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Abstract
Geological	 process	 models	 typically	 simulate	 a	 range	 of	 dynamic	 processes	 to	
evolve	 a	 base	 topography	 into	 a	 final	 two-	dimensional	 cross	 section	 or	 three-	
dimensional	 geological	 scenario.	 In	 principle,	 process	 parameters	 may	 be	 up-
dated	 to	better	align	with	observed	geophysical	or	geological	data.	However,	 it	
is	hard	to	find	any	process	model	realisations	that	fit	all	observations	if	data	sets	
are	 complex	 and	 sparse	 in	 space	 or	 time	 because	 the	 simulations	 typically	 de-
pend	 highly	 non-	linearly	 on	 base	 topography	 and	 dynamic	 parameters.	 As	 an	
alternative,	geophysical	probabilistic	tomographic	methods	may	be	used	to	esti-
mate	the	family	of	models	of	a	target	subsurface	structure	that	are	consistent	both	
with	 information	 obtained	 from	 previous	 experiments	 and	 with	 new	 data	 (the	
Bayesian	posterior	probability	distribution).	However,	this	family	seldom	embod-
ies	geologically	reasonable	images.	Here	we	show	that	the	posterior	distribution	
of	tomographic	images	obtained	from	travel	time	data	can	be	fully	geological	by	
injecting	geological	prior	 information	 into	Bayesian	 inference	and	 that	we	can	
do	this	near-	instantaneously	by	using	trained	mixture	density	networks	(MDNs).	
We	invoke	two	geological	concepts	as	prior	information	about	the	possible	depo-
sitional	environment	of	an	imaged	target	structure:	a	braided	river	system	and	a	
set	of	marine	parasequences.	Each	concept	is	parameterised	by	the	latent	param-
eters	of	a	generative	adversarial	network.	Data	from	a	target	structure	can	then	
be	 used	 to	 infer	 the	 family	 of	 compatible	 latent	 parameter	 values	 using	 either	
geological	concept	using	MDNs.	Our	near-	instantaneous	MDN	solutions	closely	
resemble	those	found	using	relatively	expensive	Monte	Carlo	methods.	We	show	
that	 while	 the	 use	 of	 incorrect	 geological	 conceptual	 models	 provides	 signifi-
cantly	less	accurate	results,	a	classifier	neural	network	can	infer	which	geological	
conceptual	model	is	most	consistent	with	the	data.	It	is	thus	demonstrated	that	
even	apparently	barely	related	geophysical	data	may	contain	information	about	
abstract	 geological	 concepts,	 and	 that	 geological	 conceptual	 models	 are	 key	 to	
creating	reasonable	images	from	geophysical	data.
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1 	 | 	 INTRODUCTION

Geological	 process	 models	 simulate	 dynamic	 processes	
to	evolve	an	initial	topography	into	a	geologically	plausi-
ble	two-	dimensional	cross	section	or	three-	dimensional	
geological	model	(Burgess	et	al., 2001;	Hill	et	al., 2009;	
Paola, 2000;	Tetzlaff	&	Harbaugh, 1989).	The	input	pa-
rameters	 to	 the	 geological	 process	 model	 may	 be	 up-
dated	 to	 align	 the	 model	 output	 with	 geophysical	 data	
such	 as	 recorded	 seismic	 travel	 times	 or	 waveforms.	
However,	a	number	of	problems	may	occur:	some	geo-
logical	 process	 models	 are	 chaotic	 in	 their	 behaviour	
(Burgess	 &	 Emery,  2004;	 Tetzlaff	 &	 Harbaugh,  1989)	
such	 that	 a	 small	 change	 in	 the	 input	 could	 lead	 to	 a	
significantly	 different	 output.	 In	 addition,	 the	 model	
output	 is	 never	 uniquely	 constrained	 by	 data	 so	 that	
an	infinite	family	of	dynamic	models	is	consistent	with	
observations.	Finding	the	family	of	realisations	that	are	
consistent	 with	 observed	 data	 may	 be	 infeasible	 due	
to	 the	 computational	 expense	 involved.	 And	 finally,	
the	 true	 structure	 of	 the	 Earth	 always	 deviates	 from	
the	model	output,	 even	when	compared	 to	 the	 level	of	
detail	 of	 the	 model.	 As	 an	 alternative,	 we	 may	 look	 to	
probabilistic	inversion	methods	to	identify	the	family	of	
models	that	fit	geophysical	data	within	their	uncertain-
ties	(Tarantola, 2005).	Unfortunately,	as	applied	to	date,	
geophysical	inversion	methods	do	not	impose	geological	
realism	 as	 a	 criterion	 for	 the	 solution.	 As	 a	 result,	 the	
inferred	models	are	usually	geologically	implausible.	In	
this	paper,	we	aim	to	combine	the	geological	prior	infor-
mation	embodied	within	process	models	with	probabil-
istic	 inversion	methods	of	geophysics	 to	obtain	a	set	of	
geological	models	that	both	fit	the	recorded	data	and	are	
geologically	reasonable.

Seismic	travel	time	tomography	is	commonly	applied	to	
image	the	Earth's	subsurface	(Aki	&	Lee, 1976;	Dziewonski	
&	 Woodhouse,  1987;	 Lee	 et	 al.,  1995;	 Tsekhmistrenko	
et	 al.,  2021;	 Zhang	 &	 Curtis,  2020).	 By	 measuring	 the	
time	taken	for	waves	to	travel	between	pairs	of	points	on	
the	Earth's	surface,	tomographic	methods	estimate	maps	
of	 subsurface	 velocities	 in	 up	 to	 three	 dimensions.	 The	
subsurface	 is	 usually	 described	 by	 a	 finite-	dimensional	
parameter	 matrix	 m	 which	 often	 consists	 of	 seismic	 ve-
locities	at	each	of	a	set	of	subsurface	locations.	We	study	
the	 situation	 where	 those	 parameters	 are	 to	 be	 inferred	
from	a	vector	of	recorded	data	d	which	describe	the	travel	
times	of	the	seismic	energy	between	a	set	of	sources	and	
receivers.

Estimating	 subsurface	 velocities	 from	 travel	 times	 is	
a	non-	linear	inverse	problem	(Aki	&	Lee, 1976).	The	un-
known	inverse	function	is	potentially	complicated	and	ill-	
posed	and	always	has	a	non-	unique	solution	which	means	
that	infinitely	many	subsurface	parameter	matrices	fit	the	
data	 to	 within	 measurement	 uncertainty.	 It	 is	 therefore	
impossible	 to	 infer	 which	 particular	 parameter	 matrix	
produced	the	recorded	data;	the	most	that	one	can	achieve	
is	 to	constrain	the	family	of	parameter	matrices	that	are	
consistent	with	measured	data	as	tightly	as	possible.

In	this	context,	Bayesian	inversion	provides	a	general	
method	 to	 define	 the	 statistical	 distribution	 of	 parame-
ter	 matrices	 that	 fit	 the	 data	 and	 assigns	 the	 probability	
density	of	each	parameter	matrix	given	the	data	�(m| d)	,	
known	 as	 the	 posterior	 probability	 distribution	 function	
(pdf)	 which	 here	 is	 referred	 to	 simply	 as	 the	 posterior.	
Bayes	 theorem	 allows	 us	 to	 calculate	 the	 posterior	 as	
follows:

where	�(d|m)	 is	 called	 the	 likelihood	 which	 describes	 the	
probability	of	observing	data	d	if	parameter	matrix	m	is	true,	
�(m)	is	the	prior	probability	distribution	of	m	(here	referred	
to	as	the	prior),	and	�(d)	describes	the	marginal	probability	
of	the	data	post-	experiment—	also	called	the	evidence.	If	pa-
rameters	m	are	real-	valued,	then	each	of	these	distributions	
is	a	probability	density,	and	Tarantola  (2005)	gives	a	clear	
exposition	of	how	they	should	be	defined.

Our	aim	 is	 to	 improve	knowledge	about	 the	parame-
ter	values.	Following	Bayes	theorem,	this	can	be	achieved	
by	 increasing	the	amount	of	relevant	 information	in	the	
observed	data	set	which	is	represented	by	the	likelihood,	

(1)�(m| d) = �(d|m)�(m)

�(d)

K E Y W O R D S

forward	stratigraphic	modelling,	geological	process	modelling,	imaging,	inversion

Highlights

•	 Combined	geological	process	models	and	prob-
abilistic	geophysical	tomography.

•	 Solutions	obtained	are	probability	distributions	
over	geologically	plausible	models.

•	 Near-	instantaneous	inversion	of	data	for	model	
parameters	using	trained	neural	networks.

•	 Possible	to	constrain	most	appropriate	geologi-
cal	conceptual	model	from	geophysical	data.

•	 First	application	of	a	fast	stratigraphic	forward	
model:	SedSimple.
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or	increasing	information	in	the	prior	pdf.	The	likelihood	
and	prior	have	equal	mathematical	weight	in	Equation 1,	
and	 while	 most	 work	 focuses	 on	 adding	 information	
through	better	data	or	improved	data	processing	and	thus	
targets	the	likelihood,	in	this	study	we	aim	to	inject	more	
geological	information	about	the	parameters	through	the	
prior	 probability	 distribution.	This	 paper	 focuses	 on	 the	
development	 and	 demonstration	 of	 a	 methodology	 that	
introduces	 the	 information	 and	 solves	 the	 resulting	 in-
verse	problem	efficiently.

Conceptual	models	are	the	hierarchically	highest	level	
of	information	in	most	geological	studies.	In	the	current	
context,	 they	 describe	 our	 understanding	 of	 which	 geo-
logical	processes	have	 influenced	 the	current	subsurface	
structure	 and	 composition.	 We	 consider	 two	 geological	
conceptual	 models	 in	 this	 study:	 sedimentary	 structures	
created	 either	 by	 terrestrial	 river	 channel	 systems	 or	 al-
ternatively	by	marine	parasequences.	We	represent	each	
conceptual	model	by	large	sets	of	different	geometries	of	
rock	types	that	might	be	generated	by	processes	invoked	
in	 that	model.	These	geometries	are	 in	 turn	represented	
by	a	group	of	neural	networks	which	are	trained	to	regress	
through	each	set,	to	allow	other	representative	geometries	
to	be	generated	efficiently.

The	generation	of	river	channel	geometries	and	sub-
sequent	 training	 of	 neural	 networks	 was	 already	 per-
formed	 by	 Laloy	 et	 al.  (2018):	 the	 resulting	 networks	
are	available	online	and	produce	rudimentary	maps	that	
depict	possible	geometries	of	 river	channels	 in	a	back-
ground	medium,	parameterised	by	these	two	binary	fa-
cies.	We	additionally	introduce	prior	information	about	
marine	parasequence	structures	created	by	a	geological	
process	forward	model	called	SedSimple	(Tetzlaff, 2022).	
SedSimple	 simulates	 sedimentary	 deposition,	 erosion	
and	transport	over	geological	timescales	given	a	base	to-
pography	and	relative	sea	level	curve,	to	create	a	three-	
dimensional	geological	conceptual	model	simulation	of	
the	subsurface.	Compared	to	other,	often	commercially	
available	process	models,	such	as	SLB's GPM	(Courtade	
et	 al.,  2021;	 Otoo	 &	 Hodgetts,  2021),	 DionisosFlow™	
(Al-	Wazzan	et	al., 2021;	Borgomano	et	al., 2020;	Hamon	
et	al., 2021),	SedsimX	(Snieder	et	al., 2021),	or	CarboCAT	
(Masiero	et	al., 2021),	SedSimple	requires	less	computa-
tional	resource	making	it	possible	to	run	a	large	number	
of	simulations,	but	at	the	cost	of	reduced	complexity	in	
modelled	 processes	 and	 hence	 in	 the	 produced	 simu-
lations.	 We	 train	 neural	 networks	 to	 represent	 the	 in-
formation	 in	 a	 large	 set	 of	 geometries	 obtained	 from	
SedSimple	simulations,	to	produce	networks	for	shallow	
marine	 environments	 that	 mirror	 the	 fluvial	 networks	
of	Laloy	et	al. (2018).

