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Abstract: In volcanic regions, rockfalls represent a major hazard strongly conditioned by the
geomechanical behaviour of volcanic materials, the geomorphological characteristics of the relief
and the climatic conditions. Volcanic rocks possess very different properties to those of other
lithological groups, presenting highly heterogeneous geomechanical behaviours. Nevertheless,
they have received little research attention in the field of geological and geotechnical engineering.
To date, the application of geomechanical classifications to characterise and estimate volcanic slope
stability has not yielded reliable results, indicating the need to establish specific criteria for these
rocks. Consequently, we developed indices to estimate rockfall susceptibility, hazard and risk in
volcanic slopes. The index of susceptibility for volcanic slopes (ISVS) is designed to estimate slope
susceptibility to instability, which is related to the level of hazard, while the index of risk for volcanic
slopes (IRVS) is designed to estimate the level of risk as a function of the potential damage or
economic loss caused as a result of rockfalls on slopes. Both indices were developed in order to
provide an easily applied procedure that facilitates the adoption of short-term preventive measures
against rockfalls. The indices were applied in Tenerife (Canary Islands), which presents exceptional
conditions for analysing slope stability in volcanic rocks because of its mountainous orography with
very steep slopes and a wide variety of materials. These conditions have frequently precipitated
slope instability, causing significant damage to housing, beaches, roads and other infrastructures.
After applying these indices to a number of slopes representative of the island’s wide variety of
geological, geomorphological and climatic conditions, the results obtained were compared with
the actual behaviour of the slopes, determined from extensive rockfall inventory data and in situ
geomechanical surveys.
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1. Introduction

The processes involved in slope instability and rockfall risk in volcanic regions have received
little research attention, despite the high economic losses and significant social impacts these hazards
entail, especially in relation to roads, housing, coastal areas and beaches. Instability processes have
a significant social impact because they affect road and transport safety and people in urban and
recreational areas, and often require short-term preventive measures. Consequently, there is a need for
decision-making criteria and proposals for possible solutions [1–4].
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Given the particular geological and geomechanical conditions of volcanic rocks, it is necessary
to develop specific methods to estimate slope stability, the probability of rockfalls and the possible
economic consequences. Here, we present a method for performing such estimations.

The main factors that determine slope stability in volcanic regions are the geomechanical
properties of the rocks and the geomorphologic and climatic conditions of the slopes. As a lithological
group, volcanic materials are very distinct from other geological materials because of their atypical
geomechanical behaviour. The main properties determining this behaviour include: their high
heterogeneity and anisotropy, due to their geostructural and fracture characteristics as well as their
geomechanical properties; the existence of substantial differences between deposits; the predominance
of discontinuities of thermal origin with very different fracture systems from non-volcanic materials;
and the rapid degradation of strength properties by alteration processes, giving rise to secondary,
geotechnically unfavourable minerals such as smectites [5,6].

One of the most important factors determining stability is slope geomorphology, which can be
very steep, especially in oceanic volcanic islands. Meanwhile, the main factor that triggers rockfalls is
rainfall, which exacerbates instability processes, especially in tropical climates [7,8].

In recent decades, the construction of large infrastructures in volcanic regions has aroused interest
in advancing geotechnical knowledge of these materials, prompting numerous geotechnical studies
aimed at excavation design and slope stabilisation, many of which were presented at the international
workshops held on these rocks [9–12].

These studies have generally used RMR (Rock Mass Rating) [13] and Q-system [14] geomechanical
classifications and the geological index GSI (Geological Strength Index) [15,16] to characterise rock
masses and their properties. However, these classifications were developed based on rocks whose
origin was not, for the most part, volcanic, calling into question the suitability of their application to
volcanic rocks. Alternatively, several geomechanical classifications specific to these rocks have been
proposed [17–19]. These classifications apply different criteria: the first two are based on the RMR,
whereas the third proposes a new classification system.

