 2001; Hill et al., 2009; 
Paola, 2000; Tetzlaff & Harbaugh, 1989). The input pa-
rameters to the geological process model may be up-
dated to align the model output with geophysical data 
such as recorded seismic travel times or waveforms. 
However, a number of problems may occur: some geo-
logical process models are chaotic in their behaviour 
(Burgess & Emery,  2004; Tetzlaff & Harbaugh,  1989) 
such that a small change in the input could lead to a 
significantly different output. In addition, the model 
output is never uniquely constrained by data so that 
an infinite family of dynamic models is consistent with 
observations. Finding the family of realisations that are 
consistent with observed data may be infeasible due 
to the computational expense involved. And finally, 
the true structure of the Earth always deviates from 
the model output, even when compared to the level of 
detail of the model. As an alternative, we may look to 
probabilistic inversion methods to identify the family of 
models that fit geophysical data within their uncertain-
ties (Tarantola, 2005). Unfortunately, as applied to date, 
geophysical inversion methods do not impose geological 
realism as a criterion for the solution. As a result, the 
inferred models are usually geologically implausible. In 
this paper, we aim to combine the geological prior infor-
mation embodied within process models with probabil-
istic inversion methods of geophysics to obtain a set of 
geological models that both fit the recorded data and are 
geologically reasonable.

Seismic travel time tomography is commonly applied to 
image the Earth's subsurface (Aki & Lee, 1976; Dziewonski 
& Woodhouse,  1987; Lee et al.,  1995; Tsekhmistrenko 
et al.,  2021; Zhang & Curtis,  2020). By measuring the 
time taken for waves to travel between pairs of points on 
the Earth's surface, tomographic methods estimate maps 
of subsurface velocities in up to three dimensions. The 
subsurface is usually described by a finite-dimensional 
parameter matrix m which often consists of seismic ve-
locities at each of a set of subsurface locations. We study 
the situation where those parameters are to be inferred 
from a vector of recorded data d which describe the travel 
times of the seismic energy between a set of sources and 
receivers.

Estimating subsurface velocities from travel times is 
a non-linear inverse problem (Aki & Lee, 1976). The un-
known inverse function is potentially complicated and ill-
posed and always has a non-unique solution which means 
that infinitely many subsurface parameter matrices fit the 
data to within measurement uncertainty. It is therefore 
impossible to infer which particular parameter matrix 
produced the recorded data; the most that one can achieve 
is to constrain the family of parameter matrices that are 
consistent with measured data as tightly as possible.

In this context, Bayesian inversion provides a general 
method to define the statistical distribution of parame-
ter matrices that fit the data and assigns the probability 
density of each parameter matrix given the data �(m| d) , 
known as the posterior probability distribution function 
(pdf) which here is referred to simply as the posterior. 
Bayes theorem allows us to calculate the posterior as 
follows:

where �(d|m) is called the likelihood which describes the 
probability of observing data d if parameter matrix m is true, 
�(m) is the prior probability distribution of m (here referred 
to as the prior), and �(d) describes the marginal probability 
of the data post-experiment—also called the evidence. If pa-
rameters m are real-valued, then each of these distributions 
is a probability density, and Tarantola  (2005) gives a clear 
exposition of how they should be defined.

Our aim is to improve knowledge about the parame-
ter values. Following Bayes theorem, this can be achieved 
by increasing the amount of relevant information in the 
observed data set which is represented by the likelihood, 

(1)�(m| d) = �(d|m)�(m)

�(d)
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Highlights

•	 Combined geological process models and prob-
abilistic geophysical tomography.

•	 Solutions obtained are probability distributions 
over geologically plausible models.

•	 Near-instantaneous inversion of data for model 
parameters using trained neural networks.

•	 Possible to constrain most appropriate geologi-
cal conceptual model from geophysical data.

•	 First application of a fast stratigraphic forward 
model: SedSimple.
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or increasing information in the prior pdf. The likelihood 
and prior have equal mathematical weight in Equation 1, 
and while most work focuses on adding information 
through better data or improved data processing and thus 
targets the likelihood, in this study we aim to inject more 
geological information about the parameters through the 
prior probability distribution. This paper focuses on the 
development and demonstration of a methodology that 
introduces the information and solves the resulting in-
verse problem efficiently.

Conceptual models are the hierarchically highest level 
of information in most geological studies. In the current 
context, they describe our understanding of which geo-
logical processes have influenced the current subsurface 
structure and composition. We consider two geological 
conceptual models in this study: sedimentary structures 
created either by terrestrial river channel systems or al-
ternatively by marine parasequences. We represent each 
conceptual model by large sets of different geometries of 
rock types that might be generated by processes invoked 
in that model. These geometries are in turn represented 
by a group of neural networks which are trained to regress 
through each set, to allow other representative geometries 
to be generated efficiently.

The generation of river channel geometries and sub-
sequent training of neural networks was already per-
formed by Laloy et al.  (2018): the resulting networks 
are available online and produce rudimentary maps that 
depict possible geometries of river channels in a back-
ground medium, parameterised by these two binary fa-
cies. We additionally introduce prior information about 
marine parasequence structures created by a geological 
process forward model called SedSimple (Tetzlaff, 2022). 
SedSimple simulates sedimentary deposition, erosion 
and transport over geological timescales given a base to-
pography and relative sea level curve, to create a three-
dimensional geological conceptual model simulation of 
the subsurface. Compared to other, often commercially 
available process models, such as SLB's GPM (Courtade 
et al.,  2021; Otoo & Hodgetts,  2021), DionisosFlow™ 
(Al-Wazzan et al., 2021; Borgomano et al., 2020; Hamon 
et al., 2021), SedsimX (Snieder et al., 2021), or CarboCAT 
(Masiero et al., 2021), SedSimple requires less computa-
tional resource making it possible to run a large number 
of simulations, but at the cost of reduced complexity in 
modelled processes and hence in the produced simu-
lations. We train neural networks to represent the in-
formation in a large set of geometries obtained from 
SedSimple simulations, to produce networks for shallow 
marine environments that mirror the fluvial networks 
of Laloy et al. (2018).

Parameterising the geological prior information using 
neural networks is important because geological process 

forward models cannot be used in inversion schemes di-
rectly. Their relationships between simulated geological 
geometries and controlling dynamic parameters and base 
(initial) topographies are typically both chaotically com-
plex and very high dimensional. This makes it very expen-
sive, if not practically impossible, to find a set of dynamic 
and topographic controls that produce geometries which 
fit observed data. Re-parameterising the geological sim-
ulations into a more convenient (neural network based) 
form allows us to find geometries similar in character to 
those produced by the GPM, but which also fit the geo-
physical data.

More generally, geological data are commonly avail-
able as examples (called statistical samples) of a concep-
tual model. These might be facies maps from geological 
cross sections, from field outcrops or from geological pro-
cess model simulations, and each of these might require 
a specific set of physical processes (a conceptual model) 
to be invoked to explain their geological origin. While the 
true parameter matrix or image in our tomographic vol-
ume may be explained using the same conceptual model, 
it will never exactly match one of those observed or sim-
ulated samples. Therefore, the parameterisation method 
must be able to generate other geological cross sections or 
three-dimensional facies maps that conform to the same 
concept, in other words, which are similar but not iden-
tical to the given set of samples. In addition, the method 
must facilitate our goal to explore the space of possible 
subsurface geometries to find those that are consistent 
with the observed geophysical data.