Parameterising	the	geological	prior	information	using	
neural	networks	 is	 important	because	geological	process	

forward	models	cannot	be	used	in	inversion	schemes	di-
rectly.	 Their	 relationships	 between	 simulated	 geological	
geometries	and	controlling	dynamic	parameters	and	base	
(initial)	 topographies	are	 typically	both	chaotically	com-
plex	and	very	high	dimensional.	This	makes	it	very	expen-
sive,	if	not	practically	impossible,	to	find	a	set	of	dynamic	
and	topographic	controls	that	produce	geometries	which	
fit	 observed	 data.	 Re-	parameterising	 the	 geological	 sim-
ulations	 into	 a	 more	 convenient	 (neural	 network	 based)	
form	allows	us	to	find	geometries	similar	in	character	to	
those	produced	by	 the	GPM,	but	which	also	 fit	 the	geo-
physical	data.

More	 generally,	 geological	 data	 are	 commonly	 avail-
able	as	examples	(called	statistical	samples)	of	a	concep-
tual	 model.	These	 might	 be	 facies	 maps	 from	 geological	
cross	sections,	from	field	outcrops	or	from	geological	pro-
cess	model	simulations,	and	each	of	these	might	require	
a	specific	set	of	physical	processes	(a	conceptual	model)	
to	be	invoked	to	explain	their	geological	origin.	While	the	
true	parameter	matrix	or	 image	 in	our	 tomographic	vol-
ume	may	be	explained	using	the	same	conceptual	model,	
it	will	never	exactly	match	one	of	those	observed	or	sim-
ulated	 samples.	Therefore,	 the	 parameterisation	 method	
must	be	able	to	generate	other	geological	cross	sections	or	
three-	dimensional	facies	maps	that	conform	to	the	same	
concept,	 in	other	words,	which	are	similar	but	not	iden-
tical	to	the	given	set	of	samples.	In	addition,	the	method	
must	 facilitate	 our	 goal	 to	 explore	 the	 space	 of	 possible	
subsurface	 geometries	 to	 find	 those	 that	 are	 consistent	
with	the	observed	geophysical	data.

Exploring	high-	dimensional	parameter	spaces	 is	ex-
traordinarily	 computationally	 demanding,	 a	 phenome-
non	referred	to	as	the	curse	of	dimensionality	(Curtis	&	
Lomax,  2001).	 In	 order	 to	 make	 this	 feasible,	 we	 must	
represent	the	geological	information	using	fewer	repre-
sentative	 parameters,	 usually	 called	 latent	 parameters.	
In	 principle,	 we	 expect	 that	 this	 is	 possible	 because	
different	 points	 on	 geological	 facies	 maps	 are	 not	 spa-
tially	 independent	 (indeed	 they	are	strongly	correlated	
in	space,	as	observed	in	all	geological	outcrops—	Arnold	
et	 al.  (2019))	 and	 so	 may	 be	 supported	 by	 a	 lower-	
dimensional	 manifold	 of	 latent	 parameters	 (Arjovsky	
et	al., 2017).	Two	common	mathematical	constructs	that	
can	 be	 used	 to	 parameterise	 outcrops	 into	 latent	 vari-
ables	are	Variational	Auto	Encoders	(VAEs)	and	gener-
ative	 adversarial	 networks	 (GANs)—	both	 being	 types	
of	Neural	Networks.	In	this	research,	we	choose	GANs	
for	 their	 demonstrated	 generational	 quality	 over	VAEs	
and	 their	 near-	instantaneous	 generation	 of	 samples	
which	enables	more	rapid	inversions	in	our	applications	
(Goodfellow, 2016).

We	 invert	seismic	arrival	 times	 for	 the	 latent	param-
eter	 posterior	 distribution	 using	 two	 methods:	 Markov	
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chain	 Monte	 Carlo	 (McMC)	 and	 mixture	 density	 net-
works	(MDN).	The	former	method	is	computationally	ex-
pensive	but	tends	towards	the	correct	solution	in	the	limit	
of	infinite	sampling	(Haberland	et	al., 2023;	Mosegaard	&	
Tarantola, 1995;	Zhang	&	Curtis, 2020).	The	latter	method	
is	another	neural	network	method	which	has	been	used	
successfully	 to	 obtain	 marginal	 posterior	 distributions	
in	 a	 travel	 time	 tomographic	 setting	 (Earp	 et	 al.,  2020;	
Earp	 &	 Curtis,  2020;	 Meier	 et	 al.,  2007a,	 2007b;	 Meier	
et	 al.,  2009;	 Taroudakis	 &	 Smaragdakis,  2016).	 Post-	
training,	the	MDN	produces	an	estimate	of	the	posterior	
distribution	in	near-	real	time,	and	when	combined	with	
the	GAN	described	above,	we	produce	a	method	that	rap-
idly	inverts	new	data	to	estimate	solutions	of	the	Bayesian	
non-	linear	tomography	problems	that	include	geological	
prior	information.

The	 importance	 of	 selecting	 appropriate	 prior	 infor-
mation	 is	 highlighted	 by	 Kass	 and	 Wasserman  (1996).	
Previous	 methods	 for	 including	 geological	 information	
in	 prior	 distributions	 include	 using	 a	 multi-	point	 statis-
tical	 method	 to	 simulate	 geology	 (González	 et	 al.,  2008;	
Lochbühler	 et	 al.,  2015),	 Hidden	 Markov	 Models	 (Feng	
et	al., 2018;	Moja	et	al., 2019;	Nawaz	&	Curtis, 2016)	and	
more	recently	using	Neural	Networks	(Laloy	et	al., 2018;	
Mosser	et	al., 2020;	Song	et	al., 2021a,	2021b).	In	this	paper,	
we	also	analyse	cases	where	inappropriate	geological	prior	
information	is	imposed	on	the	problem	and	demonstrate	
that	in	principle	such	cases	can	be	detected	and	corrected.

In	 subsequent	 sections,	 we	 introduce	 our	 methodol-
ogy	in	six	sub-	sections:	first	travel	time	tomography,	then	
generative	 adversarial	 networks,	 followed	 by	 Markov	
chain	 Monte	 Carlo,	 and	 mixture	 density	 networks,	 then	
posterior	classification	probabilities,	and	lastly	geological	
information.	Thereafter,	we	describe	our	specific	worked	
example,	followed	by	the	results,	a	discussion	and	a	sum-
mary	of	our	conclusions.

2 	 | 	 METHODOLOGY

2.1	 |	 Travel time tomography

The	time	that	energy	takes	to	travel	between	two	points	in	
a	medium	contains	information	about	the	part	of	the	me-
dium	through	which	 it	propagated.	 In	seismic	or	acous-
tic	tomography,	the	travel	time	stores	information	about	
variations	in	wave	slowness	(the	reciprocal	of	wave	speed)	
averaged	 over	 the	 propagation	 path.	 If	 multiple	 energy	
source	 and	 receiver	 locations	 are	 used,	 each	 travel	 time	
corresponds	 to	 a	 different	 path.	 In	 seismic	 tomography,	
we	 use	 different	 travel	 times	 to	 estimate	 the	 spatial	 dis-
tribution	of	slowness	or	velocity	in	the	Earth's	subsurface	
(Aki	&	Lee, 1976).

The	 likelihood	 �(d|m)	 in	 Equation  1	 compares	 the	
travel	times	that	would	occur	through	a	proposed	parame-
ter	matrix	to	the	observed	travel	times.	We	therefore	need	
to	compute	synthetic	travel	times	from	any	proposed	pa-
rameter	matrix,	which	we	achieve	by	solving	the	Eikonal	
equation

with	 s(x)	 the	medium	slowness	and	t(x)	 the	arrival	 time	
from	 a	 fixed	 source	 location	 to	 any	 other	 location	 x.	
Equation 2	can	be	solved	efficiently	using	a	finite	differ-
ence	approximation	(Podvin	&	Lecomte, 1991;	Rawlinson	
&	 Sambridge,  2004),	 where	 a	 finer	 discretization	 of	 the	
simulation	provides	more	accurate	results.

The	comparison	between	 the	 travel	 times	of	 the	pro-
posed	 parameter	 matrix	 and	 the	 observed	 travel	 times	
allows	 a	 gradient	 direction	 in	 parameter	 space	 to	 be	
computed	 that	 should	 infinitesimally	 improve	 the	 data	
fit.	 In	 linearised	 travel	 time	 tomography,	 we	 iteratively	
update	 the	 slowness	 or	 velocity	 parameters	 by	 a	 small	
perturbation	 in	 that	 direction	 until	 a	 suitable	 data	 fit	 is	
achieved.	 Unfortunately,	 using	 that	 approach	 it	 is	 never	
clear	whether	an	approximately	correct	parameter	matrix	
has	 then	 been	 found,	 due	 to	 the	 extensive	 and	 complex	
minima	in	the	data	misfit	function.	Therefore,	in	MDN	to-
mography,	we	train	a	neural	network	to	estimate	directly	
the	distribution	of	all	slowness	or	velocity	parameters	that	
fit	the	data	within	their	uncertainties,	as	explained	below.

2.2	 |	 Generative adversarial networks

We	store	prior	information	about	the	geological	concepts	
inside	 a	 generative	 adversarial	 network	 (GAN).	 GANs	
were	 introduced	by	Goodfellow	et	al.  (2014)	 to	generate	
high-	dimensional	 samples	 efficiently	 from	 a	 relatively	
low-	dimensional	 space	 of	 so-	called	 latent	 parameters.	 A	
GAN	consists	of	two	separate	NNs:	a	generator	and	a	dis-
criminator	as	shown	in	Figure 1.	We	train	the	generator	to	
generate	high-	dimensional	outputs	that	approximate	sim-
ulations	from	a	training	distribution	(represented	by	a	set	
of	samples	from	that	distribution	called	the	training set).	
We	train	the	discriminator	to	discriminate	between	simu-
lations	coming	from	the	training	distribution	and	outputs	
created	 by	 the	 generator.	 The	 training	 is	 adversarial	 in	
the	sense	that	the	discriminator	is	trained	to	minimise	a	
loss	 function	while	 the	generator	 is	 trained	to	maximise	
the	same	loss,	such	that	the	distribution	of	outputs	of	the	
generator	approaches	 the	 training	distribution,	at	which	
point	 the	 discriminator	 can	 no	 longer	 discriminate	 be-
tween	the	two	distributions.	After	training,	the	discrimi-
nator	is	discarded	and	the	generator	is	used	as	an	efficient	

(2)(∇t)2 = s2
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mapping	 from	 the	 lower-	dimensional	 latent	 space	 to	 a	
higher-	dimensional	 simulation	 space.	 In	 this	 study,	 the	
high-	dimensional	 simulations	 are	 geological	 param-
eter	matrices	m,	 and	we	use	 two	specific	variants	 in	 the	
type	of	GAN	to	represent	the	generator:	the	Spatial-	GAN	
(Jetchev	et	al., 2016)	and	the	Wasserstein-	GAN	(Arjovsky	
et	al., 2017).