Rockfalls in volcanic regions are often difficult to predict and frequently demand short or
medium-term preventive measures with little time to perform geotechnical studies or risk analyses.
It is therefore highly desirable to develop easily applied procedures to assess slope stability. To this
end, we developed two geomechanical indices, one that is designed to identify slopes presenting the
highest susceptibility to instability, based on observable in situ data, and the other to estimate the
degree of rockfall risk and provide recommendations for the adoption of preventive measures.

The ISVS (index of susceptibility for volcanic slopes) is designed to estimate slope susceptibility
(possibility of occurrence) to instability, which can be empirically related to the degree of hazard
(probability of occurrence), while the IRVS (index of risk for volcanic slopes) provides a simplified
means to estimate the degree of risk as a function of the potential damage or economic loss caused as a
result of rockfalls.

The indices were applied in Tenerife (Canary Islands), which presents exceptional conditions
for analysing slope stability in volcanic rocks because of its mountainous orography with very steep
slopes and a wide variety of materials. These conditions have frequently precipitated slope instability,
causing significant damage to housing, beaches, roads and other infrastructures.

2. Estimating Rockfall Susceptibility: The ISVS Index

In order to estimate the degree of instability in volcanic slopes, we developed a susceptibility
index, the ISVS, based on geological, geomorphological and geomechanical data, with the following
objectives: (i) to provide a wide range of professionals—not necessarily experts—with an easily applied,
affordable procedure to conduct an initial stability assessment at short notice, prior to geotechnical
and risk studies; (ii) to identify areas at greater risk of instability and (iii) to provide criteria for the
adoption of short-term preventive measures where necessary.

The ISVS is based on the following parameters:
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A. Type of rock mass, which includes the following lithological groups:

- Type I: rock masses formed by hard rock (>20 MPa) such as basalt, trachyte, phonolite,
rhyolite and ignimbrite, together with highly compacted or welded tuffs and breccias.
The factors influencing stability in this type of rock mass are the degree of fracturing and
dip of the geological structure and the main discontinuity surfaces, where these are parallel
to the slope direction. The most frequent instabilities are rockfalls caused by wedge failures,
whether along planar surfaces or by toppling.

- Type II: deposits of pyroclastic origin that are poorly compacted, loose or weakly welded.
The main factor influencing stability is the degree of compaction or welding of pyroclastic
particles. The most frequent instabilities are falls of loose materials or large blocks such as
volcanic bombs.

- Type III: rock masses formed by alternations or sequences of materials presenting different
strengths. Weaker layers are more susceptible to erosive processes, undermining the base
of harder layers and causing rocks or blocks to fall. For example, on slopes with basalt
flows, scoria and pyroclastic layers, erosion of the latter causes blocks of the stronger
materials to fall. The factors influencing instability are the degree of differential erosion
between materials of different strengths and the formation of rock overhangs in hard layers.
Figure 1 shows some examples of the types of rock mass described. Tables 1 and 2 give the
parameters to consider and their scores.

B. Slope angle, classified into three intervals (<45◦, 45–75◦ and >75◦) according to the slope
angle/instability relationship obtained from an extensive database [20,21]. Table 1 shows the
scores assigned to the angle intervals.

C. Sea or gully erosion. Slope proximity to the coast or gullies constitutes a decisive factor for
instability. We established a distance of up to 50 m from the sea at high tide, or a gully, as the
reference value for applying this penalty factor (Table 1).

D. Instability indicators. The existence of fallen blocks, cracks, escarpments, etc., on a slope, and damage
to nearby buildings or roads, are indicators of active instability processes and were included in the
ISVS as a penalty factor. This factor is estimated according to the number of indicators observed,
both on the ground and in nearby structures (Table 1).