Exploring high-dimensional parameter spaces is ex-
traordinarily computationally demanding, a phenome-
non referred to as the curse of dimensionality (Curtis & 
Lomax,  2001). In order to make this feasible, we must 
represent the geological information using fewer repre-
sentative parameters, usually called latent parameters. 
In principle, we expect that this is possible because 
different points on geological facies maps are not spa-
tially independent (indeed they are strongly correlated 
in space, as observed in all geological outcrops—Arnold 
et al.  (2019)) and so may be supported by a lower-
dimensional manifold of latent parameters (Arjovsky 
et al., 2017). Two common mathematical constructs that 
can be used to parameterise outcrops into latent vari-
ables are Variational Auto Encoders (VAEs) and gener-
ative adversarial networks (GANs)—both being types 
of Neural Networks. In this research, we choose GANs 
for their demonstrated generational quality over VAEs 
and their near-instantaneous generation of samples 
which enables more rapid inversions in our applications 
(Goodfellow, 2016).

We invert seismic arrival times for the latent param-
eter posterior distribution using two methods: Markov 
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chain Monte Carlo (McMC) and mixture density net-
works (MDN). The former method is computationally ex-
pensive but tends towards the correct solution in the limit 
of infinite sampling (Haberland et al., 2023; Mosegaard & 
Tarantola, 1995; Zhang & Curtis, 2020). The latter method 
is another neural network method which has been used 
successfully to obtain marginal posterior distributions 
in a travel time tomographic setting (Earp et al.,  2020; 
Earp & Curtis,  2020; Meier et al.,  2007a, 2007b; Meier 
et al.,  2009; Taroudakis & Smaragdakis,  2016). Post-
training, the MDN produces an estimate of the posterior 
distribution in near-real time, and when combined with 
the GAN described above, we produce a method that rap-
idly inverts new data to estimate solutions of the Bayesian 
non-linear tomography problems that include geological 
prior information.

The importance of selecting appropriate prior infor-
mation is highlighted by Kass and Wasserman  (1996). 
Previous methods for including geological information 
in prior distributions include using a multi-point statis-
tical method to simulate geology (González et al.,  2008; 
Lochbühler et al.,  2015), Hidden Markov Models (Feng 
et al., 2018; Moja et al., 2019; Nawaz & Curtis, 2016) and 
more recently using Neural Networks (Laloy et al., 2018; 
Mosser et al., 2020; Song et al., 2021a, 2021b). In this paper, 
we also analyse cases where inappropriate geological prior 
information is imposed on the problem and demonstrate 
that in principle such cases can be detected and corrected.

In subsequent sections, we introduce our methodol-
ogy in six sub-sections: first travel time tomography, then 
generative adversarial networks, followed by Markov 
chain Monte Carlo, and mixture density networks, then 
posterior classification probabilities, and lastly geological 
information. Thereafter, we describe our specific worked 
example, followed by the results, a discussion and a sum-
mary of our conclusions.

2   |   METHODOLOGY

2.1  |  Travel time tomography

The time that energy takes to travel between two points in 
a medium contains information about the part of the me-
dium through which it propagated. In seismic or acous-
tic tomography, the travel time stores information about 
variations in wave slowness (the reciprocal of wave speed) 
averaged over the propagation path. If multiple energy 
source and receiver locations are used, each travel time 
corresponds to a different path. In seismic tomography, 
we use different travel times to estimate the spatial dis-
tribution of slowness or velocity in the Earth's subsurface 
(Aki & Lee, 1976).

The likelihood �(d|m) in Equation  1 compares the 
travel times that would occur through a proposed parame-
ter matrix to the observed travel times. We therefore need 
to compute synthetic travel times from any proposed pa-
rameter matrix, which we achieve by solving the Eikonal 
equation

with s(x) the medium slowness and t(x) the arrival time 
from a fixed source location to any other location x. 
Equation 2 can be solved efficiently using a finite differ-
ence approximation (Podvin & Lecomte, 1991; Rawlinson 
& Sambridge,  2004), where a finer discretization of the 
simulation provides more accurate results.

The comparison between the travel times of the pro-
posed parameter matrix and the observed travel times 
allows a gradient direction in parameter space to be 
computed that should infinitesimally improve the data 
fit. In linearised travel time tomography, we iteratively 
update the slowness or velocity parameters by a small 
perturbation in that direction until a suitable data fit is 
achieved. Unfortunately, using that approach it is never 
clear whether an approximately correct parameter matrix 
has then been found, due to the extensive and complex 
minima in the data misfit function. Therefore, in MDN to-
mography, we train a neural network to estimate directly 
the distribution of all slowness or velocity parameters that 
fit the data within their uncertainties, as explained below.

2.2  |  Generative adversarial networks

We store prior information about the geological concepts 
inside a generative adversarial network (GAN). GANs 
were introduced by Goodfellow et al.  (2014) to generate 
high-dimensional samples efficiently from a relatively 
low-dimensional space of so-called latent parameters. A 
GAN consists of two separate NNs: a generator and a dis-
criminator as shown in Figure 1. We train the generator to 
generate high-dimensional outputs that approximate sim-
ulations from a training distribution (represented by a set 
of samples from that distribution called the training set). 
We train the discriminator to discriminate between simu-
lations coming from the training distribution and outputs 
created by the generator. The training is adversarial in 
the sense that the discriminator is trained to minimise a 
loss function while the generator is trained to maximise 
the same loss, such that the distribution of outputs of the 
generator approaches the training distribution, at which 
point the discriminator can no longer discriminate be-
tween the two distributions. After training, the discrimi-
nator is discarded and the generator is used as an efficient 

(2)(∇t)2 = s2
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mapping from the lower-dimensional latent space to a 
higher-dimensional simulation space. In this study, the 
high-dimensional simulations are geological param-
eter matrices m, and we use two specific variants in the 
type of GAN to represent the generator: the Spatial-GAN 
(Jetchev et al., 2016) and the Wasserstein-GAN (Arjovsky 
et al., 2017).

The input to the generator G is a latent vector z ∼ �z , 
where �z is a distribution that can be chosen such that 
samples can be drawn easily (where ~ means ‘distributed 
according to’); typically, a Uniform or Gaussian distribu-
tion is chosen. The number of dimensions in �z has to be 
sufficiently large to describe the low-dimensional mani-
fold of the training distribution. Unfortunately, the di-
mensionality of this manifold is unknown so a suitable 
number of dimensions in z is found by trial and error. G 
can be thought of as a mapping from the latent space to 
the high-dimensional generated parameter matrix space, 
denoted as G

(
z; �g

)
, where �g represents the network pa-

rameters; this mapping is referred to simply as G(z) for 
brevity from hereon.

The input to the discriminator is a sample z ∼ �z 
randomly selected from either the generator G(z) or the 
geological training distribution m ∼ �geol.. The discrimi-
nator outputs a scalar representing the probability that 
m is a sample from the geological distribution (the train-
ing set). We train D to maximise the output probability 
of D

(
m ∼ �geol.