The	input	to	the	generator	G	 is	a	 latent	vector	z ∼ �z	,	
where	�z	 is	 a	 distribution	 that	 can	 be	 chosen	 such	 that	
samples	can	be	drawn	easily	(where	~	means	‘distributed	
according	to’);	typically,	a	Uniform	or	Gaussian	distribu-
tion	is	chosen.	The	number	of	dimensions	in	�z	has	to	be	
sufficiently	 large	 to	 describe	 the	 low-	dimensional	 mani-
fold	 of	 the	 training	 distribution.	 Unfortunately,	 the	 di-
mensionality	 of	 this	 manifold	 is	 unknown	 so	 a	 suitable	
number	of	dimensions	in	z	is	found	by	trial	and	error.	G	
can	be	thought	of	as	a	mapping	from	the	latent	space	to	
the	high-	dimensional	generated	parameter	matrix	space,	
denoted	as	G

(
z; �g

)
,	where	�g	represents	the	network	pa-

rameters;	 this	 mapping	 is	 referred	 to	 simply	 as	G(z)	 for	
brevity	from	hereon.

The	 input	 to	 the	 discriminator	 is	 a	 sample	 z ∼ �z	
randomly	selected	from	either	 the	generator	G(z)	or	 the	
geological	 training	 distribution	m ∼ �geol..	 The	 discrimi-
nator	 outputs	 a	 scalar	 representing	 the	 probability	 that	
m	is	a	sample	from	the	geological	distribution	(the	train-
ing	 set).	We	 train	D	 to	 maximise	 the	 output	 probability	
of	D

(
m ∼ �geol.

)
	 and	minimise	 the	output	probability	of	

D
(
G
(
z ∼ �z

))
.	Conversely,	G	is	trained	with	the	opposite	

goal	to	maximise	log[1 − D(G(z))].	The	loss	for	the	GAN	
as	a	whole	can	be	described	by	the	value	function	V (G,D):

We	do	not	directly	optimise	for	V (G,D)	but	rather	up-
date	the	two	networks	separately	by	alternately	minimis-
ing	the	following	loss	functions	for	D	and	G	respectively:

The	 adversarial	 objectives	 of	 the	 two	 networks	
imply	 that	 we	 seek	 an	 equilibrium	 between	 the	 two.	
Unfortunately,	 training	 to	 find	 equilibria	 is	 difficult	
(Salimans	 et	 al.,  2016).	 There	 are	 optimizers	 that	 find	
equilibria	but	none	are	available	for	the	non-	convex	cost	
functions	 and	 the	 continuous	 and	 high-	dimensional	 pa-
rameter	spaces	that	occur	when	training	GANs.	Instead,	a	
gradient	descent	algorithm	is	used	that	finds	a	low	value	
of	a	cost	function,	and	alternating	between	updating	G	and	
D	a	pseudo-	equilibrium	is	 found.	Since	the	optimisation	
algorithm	 is	 sub-	optimal,	 the	GAN	may	 fail	 to	 converge	
during	training,	and	it	is	common	for	multiple	GANs	to	be	
trained	in	order	to	find	one	that	performs	well.

Convergence	 during	 training	 may	 be	 promoted	 by	
using	a	different	loss	function	for	D	that	measures	the	dis-
tance	between	two	distributions:	�geol	and	�gen..	Arjovsky	
et	al. (2017)	show	that	the	Jensen-	Shannon	distance	used	
in	 Equation  4	 may	 not	 provide	 a	 gradient	 towards	 the	
solution	in	all	scenarios,	as	it	is	not	always	differentiable.	
Updating	Equation 4	to	use	the	so-	called	Wasserstein	dis-
tance	measure	can	mitigate	this	problem.	LD	then	becomes

The	 Wasserstein	 distance	 is	 shown	 to	 be	 continu-
ous	 and	 differentiable	 almost	 everywhere	 (Arjovsky	
et	al., 2017).	The	improvements	to	GAN	training	include	
improved	 training	 stability	 and	 reduced	 mode	 collapse	
(the	 latter	 is	 the	 term	 used	 to	 describe	 situations	 where	
multiple	 high-	dimensional	 features	 are	 mapped	 to	 the	
same	 latent	 parameter	 by	 the	 GAN,	 thus	 restricting	 its	
generation	capability).

Jetchev	et	al. (2016)	updated	the	GAN	architecture	to	
make	it	better	suited	to	synthesising	textures	or	maps;	the	
updated	 architecture	 is	 called	 a	 Spatial-	GAN	 or	 SGAN.	
Texture	synthesis	is	the	generation	of	samples	of	a	given	
texture,	which	is	defined	as	repeating	patterns	with	some	
degree	of	stochasticity	(Georgiadis	et	al., 2013).	Geological	

(3)min
G

max
D

V (D,G)=Em∼pgeol.(m)log[D(m)]

+Ez∼pz(z)log[1−D(G(z))]

(4)

LD = − Em∼�geol(m)
log[D(m)] − Ez∼�z(z)log[1 − D(G(z))]

(5)LG = Ez∼�z(z)log[1 − D(G(z))]

(6)LD = − Em∼�geol.
D(m) + Ez∼�zD(G(z))

F I G U R E  1  Schematic	representation	of	a	generative	adversarial	network.	The	discriminator	D	and	generator	G	are	two	independent	
Neural	Networks.	G	is	trained	to	map	a	latent	sample	z ∼ �z	to	a	generated	simulation	m ∼ �gen..	D	is	trained	to	discriminate	between	
simulations	coming	from	the	generator	m ∼ �gen.	and	geological	simulations	coming	from	the	training	set	m ∼ �geol..	Symbol	~	means	
‘distributed	according	to’.
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parameter	matrices	can	be	similar	to	textures	as	they	often	
contain	approximately	repeating	patterns	and	have	some	
stochasticity	(e.g.	repeating	sedimentary	layers	with	vary-
ing	thicknesses,	or	meandering	river	channels	consisting	
of	similar	facies).	The	input	to	an	SGAN	is	a	latent	tensor	
(matrix)	 rather	 than	 simply	 a	 latent	 vector	 as	 used	 in	 a	
standard	GAN.	Furthermore,	all	 the	 layers	 in	 the	SGAN	
are	convolutional	layers	(Jetchev	et	al., 2016).	This	enables	
us	to	scale	the	input	tensor	to	obtain	a	different-	sized	out-
put,	that	is	in	our	case,	a	larger	latent	tensor	results	in	a	
larger	geological	parameter	matrix.	What	is	more,	individ-
ual	 elements	 of	 the	 latent	 tensor	 describe	 only	 a	 single,	
localised	patch	of	the	output	parameter	matrix.	Thus,	we	
can	update	a	single	patch	of	an	output	parameter	matrix	
while	 keeping	 the	 rest	 of	 the	 matrix	 constant.	 The	 dis-
criminator	is	also	updated	to	output	a	loss	for	each	entry	
of	the	input	tensor.

In	 this	 paper,	 we	 invert	 arrival	 times	 directly	 for	 the	
latent	 parameters	 used	 in	 the	 GAN.	 The	 latent	 parame-
ter	distribution	used	when	training	the	GAN	is	therefore	
the	 prior	 distribution.	 Unlike	 in	 traditional	 inversions	
where	 the	 prior	 distribution	 is	 unknown	 or	 assumed	 to	
be	known,	in	this	case,	we	choose	the	distribution	of	the	
latent	 parameters.	 After	 training,	 the	 latent	 distribution	
represents	the	complex	distribution	over	the	training	im-
ages,	 therefore	 the	 latent	 distribution	 represents	�(m)	 in	
Equation 1.	Note	that	this	approach	does	introduce	a	sys-
tematic	error	if	the	GAN	produces	incorrect	simulations.	
We	therefore	encourage	the	use	of	large	training	sets	and	
an	appropriate	number	of	 latent	parameters	 to	encapsu-
late	all	variability	within	the	geological	prior	distribution.

2.3	 |	 Markov chain Monte Carlo

We	 aim	 to	 make	 a	 reasonably	 accurate	 estimate	 of	 cer-
tain	 statistics	 of	 the	 posterior	 distribution	 �(m| d)	 in	
Equation 1.	We	could	sample	the	prior	distribution	�(m)	
and	 compute	 the	 likelihood	 for	 those	 samples	 to	 obtain	
an	 estimate	 of	 the	 posterior	 distribution.	 However,	 the	
maxima	in	�(m)	do	not	necessarily	align	with	the	maxima	
in	�(m| d)	which	would	make	sampling	of	the	posterior	in-
efficient.	What	is	more,	the	likelihood	�(d|m)	may	intro-
duce	non-	linear	relationships	that	further	impede	finding	
a	representative	sampling	of	�(m| d).	We	would	therefore	
like	 to	 sample	 �(m| d)	 directly,	 which	 is	 approximately	
possible	using	Markov	chain	Monte	Carlo	(McMC)	sam-
pling	(Mosegaard	&	Tarantola, 1995).

McMC	 sampling	 creates	 a	 chain	 of	 samples,	 where	
each	 sample	 is	 found	 using	 a	 two-	step	 process:	 first,	 we	
sample	a	parameter	according	 to	a	proposal	distribution	
q
(
m′|m

)
	which	describes	the	probability	 that	we	should	

consider	a	move	to	m′	given	that	we	are	at	m.	Second,	the	

proposed	sample	is	accepted	or	rejected	depending	on	the	
probability	of	acceptance

where	 we	 assume	 an	 explicit	 form	 for	 the	 likelihood	
ratio	 (central	 terms	 in	 the	 fraction)	 of	 exp − �S

�2
,	 where	

�S = S
(
m�

)
− S(m)	 which	 is	 the	 difference	 in	 misfits	S	 to	

travel	time	data	between	the	proposed	and	current	samples	
m′	and	m,	and	�2	 is	 the	variance	or	noise	on	the	observed	
travel	 time	 data.	 Thus,	 for	 similar	 prior	 probabilities	 and	
if	q	is	symmetric	in	m′	and	m,	if	the	misfit	of	the	proposed	
parameter	m′	 is	 lower	than	the	current	parameter	m,	 then	
m′	 is	always	accepted	as	a	new	sample	of	the	posterior.	In	
the	reverse	case,	m′	 is	accepted	as	a	posterior	sample	with	
a	probability	based	on	the	difference	between	the	misfits	of	
the	proposed	and	current	model.	If	m′	 is	rejected,	the	cur-
rent	model	is	repeated	(duplicated)	in	the	chain.