The ISVS is calculated by applying and scoring the above criteria as indicated in Table 1, establishing
four degrees of susceptibility to instability. The score ranges from 0 to 100 points, where 100 is the
maximum value for susceptibility, although higher values can be obtained in the calculation. The ISVS
is not applicable to highly weathered or altered rocks, colluvial deposits or soils. The flow diagram
shown in Figure 2 illustrates the procedure for applying the ISVS.
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Figure 1. Examples of rock masses according to index of susceptibility for volcanic slopes (ISVS). Type I, hard 

rocks: a) welded tuff, ignimbrite; b) columnar basaltic lava flows; c) trachytes. Type II, pyroclastic deposits: d) 

unwelded ignimbrites; e) massive basaltic tuffs; f) salic and basaltic pyroclasts. Type III, alternation of layers 

with different strength: g) basaltic lava flows and scoria layers; (h) basaltic flows alternating with pyroclastic 

levels and i) unwelded ignimbrites alternating with salic fall pyroclasts. 
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Figure 1. Examples of rock masses according to index of susceptibility for volcanic slopes (ISVS).
Type I, hard rocks: (a) welded tuff, ignimbrite; (b) columnar basaltic lava flows; (c) trachytes. Type
II, pyroclastic deposits: (d) unwelded ignimbrites; (e) massive basaltic tuffs; (f) salic and basaltic
pyroclasts. Type III, alternation of layers with different strength: (g) basaltic lava flows and scoria
layers; (h) basaltic flows alternating with pyroclastic levels and (i) unwelded ignimbrites alternating
with salic fall pyroclasts.
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Table 1. ISVS: parameters and scores.

A. ROCK MASS TYPE

Type I:
Hard rocks

Type II:
Pyroclastic deposits

Type III:
Sequence of layers with different strengths

1. Degree of fracture Pt
1. Degree of
compaction/
welding (*)

Pt 1. Degree of differential erosion (*) Pt

Massive: <1 joint/m3 0 High 0 Low 0
Low: 1–3 joints/m3 5 Medium 5 Medium 15
Moderate: 3–10/m3 20 Low 25 High 30
High: >10 joints/m3 30 Very Low 35
2. Dip of geological structure or main
discontinuity surfaces dipping to slope face Pt 2. Overhang formation (*) Pt

Very small blocks 0
<20◦ 0 Small blocks 10
20–40◦ 5 Medium blocks 30
>40◦ 10 Large blocks 40

B. SLOPE ANGLE C. PROXIMITY TO
COAST OR GULLIES

D. INSTABILITY INDICATORS

Average slope angle Pt Slopes <50 m
from high tides or
gullies

Pt Number of indicators F
<45◦ Moderate 0

10
0 1

45–75◦ High 10 1 to 3 1.2
>75◦ Very High 20 >3 1.35

INSTABILITY INDICATORS ISVS ESTIMATION
Scarps and cracks

ISVS basic = [AI(1+2) or AII(1) or AIII(1+2)] + B + CGround bulges and deformations
Fallen blocks or recent signs of failure surfaces
Diversion of channels ISVS = ISVS basic · DAccumulation of deposits at the foot of slopes
Ponding ISVS
Water surges and changes in water sources Score SUSCEPTIBILITY
Tree tilting <35 Low
Cracks in walls, foundations or other structural elements 35–59 Moderate
Tilt and collapse of walls 60–79 High
Broken pipes ≥80 Very High

NOTES:
(*) See Table 2.
Maximum ISVS score: 100.
Not applicable to soils, colluvial deposits or highly weathered rocks.
Susceptibility indicates possibility of occurrence.
Only one of the options for type of rock mass can be selected: I, II or III.
For type III rock mass without differential erosion, types I or II will be selected.
Only one option is selected for each parameter in the score assignment.

Table 2. Parameters applicable to Type II and III rock masses.

Parameter Degree Description ISVS Rating

II.1. Degree of
compaction/welding

Medium Difficult to break with geological hammer 5
Low Easily broken with geological hammer 25

Very low Easily broken with hand 35

III.1.
Differential erosion

Low C < 15 cm 0

Medium

Small concavities
in the weathered

materials
C < 50 cm
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Figure 2. Flowchart for estimating the ISVS (see Table 1).

3. Estimating Rockfall Hazard

Hazard refers to the probability (P) that an event of a given intensity or magnitude will occur
in a given spatial area within a given period of time [22,23]. This can be estimated from the return
period (T) of the event concerned (P = 1/T) and is expressed as the annual probability of exceedance
(Py) or the probability of occurrence during the service life of a given exposed structure or element
(Pn). The return period can be estimated from observation of the number and size of rockfalls over a
given period of time.