)
 and minimise the output probability of 

D
(
G
(
z ∼ �z

))
. Conversely, G is trained with the opposite 

goal to maximise log[1 − D(G(z))]. The loss for the GAN 
as a whole can be described by the value function V (G,D):

We do not directly optimise for V (G,D) but rather up-
date the two networks separately by alternately minimis-
ing the following loss functions for D and G respectively:

The adversarial objectives of the two networks 
imply that we seek an equilibrium between the two. 
Unfortunately, training to find equilibria is difficult 
(Salimans et al.,  2016). There are optimizers that find 
equilibria but none are available for the non-convex cost 
functions and the continuous and high-dimensional pa-
rameter spaces that occur when training GANs. Instead, a 
gradient descent algorithm is used that finds a low value 
of a cost function, and alternating between updating G and 
D a pseudo-equilibrium is found. Since the optimisation 
algorithm is sub-optimal, the GAN may fail to converge 
during training, and it is common for multiple GANs to be 
trained in order to find one that performs well.

Convergence during training may be promoted by 
using a different loss function for D that measures the dis-
tance between two distributions: �geol and �gen.. Arjovsky 
et al. (2017) show that the Jensen-Shannon distance used 
in Equation  4 may not provide a gradient towards the 
solution in all scenarios, as it is not always differentiable. 
Updating Equation 4 to use the so-called Wasserstein dis-
tance measure can mitigate this problem. LD then becomes

The Wasserstein distance is shown to be continu-
ous and differentiable almost everywhere (Arjovsky 
et al., 2017). The improvements to GAN training include 
improved training stability and reduced mode collapse 
(the latter is the term used to describe situations where 
multiple high-dimensional features are mapped to the 
same latent parameter by the GAN, thus restricting its 
generation capability).

Jetchev et al. (2016) updated the GAN architecture to 
make it better suited to synthesising textures or maps; the 
updated architecture is called a Spatial-GAN or SGAN. 
Texture synthesis is the generation of samples of a given 
texture, which is defined as repeating patterns with some 
degree of stochasticity (Georgiadis et al., 2013). Geological 

(3)min
G

max
D

V (D,G)=Em∼pgeol.(m)log[D(m)]

+Ez∼pz(z)log[1−D(G(z))]

(4)

LD = − Em∼�geol(m)
log[D(m)] − Ez∼�z(z)log[1 − D(G(z))]

(5)LG = Ez∼�z(z)log[1 − D(G(z))]

(6)LD = − Em∼�geol.
D(m) + Ez∼�zD(G(z))

F I G U R E  1   Schematic representation of a generative adversarial network. The discriminator D and generator G are two independent 
Neural Networks. G is trained to map a latent sample z ∼ �z to a generated simulation m ∼ �gen.. D is trained to discriminate between 
simulations coming from the generator m ∼ �gen. and geological simulations coming from the training set m ∼ �geol.. Symbol ~ means 
‘distributed according to’.
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parameter matrices can be similar to textures as they often 
contain approximately repeating patterns and have some 
stochasticity (e.g. repeating sedimentary layers with vary-
ing thicknesses, or meandering river channels consisting 
of similar facies). The input to an SGAN is a latent tensor 
(matrix) rather than simply a latent vector as used in a 
standard GAN. Furthermore, all the layers in the SGAN 
are convolutional layers (Jetchev et al., 2016). This enables 
us to scale the input tensor to obtain a different-sized out-
put, that is in our case, a larger latent tensor results in a 
larger geological parameter matrix. What is more, individ-
ual elements of the latent tensor describe only a single, 
localised patch of the output parameter matrix. Thus, we 
can update a single patch of an output parameter matrix 
while keeping the rest of the matrix constant. The dis-
criminator is also updated to output a loss for each entry 
of the input tensor.

In this paper, we invert arrival times directly for the 
latent parameters used in the GAN. The latent parame-
ter distribution used when training the GAN is therefore 
the prior distribution. Unlike in traditional inversions 
where the prior distribution is unknown or assumed to 
be known, in this case, we choose the distribution of the 
latent parameters. After training, the latent distribution 
represents the complex distribution over the training im-
ages, therefore the latent distribution represents �(m) in 
Equation 1. Note that this approach does introduce a sys-
tematic error if the GAN produces incorrect simulations. 
We therefore encourage the use of large training sets and 
an appropriate number of latent parameters to encapsu-
late all variability within the geological prior distribution.

2.3  |  Markov chain Monte Carlo

We aim to make a reasonably accurate estimate of cer-
tain statistics of the posterior distribution �(m| d) in 
Equation 1. We could sample the prior distribution �(m) 
and compute the likelihood for those samples to obtain 
an estimate of the posterior distribution. However, the 
maxima in �(m) do not necessarily align with the maxima 
in �(m| d) which would make sampling of the posterior in-
efficient. What is more, the likelihood �(d|m) may intro-
duce non-linear relationships that further impede finding 
a representative sampling of �(m| d). We would therefore 
like to sample �(m| d) directly, which is approximately 
possible using Markov chain Monte Carlo (McMC) sam-
pling (Mosegaard & Tarantola, 1995).

McMC sampling creates a chain of samples, where 
each sample is found using a two-step process: first, we 
sample a parameter according to a proposal distribution 
q
(
m′|m

)
 which describes the probability that we should 

consider a move to m′ given that we are at m. Second, the 

proposed sample is accepted or rejected depending on the 
probability of acceptance

where we assume an explicit form for the likelihood 
ratio (central terms in the fraction) of exp − �S

�2
, where 

�S = S
(
m�

)
− S(m) which is the difference in misfits S to 

travel time data between the proposed and current samples 
m′ and m, and �2 is the variance or noise on the observed 
travel time data. Thus, for similar prior probabilities and 
if q is symmetric in m′ and m, if the misfit of the proposed 
parameter m′ is lower than the current parameter m, then 
m′ is always accepted as a new sample of the posterior. In 
the reverse case, m′ is accepted as a posterior sample with 
a probability based on the difference between the misfits of 
the proposed and current model. If m′ is rejected, the cur-
rent model is repeated (duplicated) in the chain.

From an initial parameter sample, consecutive sam-
ples are found iteratively using Equation  7. Metropolis 
et al.  (1953) and Mosegaard and Tarantola  (1995) show 
that after an infinite number of samples, the set of pa-
rameter samples is distributed according to the posterior 
distribution. However, an infinite number of samples is 
computationally infeasible, as is a number of samples that 
is sufficiently large to approximate this case in practical, 
non-linear tomographic problems. Therefore, multiple 
chains are computed in parallel, each with different ini-
tial parameters, such that we obtain a greater diversity 
of samples more rapidly. What is more, having multiple 
chains allows for more resilience if a chain gets stuck in 
a maximum.

Although the acceptance probability in Equation 7 en-
sures that we end up with a set of samples that estimate 
the posterior distribution if sampled infinitely many times, 
we would like a finite set of samples that are representa-
tive of the posterior distribution. What is more, we would 
like to obtain this finite set efficiently. Therefore, we must 
design our proposal distribution q such that we minimise 
the number of rejected samples while still spanning the 
parameter space. We define our proposal distribution as 
randomly selected perturbation to parameters of the pre-
vious parameter matrix in the chain. We can vary both the 
magnitude of the perturbation and the number of param-
eters updated to optimise the efficiency of posterior dis-
tribution sampling. Even after such provisions, samples 
are only ever approximately distributed according to the 
posterior. We therefore often only analyse statistics of the 
sample set (usually moments such as means, variances, 
etc.). These are assumed to be more robust estimators of 
properties of the posterior distribution than are individual 
samples.