From	 an	 initial	 parameter	 sample,	 consecutive	 sam-
ples	 are	 found	 iteratively	 using	 Equation  7.	 Metropolis	
et	 al.  (1953)	 and	 Mosegaard	 and	 Tarantola  (1995)	 show	
that	 after	 an	 infinite	 number	 of	 samples,	 the	 set	 of	 pa-
rameter	samples	is	distributed	according	to	the	posterior	
distribution.	 However,	 an	 infinite	 number	 of	 samples	 is	
computationally	infeasible,	as	is	a	number	of	samples	that	
is	sufficiently	large	to	approximate	this	case	in	practical,	
non-	linear	 tomographic	 problems.	 Therefore,	 multiple	
chains	are	computed	 in	parallel,	each	with	different	 ini-
tial	 parameters,	 such	 that	 we	 obtain	 a	 greater	 diversity	
of	 samples	more	 rapidly.	What	 is	more,	having	multiple	
chains	allows	for	more	resilience	if	a	chain	gets	stuck	in	
a	maximum.

Although	the	acceptance	probability	in	Equation 7	en-
sures	that	we	end	up	with	a	set	of	samples	that	estimate	
the	posterior	distribution	if	sampled	infinitely	many	times,	
we	would	like	a	finite	set	of	samples	that	are	representa-
tive	of	the	posterior	distribution.	What	is	more,	we	would	
like	to	obtain	this	finite	set	efficiently.	Therefore,	we	must	
design	our	proposal	distribution	q	such	that	we	minimise	
the	number	of	 rejected	samples	while	 still	 spanning	 the	
parameter	 space.	We	define	our	proposal	distribution	as	
randomly	selected	perturbation	to	parameters	of	the	pre-
vious	parameter	matrix	in	the	chain.	We	can	vary	both	the	
magnitude	of	the	perturbation	and	the	number	of	param-
eters	updated	 to	optimise	 the	efficiency	of	posterior	dis-
tribution	 sampling.	 Even	 after	 such	 provisions,	 samples	
are	only	ever	approximately	distributed	according	to	 the	
posterior.	We	therefore	often	only	analyse	statistics	of	the	
sample	 set	 (usually	 moments	 such	 as	 means,	 variances,	
etc.).	These	are	assumed	to	be	more	robust	estimators	of	
properties	of	the	posterior	distribution	than	are	individual	
samples.

(7)Paccept =

{
1,

�
(
m�

)
�
(
d|m�

)
q
(
m|m�

)

�(m)�(d|m)q(m�|m)

}
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2.4	 |	 Mixture density networks

Mixture	density	networks	(MDN)	are	a	type	of	neural	net-
work	 that	 can	 be	 trained	 to	 infer	 the	 posterior	 distribu-
tion	 of	 parameters	 directly	 from	 measured	 data	 (Bishop	
&	Nasrabadi, 2006).	The	posterior	�(m| d)	is	approximated	
by	a	weighted	sum	of	multiple	Gaussians

where	 K	 is	 the	 number	 of	 Guassians,	 �k	 the	 kth	
Gaussian's	mixing	coefficient	or	weight,	N	the	Gaussian	
or	Normal	distribution,	�k	the	Gaussian	mean	and	�2

k
	the	

Gaussian	standard	deviation.	The	vector	parameters	�,		
�	 and	�	 are	 inferred	 from	 the	 data	 using	 a	 neural	 net-
work	 which	 may	 have	 any	 of	 a	 range	 of	 architectures	
and	complexities.

MDN	 training	 is	 performed	 with	 N	 parameter–	data	
pairs	

{(
mn, dn

)
:n = 1, … ,N

}
,	which	are	generated	by	se-

lecting	mn	according	to	the	prior	pdf	and	calculating	the	
corresponding	measured	data	dn	using	a	synthetic	forward	
model.	The	 neural	 network	 weights	�MDN	 are	 optimised	
by	 minimising	 a	 cost	 function	E	 which	 for	 independent	
training	data	is	taken	to	be

with	N	 the	number	of	pairs	 in	 the	 training	set	 (Bishop	&	
Nasrabadi, 2006).	To	optimise	the	network,	we	calculate	de-
rivatives	of	the	cost	function	with	respect	to	each	network	
weight,	which	are	obtained	using	a	backpropagation	proce-
dure	(Bishop	&	Nasrabadi, 2006).	Due	to	the	sum	over	all	
data	points	in	Equation 9	we	backpropagate	the	derivatives	
for	each	data	point	and	then	sum	the	resulting	N	derivatives	
to	find	the	derivative	of	E

(
�MDN

)
.	If	samples	from	the	prior	

distribution	are	used	as	training	data	for	the	network	then	
the	prior	becomes	implicit	in	the	training	procedure.	After	
training,	 the	resultant	network	then	directly	estimates	 the	
complete	 posterior	 probability	 distribution	 given	 any	 data	
set	as	input.

While	a	single	MDN	can	predict	the	posterior	distri-
bution	directly,	we	opt	to	train	multiple	networks	with	
different	 layer	 sizes.	 As	 MDNs	 are	 prone	 to	 mode	 col-
lapse,	 different	 networks	 may	 find	 different	 modes	 of	
the	posterior	distribution.	The	ensemble	of	predictions	
is	 combined	 linearly	 in	 a	 so-	called	 mixture	 of	 experts	
(Dietterich, 2000).

2.5	 |	 Posterior classification probabilities

We	 aim	 to	 assign	 any	 input	 travel	 time	 data	 to	 one	 of	
a	set	of	discrete	classes,	each	defined	by	the	geological	
concept	model	under	which	similar	training	data	were	
generated.	A	neural	network	tasked	with	the	classifica-
tion	 of	 its	 inputs	 into	 a	 set	 of	 discrete	 classes	 is	 often	
trained	 to	 output	 a	 score	 for	 each	 possible	 class.	 The	
classification	 derived	 by	 the	 network	 is	 then	 the	 class	
with	 the	 greatest	 score.	 If	 the	 network	 is	 trained	 with	
particular	cost	functions,	the	outputs	for	each	class	be-
come	 estimates	 of	 the	 Bayesian	 posterior	 probabilities	
(Richard	&	Lippmann, 1991),	provided	that	the	network	
is	 trained	 using	 a	 one-	hot	 encoding	 scheme	 (i.e.	 the	
true	 classification	 is	 encoded	 as	 1	 for	 the	 correct	 class	
and	 0	 for	 the	 other	 classes)	 and	 that	 the	 network	 has	
a	 sufficient	 number	 of	 trainable	 weights.	 Richard	 and	
Lippmann  (1991)	 prove	 this	 for	 a	 squared	 error	 and	
cross-	entropy	cost	function.

Assume	 that	 we	 have	 a	 training	 set	 containing	 a	 pa-
rameter	 matrix	m	 which	 belongs	 to	 one	 of	N	 classes	 in	{
Cn:n = 1, ⋯ ,N

}
.	Let	

{
yn:n = 1, ⋯ ,N

}
	be	the	network	

output	 and	
{
cn:n = 1, ⋯ ,N

}
	 the	 desired	 output.	 Then,	

we	can	construct	the	squared	error	cost	function

with	�class	the	network	weights,	yn(m)	the	network	output	
for	class	n	and	cn	the	desired	output	for	class	n	(either	1	or	0)	
for	each	of	the	N	classes	(Richard	&	Lippmann, 1991).	The	
neural	network	weights	are	then	optimised	using	a	similar	
backpropagation	algorithm	to	the	MDN	(see	Section 2.4).	
For	the	prior	distribution,	we	assume	a	Uniform	distribu-
tion	over	the	different	geological	concept	classes.

2.6	 |	 Geological information

The	conceptual	geological	model	usually	describes	our	be-
liefs	about	the	tectonic	setting,	depositional	environment	
of	 sediments,	 geographical	 relationships	 to	 continents	
and	marine	waters	and	other	high-	level	information.	This	
model	 ultimately	 governs	 lower-	level	 information	 about	
the	 exact	 geometry,	 abundance	 of	 different	 sediment	
types,	etc.	We	use	two	conceptual	models:	a	braided	river	
system	and	marine	parasequences.	The	former	model	has	
already	been	described	in	detail	in	Laloy	et	al. (2018),	so	
here	we	discuss	the	relatively	new	marine	parasequences	
conceptual	model.

Our	 choice	 of	 conceptual	 model	 defines	 what	 pro-
cesses	 are	 included	 in	 the	 SedSimple	 (Tetzlaff,  2022)	

(8)�(m| d) =
K∑

k=1

(
m|�k(d), �2k(d)�k(d)

)
N

(9)

E
(
�MDN

)

= −

N∑

n=1

ln

[
K∑

k=1

�k
(
dn, �MDN

)
N
(
m|�k

(
dn, �MDN

)
, �2

k

(
dn, �MDN

))
]

(10)E
(
�class

)
= E

{
N∑

n=1

[
yn(m)−cn

]2
}
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geological	 process	 modeller	 (GPM)	 runs	 used	 herein.	 A	
GPM	 simulates	 geological	 processes	 through	 time	 com-
putationally	to	obtain	a	three-	dimensional	distribution	of	
geological	facies	such	as	that	shown	in	Figure 2	(Tetzlaff	
&	Harbaugh, 1989).	Simulations	are	started	from	an	ini-
tial	topography,	for	which	in	this	study	we	use	a	sigmoidal	
topography	that	represents	the	transition	from	the	conti-
nental	shelf	to	the	abyssal	plain.	Relative	sea	level	through	
time	is	defined	to	be	sinusoidal	and	we	include	an	influx	
of	water	and	sediment	on	 the	shelf	 representing	a	 river.	
Lastly,	we	define	two	types	of	clastic	sediments	by	setting	
their	 relative	 transportability;	 one	 sediment	 has	 double	
the	transportability	of	the	other.	Note	that	in	this	manu-
script,	we	aim	to	establish	and	demonstrate	the	methodol-
ogy	rather	than	to	apply	it	in	a	real	setting.	We	therefore	
chose	these	values	to	obtain	a	thick	sediment	with	inter-
esting	features	rather	than	to	emulate	a	scenario	matching	
a	certain	geographical	location	and	time	interval	as	would	
be	 the	case	when	 this	method	was	deployed	 in	practise.	
All	parameter	values	used	herein	are	defined	in	Table 1.

After	 the	 initial	 parameters	 are	 defined,	 SedSimple	
simulates	different	geological	processes	at	each	of	a	set	of	
small	time	steps.	Such	processes	are	sedimentary	disper-
sion,	 erosion,	 transportation	 and	 deposition.	 Dispersion	
is	 the	 process	 that	 simulates	 sediment	 particles	 moving	
downhill	from	high	to	low	elevations,	and	similarly	from	
high	 to	 low	 concentrations	 when	 suspended	 in	 a	 fluid.	
The	governing	equation	for	sediment	dispersion	is

with	elevation	z,	time	t,	diffusion	coefficient	D	and	the	sed-
iment	 source	 term	 s.	 Sedimentary	 erosion,	 transport	 and	
deposition	are	also	dependent	on	the	fluid	flow.	SedSimple	
simulates	 fluid	 flow	 to	 determine	 whether	 sediment	 is	
eroded,	 transported,	and	deposited,	 for	which	a	simplified	
version	of	the	Navier–	Stokes	equation	is	employed.	Erosion	
and	deposition	are	then	calculated	based	on	empirical	for-
mulae	(see	Tetzlaff	&	Harbaugh, 1989	for	more	information).