To estimate rockfall frequency in a volcanic zone, we used records of rockfalls affecting the road
network in Tenerife, with more than 2000 events in the last 25 years [24,25]. In addition, we compiled
other data on rockfalls in urban areas, coasts and beaches, gullies, etc., from publications, technical
reports, newspaper archives and city councils, with events that date back more than 100 years.

We also conducted an in situ survey of slopes adjoining Tenerife’s road network, selecting those
most representative of different geological and geometric conditions from the point of view of stability,
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noting the number of fallen blocks, and calculating the ISVS for each of them. On the basis of the data
collected from 95 representative slopes from Tenerife (see Section 5) and the information obtained
by [24,25], we established characteristic intervals for rockfall frequency, return periods and ISVS values
(Table 3).

Table 3. ISVS and rockfall frequency.

ISVS Rockfall Frequency

Score Susceptibility Field Observations (1) Rockfall Event History (2) T (Years) (3)

<35 Low No fallen blocks No record of rockfall in the area ≥100

35–59 Moderate Some fallen blocks of
small or medium size No record of rockfall in the area ≥50

60–79 High Several fallen blocks of
different sizes

Some record of rockfalls in the last
50 years ≥25

≥80 Very High Numerous fallen
blocks of different sizes

Several records of rockfalls in the
last 25 years <25

(1) In situ observation of fallen blocks, signs of instability and rock failures in source areas. Small rocks or fragments
of rock are excluded. (2) Based on data collected from field surveys, road maintenance records, technical reports,
town halls, witnesses, newspaper libraries and the literature. (3) T = return period.

Hazard also depends on the action of factors that trigger rockfalls, such as rainfall, earthquakes
and anthropic actions, where rainfall is the most frequent and important factor, and the only triggering
factor here considered. Thus, hazard (HA) is expressed as HA = Py · PF, or alternatively, as HA = Pn

· PF, where Py and Pn are the abovementioned probabilities and PF is the precipitation factor. This
latter factor indicates the rainfall intensity threshold beyond which a significant increase in rockfalls
will occur in an area. The relationship between rainfall and rockfalls varies across regions, since other
factors are involved, including climatic and geomorphological conditions and the geomechanical
properties of rock masses.

In order to estimate PF values in a volcanic region according to the rainfall-rockfall relationship,
we analysed databases for rockfalls affecting roads in Tenerife [24,25] and the rainfall recorded during
the events [26]. The results are given in Figure 3, while Figure 4 shows the relationship between rockfall
probability and rainfall intensity [27]. Lastly, based on these data we estimated the precipitation factor
(PF) and hazard (HA) (Table 4).
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Figure 3. Relationship between rainfall and number of rockfall events from data recorded in Tenerife [26].
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Table 4. Hazard estimation.

Probability (P) Precipitation Factor
(PF) Hazard (HA)

Susceptibility
ISVS

Return Period
T (Years) Py (1) Pn (2) Precipitation

(mm/Day) PF (3) HA =
Pn · PF Degree

<35 Low ≥100 <0.01 <0.5 Low
Moderate <30 1 <0.25 Low
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Moderate ≥50 ≥0.01
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<0.75 High <50 1.7
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High ≥ 0.75 Very
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(1) Py = Annual probability of exceedance. (2) Probability of occurrence in n years: Pn = 1−(1−1/T)n; n is the service
life of a house or installation; 70 years have been taken as a reference. (3) Data for Tenerife.

4. Estimating Rockfall Risk: The IRVS Index

The index of rockfall risk for volcanic slopes (IRVS) was developed with the same general objectives
as those for the ISVS: (i) to provide a means to estimate the degree of risk at short notice; (ii) to facilitate
decision-making in situations requiring the adoption of short-term preventive measures and (iii) to
conduct zoning according to the relative level of risk. Its scope is limited to a preliminary assessment
prior to quantitative risk analyses procedures (QRA) [28,29].