(7)Paccept =

{
1,

�
(
m�

)
�
(
d|m�

)
q
(
m|m�

)

�(m)�(d|m)q(m�|m)

}
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2.4  |  Mixture density networks

Mixture density networks (MDN) are a type of neural net-
work that can be trained to infer the posterior distribu-
tion of parameters directly from measured data (Bishop 
& Nasrabadi, 2006). The posterior �(m| d) is approximated 
by a weighted sum of multiple Gaussians

where K is the number of Guassians, �k the kth 
Gaussian's mixing coefficient or weight, N the Gaussian 
or Normal distribution, �k the Gaussian mean and �2

k
 the 

Gaussian standard deviation. The vector parameters �, 	
� and � are inferred from the data using a neural net-
work which may have any of a range of architectures 
and complexities.

MDN training is performed with N parameter–data 
pairs 

{(
mn, dn

)
:n = 1, … ,N

}
, which are generated by se-

lecting mn according to the prior pdf and calculating the 
corresponding measured data dn using a synthetic forward 
model. The neural network weights �MDN are optimised 
by minimising a cost function E which for independent 
training data is taken to be

with N the number of pairs in the training set (Bishop & 
Nasrabadi, 2006). To optimise the network, we calculate de-
rivatives of the cost function with respect to each network 
weight, which are obtained using a backpropagation proce-
dure (Bishop & Nasrabadi, 2006). Due to the sum over all 
data points in Equation 9 we backpropagate the derivatives 
for each data point and then sum the resulting N derivatives 
to find the derivative of E

(
�MDN

)
. If samples from the prior 

distribution are used as training data for the network then 
the prior becomes implicit in the training procedure. After 
training, the resultant network then directly estimates the 
complete posterior probability distribution given any data 
set as input.

While a single MDN can predict the posterior distri-
bution directly, we opt to train multiple networks with 
different layer sizes. As MDNs are prone to mode col-
lapse, different networks may find different modes of 
the posterior distribution. The ensemble of predictions 
is combined linearly in a so-called mixture of experts 
(Dietterich, 2000).

2.5  |  Posterior classification probabilities

We aim to assign any input travel time data to one of 
a set of discrete classes, each defined by the geological 
concept model under which similar training data were 
generated. A neural network tasked with the classifica-
tion of its inputs into a set of discrete classes is often 
trained to output a score for each possible class. The 
classification derived by the network is then the class 
with the greatest score. If the network is trained with 
particular cost functions, the outputs for each class be-
come estimates of the Bayesian posterior probabilities 
(Richard & Lippmann, 1991), provided that the network 
is trained using a one-hot encoding scheme (i.e. the 
true classification is encoded as 1 for the correct class 
and 0 for the other classes) and that the network has 
a sufficient number of trainable weights. Richard and 
Lippmann  (1991) prove this for a squared error and 
cross-entropy cost function.

Assume that we have a training set containing a pa-
rameter matrix m which belongs to one of N classes in {
Cn:n = 1, ⋯ ,N

}
. Let 

{
yn:n = 1, ⋯ ,N

}
 be the network 

output and 
{
cn:n = 1, ⋯ ,N

}
 the desired output. Then, 

we can construct the squared error cost function

with �class the network weights, yn(m) the network output 
for class n and cn the desired output for class n (either 1 or 0) 
for each of the N classes (Richard & Lippmann, 1991). The 
neural network weights are then optimised using a similar 
backpropagation algorithm to the MDN (see Section 2.4). 
For the prior distribution, we assume a Uniform distribu-
tion over the different geological concept classes.

2.6  |  Geological information

The conceptual geological model usually describes our be-
liefs about the tectonic setting, depositional environment 
of sediments, geographical relationships to continents 
and marine waters and other high-level information. This 
model ultimately governs lower-level information about 
the exact geometry, abundance of different sediment 
types, etc. We use two conceptual models: a braided river 
system and marine parasequences. The former model has 
already been described in detail in Laloy et al. (2018), so 
here we discuss the relatively new marine parasequences 
conceptual model.

Our choice of conceptual model defines what pro-
cesses are included in the SedSimple (Tetzlaff,  2022) 

(8)�(m| d) =
K∑

k=1

(
m|�k(d), �2k(d)�k(d)

)
N

(9)

E
(
�MDN

)

= −

N∑

n=1

ln

[
K∑

k=1

�k
(
dn, �MDN

)
N
(
m|�k

(
dn, �MDN

)
, �2

k

(
dn, �MDN

))
]

(10)E
(
�class

)
= E

{
N∑

n=1

[
yn(m)−cn

]2
}
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geological process modeller (GPM) runs used herein. A 
GPM simulates geological processes through time com-
putationally to obtain a three-dimensional distribution of 
geological facies such as that shown in Figure 2 (Tetzlaff 
& Harbaugh, 1989). Simulations are started from an ini-
tial topography, for which in this study we use a sigmoidal 
topography that represents the transition from the conti-
nental shelf to the abyssal plain. Relative sea level through 
time is defined to be sinusoidal and we include an influx 
of water and sediment on the shelf representing a river. 
Lastly, we define two types of clastic sediments by setting 
their relative transportability; one sediment has double 
the transportability of the other. Note that in this manu-
script, we aim to establish and demonstrate the methodol-
ogy rather than to apply it in a real setting. We therefore 
chose these values to obtain a thick sediment with inter-
esting features rather than to emulate a scenario matching 
a certain geographical location and time interval as would 
be the case when this method was deployed in practise. 
All parameter values used herein are defined in Table 1.

After the initial parameters are defined, SedSimple 
simulates different geological processes at each of a set of 
small time steps. Such processes are sedimentary disper-
sion, erosion, transportation and deposition. Dispersion 
is the process that simulates sediment particles moving 
downhill from high to low elevations, and similarly from 
high to low concentrations when suspended in a fluid. 
The governing equation for sediment dispersion is

with elevation z, time t, diffusion coefficient D and the sed-
iment source term s. Sedimentary erosion, transport and 
deposition are also dependent on the fluid flow. SedSimple 
simulates fluid flow to determine whether sediment is 
eroded, transported, and deposited, for which a simplified 
version of the Navier–Stokes equation is employed. Erosion 
and deposition are then calculated based on empirical for-
mulae (see Tetzlaff & Harbaugh, 1989 for more information).

Although GPM algorithms are deterministic, they are 
still chaotically non-linear: a small change in the input 
variables can cause large changes in the output simulation. 

(11)�z

�t
= D∇2z + s

F I G U R E  2   3D view of example output from the geological process model SedSimple. Colours in the plot represent the relative 
concentrations of different facies in the simulation.

T A B L E  1   Parameters used for the geological process model 
simulation are shown in Figure 2. Transportability in the table is 
also known as the diffusion coefficient.

Parameter Value

Geological time 500 kA

Manning coefficient 0.3

Water source 1000 m3/s

Sediment 1 influx 60 mL/s

Sediment 2 influx 160 mL/s

Transportability sediment 1 100

Transportability sediment 2 200
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For example, if the initial simulation has two parallel river 
channels, then tiny changes in the input parameters create 
entirely different braided river systems. It is therefore dif-
ficult, if not impossible, to use a GPM directly in an inver-
sion algorithm to fit specific measured data. We therefore 
train a GAN to emulate the spatial sedimentary patterns 
produced by the GPM (Mosser et al., 2020). Since the gen-
erator in a GAN has an analytic structure, the input latent 
parameters can be varied so that the distribution of sim-
ulations produced emulates the prior distribution repre-
sented by any given set of simulations from the GPM. This 
method allows multiple GPM simulations with different 
initial parameters to be used to capture the chaotic nature 
of sedimentary distributions.