Although	GPM	algorithms	are	deterministic,	they	are	
still	 chaotically	 non-	linear:	 a	 small	 change	 in	 the	 input	
variables	can	cause	large	changes	in	the	output	simulation.	

(11)�z

�t
= D∇2z + s

F I G U R E  2  3D	view	of	example	output	from	the	geological	process	model	SedSimple.	Colours	in	the	plot	represent	the	relative	
concentrations	of	different	facies	in	the	simulation.

T A B L E  1 	 Parameters	used	for	the	geological	process	model	
simulation	are	shown	in	Figure 2.	Transportability	in	the	table	is	
also	known	as	the	diffusion	coefficient.

Parameter Value

Geological	time 500	kA

Manning	coefficient 0.3

Water	source 1000	m3/s

Sediment	1	influx 60	mL/s

Sediment	2	influx 160	mL/s

Transportability	sediment	1 100

Transportability	sediment	2 200
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For	example,	if	the	initial	simulation	has	two	parallel	river	
channels,	then	tiny	changes	in	the	input	parameters	create	
entirely	different	braided	river	systems.	It	is	therefore	dif-
ficult,	if	not	impossible,	to	use	a	GPM	directly	in	an	inver-
sion	algorithm	to	fit	specific	measured	data.	We	therefore	
train	a	GAN	to	emulate	the	spatial	sedimentary	patterns	
produced	by	the	GPM	(Mosser	et	al., 2020).	Since	the	gen-
erator	in	a	GAN	has	an	analytic	structure,	the	input	latent	
parameters	can	be	varied	so	that	the	distribution	of	sim-
ulations	produced	emulates	 the	prior	distribution	 repre-
sented	by	any	given	set	of	simulations	from	the	GPM.	This	
method	allows	multiple	GPM	simulations	with	different	
initial	parameters	to	be	used	to	capture	the	chaotic	nature	
of	sedimentary	distributions.

3 	 | 	 PROBLEM DESCRIPTION

In	 this	 paper,	 we	 focus	 on	 how	 to	 introduce	 geological	
information	 into	 tomographic	 studies,	 in	 particular	 in	
cases	 where	 multiple	 conceptual	 geological	 models	 may	
describe	the	geological	scenario	under	which	the	imaged	
structure	was	created.	Given	that	we	can	deploy	two	such	
models	(one	parameterised	by	Laloy	et	al. (2018)	and	one	
using	SedSimple),	we	can	investigate	the	impact	on	geo-
physical	tomography	if	different	(and	potentially	mislead-
ing)	prior	information	is	injected.

The	SedSimple	simulation	in	Figure 2	was	used	to	con-
struct	training	data	for	the	GANs	that	embody	the	second	
conceptual	model.	In	this	simulation,	there	are	two	differ-
ent	sediments,	both	siliciclastics	but	with	different	grain	
sizes.	The	colours	in	the	plot	represent	the	abundance	of	
the	 two	 sediments.	 We	 extracted	 1800	 two-	dimensional	
32-	by-	32	 pixel	 slices	 in	 both	 the	 x	 and	 y	 direction	 from	
the	three-	dimensional	simulation	that	created	a	training	
set	of	parameter	matrices	for	the	GAN.	For	details	of	the	

braided	river	system	conceptual	model	and	SGAN	train-
ing,	we	refer	the	reader	to	Laloy	et	al. (2018).

We	 trained	 a	 GAN	 to	 emulate	 the	 marine	 parase-
quences	 conceptual	 model	 using	 codes	 from	 Kang	 and	
Park  (2020).	 We	 tested	 different	 network	 architectures	
including	BigGAN	(Brock	et	al., 2018),	ReACGAN	(Kang	
et	al., 2021),	ICRGAN	(Zhao	et	al., 2020)	and	WGAN-	GP	
(Gulrajani	et	al., 2017).	For	each	network,	we	minimised	
the	 number	 of	 latent	 parameters	 by	 visual	 inspection	
of	 the	 output	 and	 trained	 the	 same	 architecture	 multi-
ple	times	to	reduce	the	effect	of	poor	(random)	network	
initialisation.	 The	 trained	 networks	 are	 visually	 com-
pared	after	which	we	selected	a	single	best	network,	 in	
our	case,	a	WGAN	with	eight	latent	parameters.	Training	
on	this	network	took	7	h	and	30	min	on	a	single	NVIDIA	
TITAN	X.

The	parameter	matrices	generated	by	both	the	braided	
river	 and	 the	 marine	 parasequence	 GAN	 are	 in	 a	 value	
range	of	[−1,	1]	which	we	rescaled	to	[1,	2]	km/s	to	rep-
resent	a	reasonable	range	of	seismic	velocities.	Four	sam-
ples	 from	each	GAN	are	shown	in	Figure 3,	 the	braided	
river	channel	realisations	on	the	left	and	marine	parase-
quences	on	the	right	represent	samples	from	the	two	prior	
pdfs	used	in	this	study.	Although	the	parameter	matrices	
are	 high-	dimensional,	 there	 is	 a	 low-	dimensional	 latent	
representation	 for	 each	 such	 matrix.	 The	 braided	 river	
channel	 prior	 is	 encoded	 by	 nine	 latent	 parameters	 and	
the	marine	parasequences	prior	is	encoded	by	eight	latent	
parameters.	The	 respective	 GANs	 create	 mappings	 from	
the	low-	dimensional	latent	parameters	to	the	prior	pdfs	in	
high-	dimensional	 geophysical	 parameter	 matrices.	 Each	
set	of	latent	parameter	values	selected	from	the	latent	dis-
tributions	produces	an	approximate	sample	from	the	cor-
responding	geological	prior	pdf.

To	represent	a	geophysical	tomographic	survey,	we	de-
fined	a	square	data	acquisition	geometry	with	corners	at	

F I G U R E  3  Four	realisations	from	the	braided	river	system	(left)	and	marine	parasequence	(right)	GANs.	Colours	represent	seismic	
velocities.
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x	=	−4,	4	km	and	y	=	−4,	4	km	and	source	spacing	of	1.4	km	
as	shown	by	the	red	triangles	in	Figure 4.	This	geometry	
defines	the	locations	of	sources	and	receivers:	each	loca-
tion	in	turn	acts	as	a	seismic	source,	whereas	all	other	lo-
cations	act	as	receivers.	This	generated	153	unique	travel	
times—	the	data	corresponding	to	each	parameter	matrix.	
We	add	Gaussian	noise	with	a	 standard	deviation	of	1%	
of	the	mean	arrival	times	to	the	synthetic	arrival	times	to	
simulate	measurement	uncertainties.

Figure  4	 shows	 what	 we	 used	 as	 the	 true	 parameter	
matrices	composed	of	a	terrestrial	river	system	(left)	and	
marine	 parasequences	 (right).	 The	 acquisition	 geome-
try	 is	 indicated	 by	 red	 triangles.	 In	 the	 examples	 below,	
we	 inverted	 the	 travel	 times	corresponding	 to	 these	 true	
parameter	matrices	for	the	Bayesian	posterior	pdf	in	the	
low-	dimensional	latent	space	in	each	case.	Samples	of	this	
pdf	could	then	be	translated	to	the	high-	dimensional	pa-
rameter	 space	 using	 each	 respective	 GAN.	 This	 indirect	
approach	ensures	that	we	need	only	estimate	the	posterior	
pdf	over	eight	or	nine	latent	parameters	rather	than	across	
the	high-	dimensional	32-	by-	32	parameter	matrix.

For	each	data	 set,	we	computed	 two	estimates	of	 the	
posterior	pdf:	a	benchmark	solution	 found	using	McMC	
and	a	large	number	of	samples	and	a	rapid	estimate	using	
MDNs.	We	validated	the	convergence	of	the	McMC	runs	
by	 monitoring	 the	 posterior	 marginal	 pdf	 estimates	 for	
each	parameter	in	latent	space.	Any	chains	that	were	ob-
viously	 stuck	 in	 local	 minima	 (span	 a	 relatively	 narrow	
range	 of	 parameter	 values)	 were	 removed	 and	 we	 vali-
dated	 that	 a	 reasonable	 number	 of	 samples	 have	 been	
taken	by	ensuring	that	the	posterior	distribution	is	essen-
tially	the	same	for	the	complete	set	as	well	as	half	of	the	set	
of	posterior	samples.	We	computed	40	chains	with	around	
2	million	 samples	 each	 which	 took	 approximately	 3	days	
to	run.	This	is	a	lot	of	samples	for	McMC	runs	with	ca.	8	

parameters,	but	the	latent	parameter	space	is	more	infor-
mation	dense	than	model	parameter	space	and	posterior	
pdfs	 in	 the	 latent	 space	can	 therefore	be	 strongly	multi-	
modal.	We	therefore	run	the	chains	for	many	samples	to	
avoid	remaining	trapped	in	a	subset	of	the	modes.

A	 real	basin	example	 is	provided	 in	 the	 form	of	geo-
logical	models	from	a	mapped	outcrop	from	Last	Chance	
Canyon	 (New	 Mexico,	 USA)	 interpreted	 by	 Sonnenfeld	
and	Cross (1993).	Geological	models	were	extracted	from	
the	 interpretation	 by	 digitising	 their	 outcrop	 model,	 as-
signing	velocities	to	each	of	the	facies,	selecting	suitable	
outcrop	partitions,	and	generating	synthetic	arrival	times	
for	these	partitions.	We	invert	the	arrival	times	from	these	
geological	models	using	the	MDN	to	obtain	geological	pos-
terior	estimates.	This	process	is	likely	to	create	a	geological	
model	that	lies	significantly	outside	of	our	prior	informa-
tion	 and	 training	 sets,	 since	 those	 were	 generated	 using	
a	 significantly	 different	 and	 simplified	 set	 of	 geological	
prior	information	(that	encoded	in	the	GPMs,	their	initial	
conditions	and	dynamic	parameters).	This	therefore	rep-
resents	a	particularly	stringent	test	of	our	methods.

For	 each	 prior	 pdf,	 we	 trained	 an	 MDN	 to	 invert	 the	
data	using	around	3	million	samples	in	each	training	set.	
During	 training,	 we	 monitored	 progress	 by	 evaluating	 a	
validation	data	set	of	25%	of	 the	size	of	 the	 training	set.	
Multiple	network	architectures	were	used	and	each	archi-
tecture	was	 trained	multiple	 times	 to	eliminate	bias	due	
to	their	random	initialisation.	Using	a	test	set	of	size	5%	
of	the	training	set	size	we	measured	the	network	perfor-
mance.	To	better	generalise	the	outputs,	we	selected	five	
networks	and	combined	 them	 in	a	 linear	mixture	of	ex-
perts	(Dietterich, 2000).	We	found	that	training	the	MDN	
for	 the	 complete,	 multi-	dimensional	 posterior	 resulted	
in	 the	MDN	not	 finding	all	 the	posterior	modes	present	
in	 the	 ‘correct’	 McMC	 posterior	 estimate.	 We	 therefore	

F I G U R E  4  The	two	‘true’	parameter	matrices	for	which	we	simulate	measured	data,	one	from	each	of	the	conceptual	models:	a	braided	
river	system	(left)	and	marine	parasequences	(right).	Red	triangles	indicate	the	data	acquisition	geometry—	the	locations	of	both	sources	and	
receivers	between	which	travel	time	data	are	simulated.
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opted	to	train	multiple	networks	to	infer	the	marginal	pdf	
of	each	individual	latent	parameter,	similar	to	the	tomo-
graphic	work	of	Earp	and	Curtis (2020).	Thus,	for	a	single	
prior,	 we	 have	 Nlatent parameters ×Mmixture of experts	 neural	
networks	(e.g.	the	river	channel	prior	pdf	has	nine	latent	
parameters	giving	9	×	5	=	45	networks).	Training	of	a	sin-
gle	 network	 took	 about	 90	min	 using	 a	 single	 NVIDIA	
Tesla	K80.	We	had	access	 to	multiple	GPUs	so	we	could	
train	the	networks	in	parallel.