The IRVS is expressed as a function of the hazard or probability of occurrence of a rockfall and
the possible damage or losses caused to elements potentially exposed to risk [22,23,30]. The IRVS is
calculated according to the expression IRVS = HA · LI, where HA is the hazard, and LI is the loss index.
HA is obtained as described above, and the LI is calculated using the following expression LI = V ·
EC · CC, where V is vulnerability, EC is the energy increment coefficient for impact energy due to the
height of the fall, and CC is the cost coefficient for damage or loss. Figure 5 summarises the procedure
for applying the IRVS. Social and environmental costs are not included in this index.
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Figure 5. Flowchart for estimating the IRVS (see Tables 4 and 5).

Table 5. Loss index estimation.

Vulnerability (V) Energy Increment Coefficient
(EC *) Cost Coefficient (CC) Loss Index (LI)

LI = V·EC·CC

Type of Element
Frequent

Vulnerability
Values

Slope
Height
(m) (*)

Impact
Energy EC Cost (€ × 103) CC LI Degree of

Loss

Households 0.2–0.8 ≤10 Low 1 <50 1 ≤2 Low
Urban centres 0.1–0.2 ≤20 Moderate 1.5 <200 3 ≤4 Moderate

Industrial facilities 0.1–0.2 ≤30 High 2.5 <1000 8 ≤8 High
Recreational areas 0.1–0.3 >30 Very High 3.5 ≥1000 15–20 >8 Very High

(*) The block is considered to fall from the highest part of the slope, with a weight of 1 t; slope angle of 70◦.

The parameters considered to calculate V, EC and CC are shown in Table 5, according to the
following criteria:

• The vulnerability of exposed elements (V) that may be affected by the rockfall and the degree of
loss that such elements may experience due to a hazard of a given intensity. Vulnerability varies
depending on the characteristics of an element and the magnitude or intensity of the event, and is
expressed according to the percentage that may be affected, either in percent or on a scale of 0–1.

• The energy increment coefficient (EC) is related to the height from which a block on a slope
falls. This was estimated by simulating rockfalls at different heights and slope angles, for blocks
weighing 0.5, 1 and 2 t, and slope heights measuring between 10 and 90 m (Figure 6). Rockfall
simulations were carried out using Rockfall 6.011.2008 program from Rockscience Inc. Coefficients
of restitution Rn = 0.53 and Rt = 0.95 were applied according to the experience on basaltic rock
masses from the Canary Islands [26].

• The cost coefficient (CC) refers to the economic losses of an exposed element affected by rockfalls.
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Figure 6. Kinetic energy of rockfall impact for blocks with different weights, fall heights and slope angles.

Hazard (HA) and the loss index (LI; Tables 4 and 5 respectively) were used to estimate the IRVS (IRVS
= HA · LI) and degree of risk (Table 6). Table 6 gives some recommendations for preventive measures.

Table 6. Degree of risk estimated from IRVS and recommendations.

IRVS Risk Level Preventive Measures Priority of Action

<1 Low None Not required
1–3 Moderate Site evaluation In the medium term
3–6 High Detailed survey Short to very short term
>6 Very High

The different degrees of risk considered might vary according to subjective criteria such as social
perception of risk, an aspect that is not considered in the IRVS but which would be of interest in a
possible situation of social risk [22,31]. To analyse the potential impact of this aspect, we conducted a
survey among university graduates unfamiliar with the geosciences, asking them how they would
classify the level of risk of a rockfall that could affect a house according to the different levels of hazard
and losses obtained from the IRVS. The results obtained (Figure 7) show some differences with respect
to the degrees of risk considered in the IRVS (Table 6): respondents proposed three degrees of risk
instead of four, due to difficulties in differentiating between the high and very high degrees; we also
noted a tendency to overestimate the degree of risk with respect to that estimated using the IRVS.
These results may be useful in possible situations of personal injury or social consequences.
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Figure 7. Estimated degree of risk according to social perception of risk. I: Low; II: Moderate; III:
High–Very High.