3   |   PROBLEM DESCRIPTION

In this paper, we focus on how to introduce geological 
information into tomographic studies, in particular in 
cases where multiple conceptual geological models may 
describe the geological scenario under which the imaged 
structure was created. Given that we can deploy two such 
models (one parameterised by Laloy et al. (2018) and one 
using SedSimple), we can investigate the impact on geo-
physical tomography if different (and potentially mislead-
ing) prior information is injected.

The SedSimple simulation in Figure 2 was used to con-
struct training data for the GANs that embody the second 
conceptual model. In this simulation, there are two differ-
ent sediments, both siliciclastics but with different grain 
sizes. The colours in the plot represent the abundance of 
the two sediments. We extracted 1800 two-dimensional 
32-by-32 pixel slices in both the x and y direction from 
the three-dimensional simulation that created a training 
set of parameter matrices for the GAN. For details of the 

braided river system conceptual model and SGAN train-
ing, we refer the reader to Laloy et al. (2018).

We trained a GAN to emulate the marine parase-
quences conceptual model using codes from Kang and 
Park  (2020). We tested different network architectures 
including BigGAN (Brock et al., 2018), ReACGAN (Kang 
et al., 2021), ICRGAN (Zhao et al., 2020) and WGAN-GP 
(Gulrajani et al., 2017). For each network, we minimised 
the number of latent parameters by visual inspection 
of the output and trained the same architecture multi-
ple times to reduce the effect of poor (random) network 
initialisation. The trained networks are visually com-
pared after which we selected a single best network, in 
our case, a WGAN with eight latent parameters. Training 
on this network took 7 h and 30 min on a single NVIDIA 
TITAN X.

The parameter matrices generated by both the braided 
river and the marine parasequence GAN are in a value 
range of [−1, 1] which we rescaled to [1, 2] km/s to rep-
resent a reasonable range of seismic velocities. Four sam-
ples from each GAN are shown in Figure 3, the braided 
river channel realisations on the left and marine parase-
quences on the right represent samples from the two prior 
pdfs used in this study. Although the parameter matrices 
are high-dimensional, there is a low-dimensional latent 
representation for each such matrix. The braided river 
channel prior is encoded by nine latent parameters and 
the marine parasequences prior is encoded by eight latent 
parameters. The respective GANs create mappings from 
the low-dimensional latent parameters to the prior pdfs in 
high-dimensional geophysical parameter matrices. Each 
set of latent parameter values selected from the latent dis-
tributions produces an approximate sample from the cor-
responding geological prior pdf.

To represent a geophysical tomographic survey, we de-
fined a square data acquisition geometry with corners at 

F I G U R E  3   Four realisations from the braided river system (left) and marine parasequence (right) GANs. Colours represent seismic 
velocities.
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x = −4, 4 km and y = −4, 4 km and source spacing of 1.4 km 
as shown by the red triangles in Figure 4. This geometry 
defines the locations of sources and receivers: each loca-
tion in turn acts as a seismic source, whereas all other lo-
cations act as receivers. This generated 153 unique travel 
times—the data corresponding to each parameter matrix. 
We add Gaussian noise with a standard deviation of 1% 
of the mean arrival times to the synthetic arrival times to 
simulate measurement uncertainties.

Figure  4 shows what we used as the true parameter 
matrices composed of a terrestrial river system (left) and 
marine parasequences (right). The acquisition geome-
try is indicated by red triangles. In the examples below, 
we inverted the travel times corresponding to these true 
parameter matrices for the Bayesian posterior pdf in the 
low-dimensional latent space in each case. Samples of this 
pdf could then be translated to the high-dimensional pa-
rameter space using each respective GAN. This indirect 
approach ensures that we need only estimate the posterior 
pdf over eight or nine latent parameters rather than across 
the high-dimensional 32-by-32 parameter matrix.

For each data set, we computed two estimates of the 
posterior pdf: a benchmark solution found using McMC 
and a large number of samples and a rapid estimate using 
MDNs. We validated the convergence of the McMC runs 
by monitoring the posterior marginal pdf estimates for 
each parameter in latent space. Any chains that were ob-
viously stuck in local minima (span a relatively narrow 
range of parameter values) were removed and we vali-
dated that a reasonable number of samples have been 
taken by ensuring that the posterior distribution is essen-
tially the same for the complete set as well as half of the set 
of posterior samples. We computed 40 chains with around 
2 million samples each which took approximately 3 days 
to run. This is a lot of samples for McMC runs with ca. 8 

parameters, but the latent parameter space is more infor-
mation dense than model parameter space and posterior 
pdfs in the latent space can therefore be strongly multi-
modal. We therefore run the chains for many samples to 
avoid remaining trapped in a subset of the modes.

A real basin example is provided in the form of geo-
logical models from a mapped outcrop from Last Chance 
Canyon (New Mexico, USA) interpreted by Sonnenfeld 
and Cross (1993). Geological models were extracted from 
the interpretation by digitising their outcrop model, as-
signing velocities to each of the facies, selecting suitable 
outcrop partitions, and generating synthetic arrival times 
for these partitions. We invert the arrival times from these 
geological models using the MDN to obtain geological pos-
terior estimates. This process is likely to create a geological 
model that lies significantly outside of our prior informa-
tion and training sets, since those were generated using 
a significantly different and simplified set of geological 
prior information (that encoded in the GPMs, their initial 
conditions and dynamic parameters). This therefore rep-
resents a particularly stringent test of our methods.

For each prior pdf, we trained an MDN to invert the 
data using around 3 million samples in each training set. 
During training, we monitored progress by evaluating a 
validation data set of 25% of the size of the training set. 
Multiple network architectures were used and each archi-
tecture was trained multiple times to eliminate bias due 
to their random initialisation. Using a test set of size 5% 
of the training set size we measured the network perfor-
mance. To better generalise the outputs, we selected five 
networks and combined them in a linear mixture of ex-
perts (Dietterich, 2000). We found that training the MDN 
for the complete, multi-dimensional posterior resulted 
in the MDN not finding all the posterior modes present 
in the ‘correct’ McMC posterior estimate. We therefore 

F I G U R E  4   The two ‘true’ parameter matrices for which we simulate measured data, one from each of the conceptual models: a braided 
river system (left) and marine parasequences (right). Red triangles indicate the data acquisition geometry—the locations of both sources and 
receivers between which travel time data are simulated.
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opted to train multiple networks to infer the marginal pdf 
of each individual latent parameter, similar to the tomo-
graphic work of Earp and Curtis (2020). Thus, for a single 
prior, we have Nlatent parameters ×Mmixture of experts neural 
networks (e.g. the river channel prior pdf has nine latent 
parameters giving 9 × 5 = 45 networks). Training of a sin-
gle network took about 90 min using a single NVIDIA 
Tesla K80. We had access to multiple GPUs so we could 
train the networks in parallel.