Finally,	 we	 trained	 a	 classifier	 NN	 that	 estimates	 the	
posterior	probability	that	each	conceptual	model	(embod-
ied	in	one	of	the	two	prior	pdfs)	pertained	to	a	certain	set	
of	travel	times.	For	this,	we	combined	the	river	and	ma-
rine	training	sets	such	that	we	obtained	a	total	of	6	million	
data	points.	We	trained	multiple	networks	with	different	
architectures	and	selected	the	one	that	performed	best	on	
a	 validation	 dataset.	We	 randomly	 selected	 a	 number	 of	
samples	for	each	training	epoch.	For	the	optimal	network,	
we	used	8	batches	with	4000	samples	each	and	trained	the	
network	for	100	epochs.	This	took	80	s	on	a	NVIDIA	Tesla	
T4.

4 	 | 	 RESULTS

Figure 5	shows	the	estimated	geological	posterior	statistics	
for	a	river	channel	true	parameter	matrix	where	the	inver-
sion	is	performed	using	the	correct	prior;	latent	posterior	
distributions	 and	 summary	 statistical	 geological	 models	
are	found	in	Appendix A.	Figure 5	shows	from	left	to	right:	
the	 true	 parameter	 matrix,	 the	 posterior	 mean	 from	 the	
MDN	(top)	and	McMC	(bottom),	the	posterior	estimate	of	
the	standard	deviation	for	MDN	(top)	and	McMC	(bottom)	

and	lastly	a	histogram	of	the	arrival	time	misfits	for	5000	
posterior	samples	 from	MDN	(top)	and	McMC	(bottom)	
solutions	 (the	 MDN	 samples	 are	 independently	 selected	
from	the	posterior	marginal	pdf	of	each	latent	parameter).	
The	 histogram	 shows	∣dobs − dsample ∣	 over	 different	 data	
points	 and	 different	 models.	 The	 means	 for	 both	 poste-
rior	estimates	are	close	to	the	true	parameter	matrix.	The	
standard	deviations	show	high	uncertainty	loops	around	
the	boundaries	of	 features	 in	 the	true	parameter	matrix,	
similar	to	the	results	of	Earp	and	Curtis (2020);	these	are	
expected,	and	quantify	uncertainty	in	the	location	of	the	
edges	of	those	features	(Galetti	et	al., 2015).	The	posterior	
estimates	thus	show	that	there	is	a	river	channel	running	
diagonally	 over	 the	 parameter	 matrix	 but	 that	 the	 exact	
boundary	of	the	channel	is	uncertain.	The	channels	out-
side	of	the	survey	acquisition	area	have	broader	uncertain-
ties	since	fewer	rays	travel	outside	of	the	acquisition	array.	
The	travel	time	misfits	are	centred	around	one	travel	time	
measurement	 standard	 deviation	 �,	 and	 almost	 all	 are	
within	± 2�	 from	 the	 true	 arrival	 times.	 Finally,	 all	 sta-
tistics	shown	here	are	consistent	between	our	benchmark	
McMC	posterior	and	 the	 rapid	MDN	method,	and	since	
these	are	completely	independent	methods	this	attests	to	
the	robustness	of	both.	All	of	the	above	indicates	that	both	
the	McMC	and	MDN	solutions	are	approximately	correct,	
and	conform	to	intuition	about	probabilistic	solutions	de-
rived	from	analyses	in	previous	studies.

Figure  6	 shows	 similar	 plots	 to	 Figure  5	 but	 for	 the	
marine	parasequence	true	parameter	matrix	and	prior	in-
formation.	Again,	there	is	a	close	match	between	the	pos-
terior	 mean	 and	 the	 true	 parameter	 matrix.	 The	 McMC	
posterior	 resolves	 the	 high-	velocity	 feature	 at	 location	
(1,	 1)	 km	 slightly	 better	 than	 the	 MDN	 posterior	 mean	

F I G U R E  5  The	true	braided	river	channels	parameter	matrix	(left)	and	the	summary	statistics	for	the	posterior	estimates	from	the	MDN	
(top)	and	McMC	(bottom).	The	statistics	are	the	posterior	mean,	posterior	standard	deviation	and	the	travel	time	misfits.
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velocities.	 The	 MDN	 posterior	 standard	 deviations	 are	
wider	for	the	transition	from	low	to	high	velocity	at	(−3,	
−2.5)	km	 compared	 to	 the	 McMC	 standard	 deviations.	
The	McMC	posterior	estimate	is	thus	more	narrowly	con-
centrated	around	the	true	parameter	matrix.	This	is	con-
firmed	by	 the	arrival	 time	misfit	histograms:	 the	McMC	
posterior	 data	 misfits	 show	 a	 narrower	 peak	 at	 a	 lower	
misfit	 value	 compared	 to	 the	 broader	 peak	 of	 the	 MDN	
posterior	 data	 misfit.	This	 illustrates	 that	 the	 MDN	 pos-
terior	marginal	pdf	estimates	do	not	capture	all	of	the	in-
formation	that	is	contained	in	the	McMC	posterior.	This	is	
likely	to	be	because	we	infer	only	single-	parameter	MDN	
marginal	distributions	which	therefore	do	not	contain	in-
formation	about	correlations	between	 latent	parameters;	
this	 contrasts	 with,	 the	 Monte	 Carlo	 samples	 which	 are	
taken	 in	 the	 full	 latent	 space	and	 so	do	contain	correla-
tion	information.	While	in	principle,	it	is	possible	to	train	

MDNs	to	represent	the	fully	correlated	posterior	pdf,	we	
found	such	networks	extremely	difficult	to	train	reliably.	
Therefore,	this	slight	reduction	in	posterior	information	is	
the	price	paid	for	obtaining	stable	solutions	for	any	travel	
time	data	set	in	ca.	1	s	from	an	MDN	rather	than	from	days	
of	computation	when	using	McMC.

The	statistics	 in	Figures 5	and	6	only	show	summary	
statistics	of	the	posterior	pdf.	What	is	more,	the	posterior	
mean	is	not	in	itself	a	geological	parameter	matrix	selected	
from	the	posterior	distribution	(the	values	shown	are	an	
integral	over	all	parameter	matrix	samples).	We	therefore	
show	 six	 random	 samples	 from	 the	 MDN	 posterior	 esti-
mate	in	Figure 7a,b	for	the	river	and	marine	inversion	re-
spectively.	The	 samples	 in	 each	 set	 are	 slightly	 different	
but	all	do	resemble	their	respective	true	parameter	matrix.	
What	is	more,	all	samples	are	geological:	the	samples	from	
the	river	inversion	all	show	reasonable	representations	of	

F I G U R E  6  The	true	marine	parasequences	parameter	matrix	(left)	and	the	summary	statistics	for	the	posterior	estimates	from	the	MDN	
(top)	and	McMC	(bottom).	The	statistics	are	the	posterior	mean,	posterior	standard	deviation	and	the	travel	time	misfits.

F I G U R E  7  Samples	from	the	MDN	posterior	marginal	pdf	estimates.	(a)	shows	samples	from	the	inversion	in	Figure 5	and	(b)	shows	
samples	from	the	inversion	in	Figure 6.
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river	 channels	 and	 all	 samples	 from	 the	 marine	 parase-
quence	inversion	show	reasonable	geological	marine	para-
sequences.	 Geological	 realisations	 are	 highly	 unlikely	 to	
occur	in	any	inversion	conducted	using	a	non-	geological	
prior	(e.g.	Bodin	&	Sambridge, 2009;	Earp	&	Curtis, 2020;	
Galetti	et	al., 2015).

So	 far	 we	 have	 applied	 the	 correct	 set	 of	 prior	 infor-
mation	 for	 each	 of	 our	 target	 true	 parameter	 matrices.	
However,	 it	 has	 been	 shown	 that	 prior	 choices	 between	
conceptual	geological	models	(Bond	et	al., 2015)	and	their	
parameters	(Curtis	&	Wood, 2004)	are	subject	 to	natural	

human	biases	 (Bond	et	al.,  2012;	Curtis, 2012;	Polson	&	
Curtis,  2010).	 It	 is	 therefore	 of	 interest	 to	 assess	 the	 ef-
fects	of	using	incorrect	prior	information:	inverting	a	river	
channel	 true	 model	 using	 a	 marine	 prior	 pdf	 and	 vice	
versa.	Figures 8	and	9	show	the	 inversions	using	the	 in-
correct	prior	pdf	(top)	versus	the	correct	one	(bottom),	and	
Figure 10a,b	shows	corresponding	example	posterior	sam-
ples	for	the	river	and	marine	true	parameter	matrices,	re-
spectively.	The	posterior	statistics	show	that	the	inversions	
with	the	correct	prior	perform	better	than	those	with	the	
incorrect	prior,	as	expected.	However,	the	incorrect	prior	

F I G U R E  8  The	true	parameter	matrix	taken	from	the	river	prior	(left)	and	the	summary	statistics	for	the	posterior	estimates	using	the	
unsuitable	marine	prior	pdf	(top)	and	suitable	river	prior	pdf	(bottom).	The	unsuitable	posterior	pdf	estimates	are	computed	using	the	MDN.

F I G U R E  9  The	true	parameter	matrix	is	taken	from	the	marine	parasequences	prior	(left)	and	the	summary	statistics	for	the	posterior	
estimates	using	the	unsuitable	river	prior	pdf	(top)	and	suitable	marine	parasequences	prior	pdf	(bottom).	The	unsuitable	posterior	pdf	
estimates	are	computed	using	the	MDN.
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inversions	do	still	retrieve	approximately	recognisable	es-
timates	of	the	overall	structure.	The	inversion	of	the	river	
channel	data	produces	a	diagonal	channel-	like	feature	in	
all	samples	in	Figure 10a,	but	the	channels	sub-	parallel	to	
the	x-	axis	at	the	top	and	bottom	of	the	true	model	are	not	
inferred.	The	posterior	samples	from	the	inversion	of	the	
marine	data	show	that	the	posterior	does	somewhat	cap-
ture	the	high-	velocity	feature	in	the	true	model,	but	that	
there	is	a	lot	of	variation.	However,	in	both	cases	when	in-
appropriate	prior	information	is	used,	the	expected	loop-	
like	uncertainty	 structures	created	by	high	uncertainties	
occurring	on	the	boundaries	of	the	main	velocity	anoma-
lies	do	not	appear.