5. Application of the ISVS in Tenerife and Discussion of the Results

The ISVS was applied in Tenerife (Canary Islands) because it offers ideal conditions for analysing
rockfalls in volcanic slopes (Figure 8). Based on the information available on previous rockfalls
affecting roads [24,25], urban areas, coasts and beaches, we identified a number of areas of interest
for applying the ISVS. These areas were geologically and geomechanically characterised, selecting 95
slopes representative of the different types of rock mass and geomorphological and climatic zones in
Tenerife [32]. The location of the slopes and their corresponding rock mass type are given in Figure 9.
Appendix A gives detailed data on the slopes analysed.

We estimated the ISVS value for the selected slopes according to their history of rockfalls (ISVS

assigned), and then compared this value with the one calculated in situ (ISVS in situ). Figure 10 shows the
relationship between the two, which obtained a correlation coefficient of 0.97. These results reflect the
successive adjustments made to the scores during development of the ISVS, until the results obtained
agreed with the actual behaviour of the slope, thus verifying the validity of the parameters considered
in the ISVS.
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Figure 8. Examples of rockfalls on volcanic slopes in the Canary Islands. (a) Rock avalanche in salic
materials; (b) rockfall in phonolitic lava flows; (c) rock avalanche in weathered materials; (d) volcanic
bombs fall from pyroclastic deposits; (e) rockfalls by columnar basalts toppling on a beach and (f) large
basaltic block fallen on a beach.
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Figure 10. Relationship between the ISVS estimated in situ and the ISVS assigned according to the
actual slope behaviour.
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Recently, studies have been conducted in Tenerife to analyse application of the abovementioned
geomechanical classifications to slope stability in volcanic rocks [33]. The results obtained from an
analysis of 42 slopes show that the classification described by [18] cannot be used to assess the degree
of slope stability, although it may be suitable to estimate the geomechanical quality of the rock mass.
Meanwhile, the classification proposed by [19] evidences significative differences with respect to the
actual behaviour of the slopes, with a tendency to overestimate slope stability. When the ISVS was
applied, a correlation coefficient of 0.95 was obtained between the index values and those estimated
according to actual slope behaviour.

The ISVS can be applied to other volcanic regions since its parameters do not depend on local
factors. In this respect, further studies are being conducted in Mexico, which have obtained positive
results to date [34]. However, it is evident that more data is required on other volcanic areas and
regions. When applying the IRVS, the precipitation factor must be adjusted to the climatic conditions
of each region.

6. Conclusions

In response to the need for specific criteria to analyse slope stability in volcanic rocks, we developed
a rockfall susceptibility index, the ISVS, and a rockfall risk index, the IRSV. Both indices were developed
in order to provide an easily applied procedure that facilitates the adoption of short-term preventive
measures against rockfalls.

The ISVS is based on four parameters that exert a considerable influence on stability: type of
rock mass, slope angle, incidence of erosive processes and presence of instability indicators. The IRVS
is based on currently used methods for estimating hazard and risk, and on the use of empirical
relationships to estimate the probability of rockfalls and the influence of rainfall on such events.

The ISVS was applied in Tenerife, analysing 95 slopes representative of the island’s geological,
geomorphological and climatic conditions. The information available on rockfalls affecting roads,
urban areas, coasts and beaches was used to obtain the history of rockfalls on the slopes analysed.
These data were used as a reference to analyse the validity of the ISVS. The relationship obtained
between the ISVS estimated in situ, in accordance with the developed procedure, and the ISVS assigned
in accordance with historical rockfalls on the slope, showed a high degree of correlation.

The ISVS can be applied to any volcanic region, within the previously established limitations.
However, when applying the IRVS, the precipitation factor must be adjusted to the climatic conditions
specific to each region, although the values suggested in the present study may provide tentative
guidance should other data be unavailable. The information provided by the ISVS and IRVS will help
ensure the safety of infrastructures and people by enabling identification of those slopes with a higher
risk of rockfalls and adoption of the necessary preventive measures.
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Appendix A

Table A1. Slopes investigated in Tenerife.