Finally, we trained a classifier NN that estimates the 
posterior probability that each conceptual model (embod-
ied in one of the two prior pdfs) pertained to a certain set 
of travel times. For this, we combined the river and ma-
rine training sets such that we obtained a total of 6 million 
data points. We trained multiple networks with different 
architectures and selected the one that performed best on 
a validation dataset. We randomly selected a number of 
samples for each training epoch. For the optimal network, 
we used 8 batches with 4000 samples each and trained the 
network for 100 epochs. This took 80 s on a NVIDIA Tesla 
T4.

4   |   RESULTS

Figure 5 shows the estimated geological posterior statistics 
for a river channel true parameter matrix where the inver-
sion is performed using the correct prior; latent posterior 
distributions and summary statistical geological models 
are found in Appendix A. Figure 5 shows from left to right: 
the true parameter matrix, the posterior mean from the 
MDN (top) and McMC (bottom), the posterior estimate of 
the standard deviation for MDN (top) and McMC (bottom) 

and lastly a histogram of the arrival time misfits for 5000 
posterior samples from MDN (top) and McMC (bottom) 
solutions (the MDN samples are independently selected 
from the posterior marginal pdf of each latent parameter). 
The histogram shows ∣dobs − dsample ∣ over different data 
points and different models. The means for both poste-
rior estimates are close to the true parameter matrix. The 
standard deviations show high uncertainty loops around 
the boundaries of features in the true parameter matrix, 
similar to the results of Earp and Curtis (2020); these are 
expected, and quantify uncertainty in the location of the 
edges of those features (Galetti et al., 2015). The posterior 
estimates thus show that there is a river channel running 
diagonally over the parameter matrix but that the exact 
boundary of the channel is uncertain. The channels out-
side of the survey acquisition area have broader uncertain-
ties since fewer rays travel outside of the acquisition array. 
The travel time misfits are centred around one travel time 
measurement standard deviation �, and almost all are 
within ± 2� from the true arrival times. Finally, all sta-
tistics shown here are consistent between our benchmark 
McMC posterior and the rapid MDN method, and since 
these are completely independent methods this attests to 
the robustness of both. All of the above indicates that both 
the McMC and MDN solutions are approximately correct, 
and conform to intuition about probabilistic solutions de-
rived from analyses in previous studies.

Figure  6 shows similar plots to Figure  5 but for the 
marine parasequence true parameter matrix and prior in-
formation. Again, there is a close match between the pos-
terior mean and the true parameter matrix. The McMC 
posterior resolves the high-velocity feature at location 
(1, 1) km slightly better than the MDN posterior mean 

F I G U R E  5   The true braided river channels parameter matrix (left) and the summary statistics for the posterior estimates from the MDN 
(top) and McMC (bottom). The statistics are the posterior mean, posterior standard deviation and the travel time misfits.
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velocities. The MDN posterior standard deviations are 
wider for the transition from low to high velocity at (−3, 
−2.5) km compared to the McMC standard deviations. 
The McMC posterior estimate is thus more narrowly con-
centrated around the true parameter matrix. This is con-
firmed by the arrival time misfit histograms: the McMC 
posterior data misfits show a narrower peak at a lower 
misfit value compared to the broader peak of the MDN 
posterior data misfit. This illustrates that the MDN pos-
terior marginal pdf estimates do not capture all of the in-
formation that is contained in the McMC posterior. This is 
likely to be because we infer only single-parameter MDN 
marginal distributions which therefore do not contain in-
formation about correlations between latent parameters; 
this contrasts with, the Monte Carlo samples which are 
taken in the full latent space and so do contain correla-
tion information. While in principle, it is possible to train 

MDNs to represent the fully correlated posterior pdf, we 
found such networks extremely difficult to train reliably. 
Therefore, this slight reduction in posterior information is 
the price paid for obtaining stable solutions for any travel 
time data set in ca. 1 s from an MDN rather than from days 
of computation when using McMC.

The statistics in Figures 5 and 6 only show summary 
statistics of the posterior pdf. What is more, the posterior 
mean is not in itself a geological parameter matrix selected 
from the posterior distribution (the values shown are an 
integral over all parameter matrix samples). We therefore 
show six random samples from the MDN posterior esti-
mate in Figure 7a,b for the river and marine inversion re-
spectively. The samples in each set are slightly different 
but all do resemble their respective true parameter matrix. 
What is more, all samples are geological: the samples from 
the river inversion all show reasonable representations of 

F I G U R E  6   The true marine parasequences parameter matrix (left) and the summary statistics for the posterior estimates from the MDN 
(top) and McMC (bottom). The statistics are the posterior mean, posterior standard deviation and the travel time misfits.

F I G U R E  7   Samples from the MDN posterior marginal pdf estimates. (a) shows samples from the inversion in Figure 5 and (b) shows 
samples from the inversion in Figure 6.
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river channels and all samples from the marine parase-
quence inversion show reasonable geological marine para-
sequences. Geological realisations are highly unlikely to 
occur in any inversion conducted using a non-geological 
prior (e.g. Bodin & Sambridge, 2009; Earp & Curtis, 2020; 
Galetti et al., 2015).

So far we have applied the correct set of prior infor-
mation for each of our target true parameter matrices. 
However, it has been shown that prior choices between 
conceptual geological models (Bond et al., 2015) and their 
parameters (Curtis & Wood, 2004) are subject to natural 

human biases (Bond et al.,  2012; Curtis, 2012; Polson & 
Curtis,  2010). It is therefore of interest to assess the ef-
fects of using incorrect prior information: inverting a river 
channel true model using a marine prior pdf and vice 
versa. Figures 8 and 9 show the inversions using the in-
correct prior pdf (top) versus the correct one (bottom), and 
Figure 10a,b shows corresponding example posterior sam-
ples for the river and marine true parameter matrices, re-
spectively. The posterior statistics show that the inversions 
with the correct prior perform better than those with the 
incorrect prior, as expected. However, the incorrect prior 

F I G U R E  8   The true parameter matrix taken from the river prior (left) and the summary statistics for the posterior estimates using the 
unsuitable marine prior pdf (top) and suitable river prior pdf (bottom). The unsuitable posterior pdf estimates are computed using the MDN.

F I G U R E  9   The true parameter matrix is taken from the marine parasequences prior (left) and the summary statistics for the posterior 
estimates using the unsuitable river prior pdf (top) and suitable marine parasequences prior pdf (bottom). The unsuitable posterior pdf 
estimates are computed using the MDN.
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inversions do still retrieve approximately recognisable es-
timates of the overall structure. The inversion of the river 
channel data produces a diagonal channel-like feature in 
all samples in Figure 10a, but the channels sub-parallel to 
the x-axis at the top and bottom of the true model are not 
inferred. The posterior samples from the inversion of the 
marine data show that the posterior does somewhat cap-
ture the high-velocity feature in the true model, but that 
there is a lot of variation. However, in both cases when in-
appropriate prior information is used, the expected loop-
like uncertainty structures created by high uncertainties 
occurring on the boundaries of the main velocity anoma-
lies do not appear.