As	a	test	in	which	the	true	model	is	even	further	out-
side	of	the	prior	information	space,	we	invert	three	mod-
els	that	are	sub-	areas	of	the	cross-	sectional	interpretation	
of	Last	Chance	Canyon	(NM,	USA)	from	Sonnenfeld	and	
Cross (1993).	Inversion	results	using	the	marine	prior	are	
shown	in	Figure 11.	From	left	to	right,	we	show	the	true	
model,	maximum	a	posteriori	(MAP)	model,	the	mean,	the	
standard	deviation	and	the	arrival	time	misfits.	The	latter	
three	are	calculated	over	geological	posterior	distribution	
samples.	 The	 top	 row	 shows	 a	 fair	 agreement	 between	
the	true	model	and	the	posterior	models.	The	middle	ca.	
1.75	km/s	 zone	 is	 recovered	 well,	 with	 uncertainty	 as	 to	
where	the	bottom	boundary	of	that	zone	lies.	The	second	
row	 shows	 results	 for	 a	 more	 complicated	 true	 model.	
The	two	low-	velocity	features	are	represented	by	a	single	
low-	velocity	 zone	 in	 posterior	 estimates.	 Furthermore,	
the	high-	velocity	zone	at	 the	 top	 in	 the	posterior	 results	
is	 an	 overestimation	 of	 what	 is	 seen	 in	 the	 true	 model.	
Lastly,	the	bottom	row	true	model	has	a	large	low-	velocity	
zone	diagonally	over	the	model	which	is	well	represented	
in	 the	 posterior	 estimates.	 The	 boundaries	 of	 the	 low-	
velocity	 zone	 have	 higher	 uncertainty	 with	 a	 narrower	

band	of	uncertainty	 for	 the	bottom	boundary	versus	 the	
top	boundary.	Nevertheless,	the	overall	structure	of	each	
model	is	recovered	reasonably	for	this	real	setting,	despite	
prior	information	injected	from	the	combination	of	con-
ceptual	and	process	models	certainly	being	oversimplified.

The	 data	 misfit	 in	 Figures  8	 and	 9	 highlight	 the	 dif-
ference	 between	 using	 correct	 and	 incorrect	 conceptual	
models.	 The	 top	 rows	 show	 posterior	 statistics	 obtained	
using	unsuitable	prior	 information	and	the	bottom	rows	
show	 comparable	 results	 when	 using	 appropriate	 prior	
information.	 Differences	 between	 the	 misfit	 distribu-
tions	(rightmost	panels)	when	changing	the	prior	pdf	for	
the	same	data	set	indicate	that	there	may	be	information	
in	 the	 data	 that	 could	 discriminate	 which	 class	 of	 prior	
information	 is	 more	 likely	 to	 be	 appropriate.	 Assuming	
the	 prior	 probability	 over	 the	 geological	 concept	 classes	
is	Uniform,	we	sample	 the	prior	of	each	geological	con-
cept	and	generate	arrival	times.	The	obtained	set	of	arrival	
times	is	the	training	data	for	the	classifier	neural	network.	
We	 train	 the	 classifier	 neural	 network	 that	 provides	 the	
posterior	 class	 probability	 of	 each	 conceptual	 model	 C	
given	the	observed	travel	times	�(C| d).	Given	the	posterior	
class	probability	and	the	posterior	model	parameter	prob-
ability	 (from	previous	 results),	we	can	also	compute	 the	
joint	posterior	probability	of	the	conceptual	class	and	the	
corresponding	 model	 parameters	�(C,m ∣ d).	The	 results	
are	shown	in	Figures 12	and	13	for	the	river	and	marine	
true	parameter	matrices	respectively.	The	top	panels	show	
the	 following	 geological	 parameter	 matrices	 from	 left	 to	
right:	the	true	parameter	matrix,	the	posterior	mean	using	
marine	prior	information,	the	posterior	mean	using	river	
prior	information,	the	posterior	mean	given	(marginalised	
over)	the	class	probabilities	from	the	classifier	neural	net-
work	and	lastly,	a	posterior	mean	if	the	class	probabilities	
were	Uniform	(i.e.	the	posterior	class	probability	is	equal	

F I G U R E  1 0  Samples	from	inversions	using	unsuitable	prior	information.	(a)	shows	the	samples	from	the	inversion	in	Figure 8	and	
(b)	shows	the	samples	from	the	inversion	in	Figure 9.
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to	the	prior	class	probability).	The	bottom	row	shows	the	
posterior	 class	 probabilities	 on	 the	 left	 and	 then	 histo-
grams	of	the	data	misfits	corresponding	to	each	posterior	
pdf	 in	 the	 top	 row.	 First,	 the	 posterior	 class	 probability	
provides	clear	information	about	which	conceptual	model	
pertains	to	which	data	set.	As	above,	the	posterior	misfits	
are	lower	when	the	correct	conceptual	model	is	used	for	
the	 inversion.	 If	 we	 combine	 the	 class	 probabilities	 and	

the	parameter	probabilities	into	the	joint	posterior	proba-
bility	�(C,m ∣ d),	the	misfits	are	higher	than	for	the	correct	
prior	but	significantly	lower	than	those	obtained	using	ei-
ther	 the	 wrong	 class	 or	 Uniform	 class	 probabilities.	 For	
the	data	corresponding	to	the	Last	Chance	Canyon	models	
(Figure 11)	the	network	correctly	predicts	the	marine	prior	
as	the	more	appropriate	prior	for	the	travel	time	data.	The	
likelihood	of	the	data	coming	from	marine	environments	

F I G U R E  1 1  Posterior	distributions	for	three	true	models	coming	from	real	basin	data.	The	true	models	are	constructed	from	the	
Last	Chance	Canyon	(NM,	USA)	outcrop	interpreted	by	Sonnenfeld	and	Cross (1993).	From	left	to	right,	the	panels	show	the	true	model,	
Maximum	A	Posteriori	model,	posterior	mean,	posterior	standard	deviation	and	arrival	time	misfits.

F I G U R E  1 2  Posterior	statistics	for	different	prior	pdfs.	Left	column	shows	the	true	river	parameter	matrix	(top)	and	the	posterior	
probability	of	the	conceptual	model	class	given	the	observed	travel	times	(bottom).	Successive	columns	show	the	posterior	mean	(top)	and	
travel	time	misfit	(bottom)	for	the	following	scenarios:	marine	parasequence	conceptual	model,	river	channel	conceptual	model,	mixed	
posterior	given	the	posterior	class	probability	and	the	posterior	mean	if	the	posterior	probability	for	each	conceptual	model	class	was	
Uniform.
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are	95%,	61%	and	79%	for	the	top,	middle	and	bottom	true	
model	in	Figure 11	respectively.

5 	 | 	 DISCUSSION

Our	 aim	 in	 this	 paper	 is	 to	 develop	 and	 demonstrate	 a	
methodology	to	inject	high-	level	(conceptual)	and	lower-	
level	 (parameter)	 geological	 prior	 information	 into	 a	
Bayesian	inversion	scheme	and	to	investigate	their	effects.	
Figures 5	and	6	show	that	we	can	successfully	inject	geo-
logical	 prior	 information	 into	 Bayesian	 inversion	 using	
the	 GAN.	 For	 both	 the	 river	 and	 the	 marine	 prior	 pdfs	
we	 found	 posterior	 pdfs	 that	 closely	 match	 the	 true	 pa-
rameter	matrix.	In	these	cases,	the	rapid	MDN	inversions	
obtain	 similar	 posterior	 estimates	 to	 those	 from	 McMC	
in	a	 fraction	of	 the	time,	post-	training.	Furthermore,	we	
have	shown	that	the	GAN	prior	parameterisation	is	rea-
sonably	agnostic	 to	 the	Bayesian	 inversion	scheme	used	
(e.g.	McMC	or	MDN)	to	estimate	parameter	pdfs.	Thus,	if	
faster	or	more	accurate	inversion	methods	become	avail-
able	then	this	solution	to	injecting	geological	prior	infor-
mation	can	still	be	used.

However,	 the	 true	 parameter	 matrices	 that	 we	 have	
used	 in	 the	 above	 examples	 result	 in	 so-	called	 inverse	
crimes.	An	inverse	crime	is	a	situation	where	a	parame-
ter	matrix	that	has	been	simplified	to	a	certain	degree,	is	
used	 to	 generate	 data,	 which	 are	 then	 inverted	 to	 try	 to	
recover	 a	 parameter	 matrix	 that	 contains	 the	 same	 sim-
plifications	 (Kaipio	 &	 Somersalo,  2007).	 Inverse	 crimes	
show	 the	 best	 case	 scenario	 for	 any	 inversion	 method	
because	 the	method	 is	not	 tested	against	 the	complexity	

of	 true	data	uncertainties,	such	tests	might	overestimate	
the	performance	of	an	algorithm.	We	therefore	also	show	
inversions	of	 the	 true	parameter	matrix	using	 the	 incor-
rect	prior	conceptual	model.	In	that	scenario,	there	is	no	
inverse	crime	as	the	simplifications	made	in	the	true	pa-
rameter	matrix	and	in	the	prior	information	are	different.	
Although	these	inversions	performed	worse	than	their	in-
verse	crime	equivalents,	we	argue	that	the	results	are	po-
tentially	still	recognisable,	particularly	when	using	Monte	
Carlo	methods.

The	three	inversions	on	the	real	basin	data	do	not	com-
mit	 inverse	 crimes.	 These	 inversions	 show	 that	 we	 are	
also	able	to	 invert	 for	real	structures.	In	these	examples,	
we	have	not	used	real	measured	travel	time	data	because	
whenever	such	data	are	available	it	is	seldom	the	case	that	
the	true	model	is	known	so	that	would	not	constitute	a	test	
of	the	inversion	method.	Our	examples	therefore	provide	
a	reasonable	test	of	our	inversion	scheme	in	a	real-	world	
setting.	What	is	more,	our	classifier	NN	correctly	predicts	
the	 shallow	 marine	 setting	 is	 more	 likely	 to	 be	 correct	
from	the	arrival	time	data.

Another	benefit	of	using	geological	prior	pdfs	is	that	the	
resulting	posterior	pdf	consists	only	of	geologically	reason-
able	parameter	matrices.	Each	sample	of	the	posterior	pdf	
is	 a	 geological	 parameter	 matrix	 in	 itself.	 Posterior	 sam-
ples	 from	 most	 tomographic	 methods	 can	 contain	 high-	
probability	parameter	matrices	that	are	not	geological	(Earp	
&	Curtis, 2020);	when	interpreting	such	samples,	one	may	
opt	to	alter	the	distribution	to	make	it	more	geological	which	
introduces	unknown	uncertainties.	Another	option	is	to	in-
terrogate	the	whole	set	of	parameter	samples	to	answer	spe-
cific	geological	questions	(Arnold	&	Curtis, 2018;	Zhang	&	

F I G U R E  1 3  Posterior	statistics	for	different	prior	pdfs.	Left	column	shows	the	true	marine	parasequences	parameter	matrix	(top)	and	
the	posterior	probability	of	the	conceptual	model	class	given	the	observed	travel	times	(bottom).	Successive	columns	show	the	posterior	
mean	(top)	and	travel	time	misfit	(bottom)	for	the	following	scenarios:	marine	parasequence	conceptual	model,	river	channel	conceptual	
model,	mixed	posterior	given	the	posterior	class	probability,	and	the	posterior	mean	if	the	posterior	probability	for	each	conceptual	model	
class	was	Uniform.
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Curtis, 2022;	Zhao	et	al., 2022).	Our	method	solves	this	prob-
lem	directly,	as	each	parameter	matrix	in	the	posterior	is	au-
tomatically	geological,	at	 least	 to	 the	extent	 that	 the	GAN	
has	been	trained	to	represent	the	prior	pdf.	High-	probability	
samples	can	therefore	be	interpreted	directly,	and	estimates	
of	their	relative	probabilities	are	known.