As a test in which the true model is even further out-
side of the prior information space, we invert three mod-
els that are sub-areas of the cross-sectional interpretation 
of Last Chance Canyon (NM, USA) from Sonnenfeld and 
Cross (1993). Inversion results using the marine prior are 
shown in Figure 11. From left to right, we show the true 
model, maximum a posteriori (MAP) model, the mean, the 
standard deviation and the arrival time misfits. The latter 
three are calculated over geological posterior distribution 
samples. The top row shows a fair agreement between 
the true model and the posterior models. The middle ca. 
1.75 km/s zone is recovered well, with uncertainty as to 
where the bottom boundary of that zone lies. The second 
row shows results for a more complicated true model. 
The two low-velocity features are represented by a single 
low-velocity zone in posterior estimates. Furthermore, 
the high-velocity zone at the top in the posterior results 
is an overestimation of what is seen in the true model. 
Lastly, the bottom row true model has a large low-velocity 
zone diagonally over the model which is well represented 
in the posterior estimates. The boundaries of the low-
velocity zone have higher uncertainty with a narrower 

band of uncertainty for the bottom boundary versus the 
top boundary. Nevertheless, the overall structure of each 
model is recovered reasonably for this real setting, despite 
prior information injected from the combination of con-
ceptual and process models certainly being oversimplified.

The data misfit in Figures  8 and 9 highlight the dif-
ference between using correct and incorrect conceptual 
models. The top rows show posterior statistics obtained 
using unsuitable prior information and the bottom rows 
show comparable results when using appropriate prior 
information. Differences between the misfit distribu-
tions (rightmost panels) when changing the prior pdf for 
the same data set indicate that there may be information 
in the data that could discriminate which class of prior 
information is more likely to be appropriate. Assuming 
the prior probability over the geological concept classes 
is Uniform, we sample the prior of each geological con-
cept and generate arrival times. The obtained set of arrival 
times is the training data for the classifier neural network. 
We train the classifier neural network that provides the 
posterior class probability of each conceptual model C 
given the observed travel times �(C| d). Given the posterior 
class probability and the posterior model parameter prob-
ability (from previous results), we can also compute the 
joint posterior probability of the conceptual class and the 
corresponding model parameters �(C,m ∣ d). The results 
are shown in Figures 12 and 13 for the river and marine 
true parameter matrices respectively. The top panels show 
the following geological parameter matrices from left to 
right: the true parameter matrix, the posterior mean using 
marine prior information, the posterior mean using river 
prior information, the posterior mean given (marginalised 
over) the class probabilities from the classifier neural net-
work and lastly, a posterior mean if the class probabilities 
were Uniform (i.e. the posterior class probability is equal 

F I G U R E  1 0   Samples from inversions using unsuitable prior information. (a) shows the samples from the inversion in Figure 8 and 
(b) shows the samples from the inversion in Figure 9.
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to the prior class probability). The bottom row shows the 
posterior class probabilities on the left and then histo-
grams of the data misfits corresponding to each posterior 
pdf in the top row. First, the posterior class probability 
provides clear information about which conceptual model 
pertains to which data set. As above, the posterior misfits 
are lower when the correct conceptual model is used for 
the inversion. If we combine the class probabilities and 

the parameter probabilities into the joint posterior proba-
bility �(C,m ∣ d), the misfits are higher than for the correct 
prior but significantly lower than those obtained using ei-
ther the wrong class or Uniform class probabilities. For 
the data corresponding to the Last Chance Canyon models 
(Figure 11) the network correctly predicts the marine prior 
as the more appropriate prior for the travel time data. The 
likelihood of the data coming from marine environments 

F I G U R E  1 1   Posterior distributions for three true models coming from real basin data. The true models are constructed from the 
Last Chance Canyon (NM, USA) outcrop interpreted by Sonnenfeld and Cross (1993). From left to right, the panels show the true model, 
Maximum A Posteriori model, posterior mean, posterior standard deviation and arrival time misfits.

F I G U R E  1 2   Posterior statistics for different prior pdfs. Left column shows the true river parameter matrix (top) and the posterior 
probability of the conceptual model class given the observed travel times (bottom). Successive columns show the posterior mean (top) and 
travel time misfit (bottom) for the following scenarios: marine parasequence conceptual model, river channel conceptual model, mixed 
posterior given the posterior class probability and the posterior mean if the posterior probability for each conceptual model class was 
Uniform.
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are 95%, 61% and 79% for the top, middle and bottom true 
model in Figure 11 respectively.

5   |   DISCUSSION

Our aim in this paper is to develop and demonstrate a 
methodology to inject high-level (conceptual) and lower-
level (parameter) geological prior information into a 
Bayesian inversion scheme and to investigate their effects. 
Figures 5 and 6 show that we can successfully inject geo-
logical prior information into Bayesian inversion using 
the GAN. For both the river and the marine prior pdfs 
we found posterior pdfs that closely match the true pa-
rameter matrix. In these cases, the rapid MDN inversions 
obtain similar posterior estimates to those from McMC 
in a fraction of the time, post-training. Furthermore, we 
have shown that the GAN prior parameterisation is rea-
sonably agnostic to the Bayesian inversion scheme used 
(e.g. McMC or MDN) to estimate parameter pdfs. Thus, if 
faster or more accurate inversion methods become avail-
able then this solution to injecting geological prior infor-
mation can still be used.

However, the true parameter matrices that we have 
used in the above examples result in so-called inverse 
crimes. An inverse crime is a situation where a parame-
ter matrix that has been simplified to a certain degree, is 
used to generate data, which are then inverted to try to 
recover a parameter matrix that contains the same sim-
plifications (Kaipio & Somersalo,  2007). Inverse crimes 
show the best case scenario for any inversion method 
because the method is not tested against the complexity 

of true data uncertainties, such tests might overestimate 
the performance of an algorithm. We therefore also show 
inversions of the true parameter matrix using the incor-
rect prior conceptual model. In that scenario, there is no 
inverse crime as the simplifications made in the true pa-
rameter matrix and in the prior information are different. 
Although these inversions performed worse than their in-
verse crime equivalents, we argue that the results are po-
tentially still recognisable, particularly when using Monte 
Carlo methods.

The three inversions on the real basin data do not com-
mit inverse crimes. These inversions show that we are 
also able to invert for real structures. In these examples, 
we have not used real measured travel time data because 
whenever such data are available it is seldom the case that 
the true model is known so that would not constitute a test 
of the inversion method. Our examples therefore provide 
a reasonable test of our inversion scheme in a real-world 
setting. What is more, our classifier NN correctly predicts 
the shallow marine setting is more likely to be correct 
from the arrival time data.

Another benefit of using geological prior pdfs is that the 
resulting posterior pdf consists only of geologically reason-
able parameter matrices. Each sample of the posterior pdf 
is a geological parameter matrix in itself. Posterior sam-
ples from most tomographic methods can contain high-
probability parameter matrices that are not geological (Earp 
& Curtis, 2020); when interpreting such samples, one may 
opt to alter the distribution to make it more geological which 
introduces unknown uncertainties. Another option is to in-
terrogate the whole set of parameter samples to answer spe-
cific geological questions (Arnold & Curtis, 2018; Zhang & 

F I G U R E  1 3   Posterior statistics for different prior pdfs. Left column shows the true marine parasequences parameter matrix (top) and 
the posterior probability of the conceptual model class given the observed travel times (bottom). Successive columns show the posterior 
mean (top) and travel time misfit (bottom) for the following scenarios: marine parasequence conceptual model, river channel conceptual 
model, mixed posterior given the posterior class probability, and the posterior mean if the posterior probability for each conceptual model 
class was Uniform.
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Curtis, 2022; Zhao et al., 2022). Our method solves this prob-
lem directly, as each parameter matrix in the posterior is au-
tomatically geological, at least to the extent that the GAN 
has been trained to represent the prior pdf. High-probability 
samples can therefore be interpreted directly, and estimates 
of their relative probabilities are known.