If	more	prior	pdfs	become	available,	for	example	concep-
tual	models	for	salt	diapirs,	carbonates	or	specific	geographic	
regions,	it	may	become	infeasible	to	invert	the	data	for	each	
of	these	priors	due	to	the	computational	expense	that	comes	
with	inverting	the	data.	As	a	solution,	we	introduced	a	clas-
sifier	 neural	 network	 that	 infers	 posterior	 probabilities	 of	
which	prior	pdf	is	most	consistent	with	the	arrival	time	data.	
This	information	may	be	especially	useful	in	the	case	when	
there	is	a	wish	to	obtain	the	most	accurate	possible	McMC	
posterior	estimates,	but	where	the	posterior	parameter	esti-
mation	is	costly	to	compute,	as	the	arrival	times	only	have	
to	be	inverted	for	the	parameters	associated	with	the	prior	
information	 class	 found	 by	 the	 classifier	 NN.	 This	 neural	
network	must	be	retrained	for	each	additional	prior	pdf	but	
its	training	is	cheap	relative	to	the	cost	of	training	the	MDNs	
or	computing	an	McMC	posterior	estimate.	Furthermore,	it	
can	be	used	to	combine	different	prior	pdfs	to	obtain	a	poste-
rior	parameter	estimate	given	different	classes	of	prior	infor-
mation,	which	could	be	useful	in	a	scenario	where	the	true	
parameter	matrix	is	in	fact	best	represented	by	a	mixture	be-
tween	two	canonical	conceptual	models.

Finally,	this	work	highlights	the	improvements	to	im-
aging	using	MDNs	offered	by	combining	them	with	geo-
logical	 prior	 information.	 Earp	 and	 Curtis  (2020)	 used	
MDNs	to	invert	directly	for	parameters	that	represent	pix-
els	in	the	tomographic	image	and	obtained	marginal	pos-
teriors	for	each	parameter	individually.	By	introducing	the	
geological	prior	pdf,	we	also	obtain	uncorrelated	marginal	
pdfs,	but	on	latent	parameters	of	the	GANs;	varying	those	
latent	 parameters	 within	 their	 respective	 posterior	 mar-
ginals	translates	through	the	GAN	to	correlated	estimates	
of	the	posterior	variation	of	the	image	parameters.	This	is	
demonstrated	by	the	fact	that	the	posterior	samples	look	
geological	 and	 are	 thus	 highly	 correlated	 in	 space.	 This	
occurs	 because	 approximately	 correct	 intra-	parameter	
correlations	 are	 stored	 in	 the	 GAN	 architecture.	 Ideally,	
the	 fully	 correlated	 posterior	 pdf	 over	 latent	 parameters	
would	be	estimated	directly,	and	this	may	be	possible	 in	
the	 future	 using	 different	 neural	 network	 architectures	
within	the	MDN,	or	different	training	methods.

6 	 | 	 CONCLUSION

In	 this	 study,	 we	 inject	 geological	 prior	 information	 into	
a	 travel	 time	 tomography	 Bayesian	 inversion	 scheme	 to	
improve	 the	 posterior	 knowledge	 about	 parameters	 that	

describe	 a	 tomographic	 image.	 We	 evaluate	 two	 different	
geological	 conceptual	 models:	 a	 braided	 river	 system	 and	
the	formation	of	marine	parasequences.	Each	is	parameter-
ised	inside	a	generative	adversarial	network	(GAN)	for	rapid	
generation	of	prior	samples.	To	create	a	computationally	ef-
ficient	inversion	method,	we	use	a	mixture	density	network	
(MDN)	 to	 perform	 the	 inversions	 and	 use	 Markov	 chain	
Monte	Carlo	inversion	to	validate	the	results.	We	success-
fully	inject	geological	prior	information	using	the	GAN,	and	
the	rapid	MDN	posterior	estimates	closely	approximate	the	
benchmark	McMC	posterior	estimates.

Furthermore,	we	are	able	to	analyse	the	effects	of	using	
inappropriate	 prior	 information	 for	 a	 given	 set	 of	 travel	
times	 (travel	 times	 from	 a	 braided	 river	 system	 inverted	
using	prior	 information	from	marine	parasequences	and	
vice	versa).	We	find	that	the	posterior	estimates	with	in-
appropriate	prior	information	are	worse	compared	to	ap-
propriate	 prior	 information,	 as	 expected.	 However,	 the	
posterior	 estimates	 also	 contain	 information	 about	 the	
underlying	 true	 parameter	 matrix,	 so	 we	 train	 a	 neural	
network	 to	 find	 the	 posterior	 class	 probability	 that	 de-
scribes	which	prior	conceptual	model	information	is	most	
consistent	 with	 a	 given	 set	 of	 travel	 time	 data.	 We	 thus	
demonstrate	that	we	can	rapidly	invert	tomographic	travel	
times	with	rich	geological	prior	information	and	that	we	
are	able	to	discriminate	between	a	set	of	geological	con-
ceptual	models	to	find	which	is	most	appropriate	for	the	
area	under	consideration.
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APPENDIX A: L ATENT POSTERIOR 
DISTRIBUTIONS
The	results	shown	in	Figures 5	and	6	are	statistical	sum-
maries	 of	 the	 underlying	 geological	 posterior	 distribu-
tion.	 The	 geological	 posterior	 distribution	 is	 sampled	 in	
latent	space,	whereafter	the	geological	images	for	each	set	
of	 latent	 variable	 values	 are	 calculated	 using	 the	 associ-
ated	GAN	and	then	means	and	standard	deviations	across	
the	 geological	 image	 are	 calculated	 on	 a	 per-	pixel	 basis.	
These	statistics	illustrate	the	information	contained	in	the	
geological	posterior	distributions.	However,	the	statistical	
summaries	 are	 not	 in	 themselves	 geological	 models.	 In	
this	appendix,	we	therefore	show	some	posterior	samples	

that	are	geological	models	and	the	latent	parameter	pos-
terior	distributions	 that	describe	 the	geological	posterior	
distributions.	While	with	the	geological	posteriors,	the	in-
version	performance	can	be	judged	by	visually	comparing	
the	 true	 model	 to	 images	 from	 the	 posterior	 pdf	 (either	
geological	models	or	summary	statistics),	we	have	no	in-
tuition	about	the	performance	of	inferred	latent	variable	
posterior	 pdf's.	 Indeed,	 the	 latent	 parameters	 in	 them-
selves	do	not	represent	any	meaningful	properties	relating	
to	geology.	Only	after	 they	have	been	 input	 to	 the	GAN	
can	their	performance	be	judged.

Figure A1a,b	 shows	 the	 latent	posterior	distributions	
corresponding	to	the	geological	posterior	distributions	in	
Figures 5	and	6,	 respectively.	Note	 that	 the	 river	chan-
nels	GAN	uses	9	latent	parameters	versus	8	parameters	
for	the	marine	parasequences	GAN.	The	orange	line	in-
dicates	the	benchmark	McMC	latent	posterior,	the	blue	
line	 is	 the	 MDN	 latent	 posterior	 and	 the	 vertical	 black	
lines	are	 the	 true	values	 for	each	 latent	parameter.	For	
all	 parameters,	 the	 true	 value	 is	 captured	 by	 the	 high-	
probability	region	of	the	posterior	distributions.	This	in-
dicates	that	both	inversion	methods	are	correctly	finding	
the	latent	values.

The	 MDN	 posterior	 estimates	 are	 fairly	 close	 to	 those	
found	by	 the	benchmark	McMC	method.	 In	most	cases,	
the	majority	of	high-	probability	density	 is	 located	 in	 the	
same	intervals.	However,	the	MDN	does	have	some	bias	
compared	to	McMC:	note	the	skewed	peaks	in	parameters	

F I G U R E  A 1  Latent	posterior	distributions	for	the	rivers	(a)	and	marine	parasequences	(b)	conceptual	models	corresponding	to	the	
geological	posterior	results	are	shown	in	Figures 5	and	6,	respectively.	Orange	lines	are	the	benchmark	McMC	posterior	estimates,	blue	lines	
indicate	the	MDN	posterior	estimates	and	the	black	vertical	lines	show	the	true	value	for	each	latent	parameter.	The	dashed	line	shows	the	
prior	distribution.
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2,	3,	4	and	8	 for	 the	river	conceptual	model	and	param-
eter	1	for	the	marine	parasequences.	The	MDN	also	fails	
to	capture	 the	multi-	modal	distribution	observed	 in	ma-
rine	parasequences	parameter	4:	the	MDN	distribution	is	
a	 single-	modal	 with	 the	 same	 width	 as	 the	 multi-	modal	
McMC	distribution.

From	 the	 posterior	 distributions	 in	 Figure  A1a,b,	 we	
can	calculate	the	maximum	a	posteriori	(MAP)	and	mean	
model	 in	 latent	 space,	 and	 by	 using	 the	 GAN,	 we	 can	

translate	 those	 parameter	 values	 to	 associated	 geological	
models.	These	are	shown	in	Figure A2a,b.	Note	that	these	
are	intrinsically	different	from	the	results	in	Figures 5	and	
6,	which	show	the	per-	pixel	averages	of	many	geological	
models	in	the	posterior	distribution.	Hence,	those	resulting	
images	are	not	geological	but	 rather	 summarise	 the	geo-
logical	distribution.

In	Figure A2a,b,	the	MAPs	and	mean	models	are	very	
close	to	the	true	models	for	both	conceptual	models.	What	

F I G U R E  A 2  For	each	conceptual	model,	braided	river	systems	(a)	and	marine	parasequences	(b),	we	show	geological	models	created	
from	latent	posterior	statistics.	From	left	to	right,	the	following	models	are	shown:	true	model,	maximum	a	posteriori	(MAP)	model	and	
mean	model	(calculated	in	latent	space,	then	mapped	into	geological	space).	The	top	row	in	each	of	the	panels	(a,	b)	shows	those	models	
from	the	MDN	posterior	estimate,	and	the	bottom	row	shows	the	models	from	the	McMC	posterior	estimate.
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is	 more,	 the	 McMC	 and	 MDN	 posterior	 estimates	 pro-
duce	similar	MAP	models	and	mean	models	in	the	river	
conceptual	model.	The	outlier	is	the	McMC	mean	model	
for	 the	marine	parasequences	model.	This	model	 shares	
the	 approximate	 structure	 with	 the	 true	 model	 (the	 di-
agonal	 pattern),	 but	 the	 velocities	 are	 dissimilar.	 Rather	

than	identifying	a	fault	in	the	inversion,	we	attribute	this	
notable	 result	 to	 the	 fact	 that	 the	 mean	 of	 any	 distribu-
tion	need	not	coincide	with	a	high-	probability	model.	This	
property	is	often	stated	as	a	caveat	to	using	mean	values	
from	McMC	results	as	models,	without	providing	an	ex-
plicit	example,	but	here	is	one.
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