If more prior pdfs become available, for example concep-
tual models for salt diapirs, carbonates or specific geographic 
regions, it may become infeasible to invert the data for each 
of these priors due to the computational expense that comes 
with inverting the data. As a solution, we introduced a clas-
sifier neural network that infers posterior probabilities of 
which prior pdf is most consistent with the arrival time data. 
This information may be especially useful in the case when 
there is a wish to obtain the most accurate possible McMC 
posterior estimates, but where the posterior parameter esti-
mation is costly to compute, as the arrival times only have 
to be inverted for the parameters associated with the prior 
information class found by the classifier NN. This neural 
network must be retrained for each additional prior pdf but 
its training is cheap relative to the cost of training the MDNs 
or computing an McMC posterior estimate. Furthermore, it 
can be used to combine different prior pdfs to obtain a poste-
rior parameter estimate given different classes of prior infor-
mation, which could be useful in a scenario where the true 
parameter matrix is in fact best represented by a mixture be-
tween two canonical conceptual models.

Finally, this work highlights the improvements to im-
aging using MDNs offered by combining them with geo-
logical prior information. Earp and Curtis  (2020) used 
MDNs to invert directly for parameters that represent pix-
els in the tomographic image and obtained marginal pos-
teriors for each parameter individually. By introducing the 
geological prior pdf, we also obtain uncorrelated marginal 
pdfs, but on latent parameters of the GANs; varying those 
latent parameters within their respective posterior mar-
ginals translates through the GAN to correlated estimates 
of the posterior variation of the image parameters. This is 
demonstrated by the fact that the posterior samples look 
geological and are thus highly correlated in space. This 
occurs because approximately correct intra-parameter 
correlations are stored in the GAN architecture. Ideally, 
the fully correlated posterior pdf over latent parameters 
would be estimated directly, and this may be possible in 
the future using different neural network architectures 
within the MDN, or different training methods.

6   |   CONCLUSION

In this study, we inject geological prior information into 
a travel time tomography Bayesian inversion scheme to 
improve the posterior knowledge about parameters that 

describe a tomographic image. We evaluate two different 
geological conceptual models: a braided river system and 
the formation of marine parasequences. Each is parameter-
ised inside a generative adversarial network (GAN) for rapid 
generation of prior samples. To create a computationally ef-
ficient inversion method, we use a mixture density network 
(MDN) to perform the inversions and use Markov chain 
Monte Carlo inversion to validate the results. We success-
fully inject geological prior information using the GAN, and 
the rapid MDN posterior estimates closely approximate the 
benchmark McMC posterior estimates.

Furthermore, we are able to analyse the effects of using 
inappropriate prior information for a given set of travel 
times (travel times from a braided river system inverted 
using prior information from marine parasequences and 
vice versa). We find that the posterior estimates with in-
appropriate prior information are worse compared to ap-
propriate prior information, as expected. However, the 
posterior estimates also contain information about the 
underlying true parameter matrix, so we train a neural 
network to find the posterior class probability that de-
scribes which prior conceptual model information is most 
consistent with a given set of travel time data. We thus 
demonstrate that we can rapidly invert tomographic travel 
times with rich geological prior information and that we 
are able to discriminate between a set of geological con-
ceptual models to find which is most appropriate for the 
area under consideration.
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APPENDIX A: L ATENT POSTERIOR 
DISTRIBUTIONS
The results shown in Figures 5 and 6 are statistical sum-
maries of the underlying geological posterior distribu-
tion. The geological posterior distribution is sampled in 
latent space, whereafter the geological images for each set 
of latent variable values are calculated using the associ-
ated GAN and then means and standard deviations across 
the geological image are calculated on a per-pixel basis. 
These statistics illustrate the information contained in the 
geological posterior distributions. However, the statistical 
summaries are not in themselves geological models. In 
this appendix, we therefore show some posterior samples 

that are geological models and the latent parameter pos-
terior distributions that describe the geological posterior 
distributions. While with the geological posteriors, the in-
version performance can be judged by visually comparing 
the true model to images from the posterior pdf (either 
geological models or summary statistics), we have no in-
tuition about the performance of inferred latent variable 
posterior pdf's. Indeed, the latent parameters in them-
selves do not represent any meaningful properties relating 
to geology. Only after they have been input to the GAN 
can their performance be judged.

Figure A1a,b shows the latent posterior distributions 
corresponding to the geological posterior distributions in 
Figures 5 and 6, respectively. Note that the river chan-
nels GAN uses 9 latent parameters versus 8 parameters 
for the marine parasequences GAN. The orange line in-
dicates the benchmark McMC latent posterior, the blue 
line is the MDN latent posterior and the vertical black 
lines are the true values for each latent parameter. For 
all parameters, the true value is captured by the high-
probability region of the posterior distributions. This in-
dicates that both inversion methods are correctly finding 
the latent values.

The MDN posterior estimates are fairly close to those 
found by the benchmark McMC method. In most cases, 
the majority of high-probability density is located in the 
same intervals. However, the MDN does have some bias 
compared to McMC: note the skewed peaks in parameters 

F I G U R E  A 1   Latent posterior distributions for the rivers (a) and marine parasequences (b) conceptual models corresponding to the 
geological posterior results are shown in Figures 5 and 6, respectively. Orange lines are the benchmark McMC posterior estimates, blue lines 
indicate the MDN posterior estimates and the black vertical lines show the true value for each latent parameter. The dashed line shows the 
prior distribution.
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2, 3, 4 and 8 for the river conceptual model and param-
eter 1 for the marine parasequences. The MDN also fails 
to capture the multi-modal distribution observed in ma-
rine parasequences parameter 4: the MDN distribution is 
a single-modal with the same width as the multi-modal 
McMC distribution.

From the posterior distributions in Figure  A1a,b, we 
can calculate the maximum a posteriori (MAP) and mean 
model in latent space, and by using the GAN, we can 

translate those parameter values to associated geological 
models. These are shown in Figure A2a,b. Note that these 
are intrinsically different from the results in Figures 5 and 
6, which show the per-pixel averages of many geological 
models in the posterior distribution. Hence, those resulting 
images are not geological but rather summarise the geo-
logical distribution.

In Figure A2a,b, the MAPs and mean models are very 
close to the true models for both conceptual models. What 

F I G U R E  A 2   For each conceptual model, braided river systems (a) and marine parasequences (b), we show geological models created 
from latent posterior statistics. From left to right, the following models are shown: true model, maximum a posteriori (MAP) model and 
mean model (calculated in latent space, then mapped into geological space). The top row in each of the panels (a, b) shows those models 
from the MDN posterior estimate, and the bottom row shows the models from the McMC posterior estimate.
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is more, the McMC and MDN posterior estimates pro-
duce similar MAP models and mean models in the river 
conceptual model. The outlier is the McMC mean model 
for the marine parasequences model. This model shares 
the approximate structure with the true model (the di-
agonal pattern), but the velocities are dissimilar. Rather 

than identifying a fault in the inversion, we attribute this 
notable result to the fact that the mean of any distribu-
tion need not coincide with a high-probability model. This 
property is often stated as a caveat to using mean values 
from McMC results as models, without providing an ex-
plicit example, but here is one.
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