N◦ Slope Coordinates (N/W) Type of Rock
Mass (*)

ISVS (**)

In Situ Assigned Susceptibility

1 2.840.269.444 −163.391.389 III 42 40 Moderate
2 2.840.269.444 −163.391.389 I 30 30 Low
3 2.849.227.778 −162.198.889 III 72 70 High
4 2.848.719.444 −162.349.167 III 60 65 High
5 2.845.958.333 −162.908.889 II 30 31 Low
6 2.842.444.444 −164.797.222 II 30 30 Low
7 28.43 −16.49 I 50 50 Moderate
8 284.035 −165.136.944 I 35 30 Low

10 2.840.083.333 −165.686.111 III 60 62 High
11 283.975 −165.788.889 II 25 25 Low
12 2.839.472.222 −165.933.333 II 54 54 Moderate
13 2.839.277.778 −166.155.556 I 60 63 High
14 2.839.166.667 −166.252.778 I 24 25 Low
15 2.839.555.556 −166.413.889 I 60 66 High
16 2.839.333.333 −166.530.556 I 62 62 High
17 2.839.888.889 −165.441.667 II 48 60 High
18 2.842.055.556 −163.161.111 III 72 71 High
19 2.840.638.889 −163.322.222 III 42 41 Moderate
20 2.830.083.333 −163.777.778 II 54 54 Moderate
21 2.830.944.444 −163.822.222 II 60 67 High
22 28.33 −163.730.556 I 60 61 High
23 283.575 −163.725 I 60 58 Moderate
24 2.865.833.333 −178.736.111 III 42 55 Moderate
25 2.857.083.333 −178.730.556 III 30 41 Moderate
26 2.854.138.889 −178.669.444 III 60 61 High
27 2.853.083.333 −178.636.111 III 60 71 High
28 2.849.916.667 −178.538.889 II 61 70 High
29 2.814.694.444 −164.527.778 I 30 31 Low
31 2.820.055.556 −164.263.889 III 42 42 Moderate
32 2.822.527.778 −164.294.444 II 30 32 Low
34 2.811.555.556 −164.730.556 I 36 35 Low
35 2.837.138.889 −167.533.333 I 60 64 High
36 2.837.138.889 −167.533.333 I 72 72 High
37 28.37 −167.319.444 III 35 36 Moderate
38 2.837.295.833 −167.329.361 I 60 60 High
39 2.837.295.833 −167.329.361 II 25 26 Low
40 284.035 −165.136.944 I 24 24 Low
41 2.841.805.556 −165.136.944 I 40 42 Moderate
43 2.854.016.944 −162.281.722 I 50 51 Moderate
45 2.853.901.667 -162.192.278 II 30 32 Low
46 28.547.125 −162.124.139 II 25 26 Low
47 2.829.935 −163.848.222 I 60 64 High
48 2.827.305.556 −163.849.306 I 54 54 Moderate
49 2.821.230.278 −164.233.528 III 36 35 Low
50 2.819.723.056 -164.263.194 II 25 27 Low
51 2.805.953.056 −166.905.194 I 20 20 Low
52 2.841.638.889 −165.399 III 100 100 Very High
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Table A1. Cont.

N◦ Slope Coordinates (N/W) Type of Rock
Mass (*)

ISVS (**)

In Situ Assigned Susceptibility

53 28.403.525 −165.063.639 III 85 80 Very High
54 28.359.596 −16.427.687 III 100 78 High
55 28.359.596 −16.427.687 III 100 78 High
56 2.836.523.333 −164.317.694 III 78 78 High
57 28.262.699 −16.721.826 III 78 78 High
58 28.282.291 −16.759.929 II 54 54 Moderate
59 28.395.447 −16.641.457 I 60 60 High
60 28.384.465 −16.661.344 III 96 96 Very High
61 28.384.465 −16.661.344 III 96 96 Very High
62 2.837.784 −16.721.676 III 90 72 High
63 2.837.636 −16.728.338 III 100 100 Very High
64 2.839.211 −16.652.258 I 42 60 High
65 28.392.749 −16.560.064 II 54 66 High
66 28.403.227 −16.538.762 III 100 100 Very High
67 28.501.822 −16.424.532 I 60 60 High
68 28.501.822 −16.424.532 I 60 60 High
69 28.501.164 −16.422.387 III 54 54 Moderate
70 28.340.758 −16.525.257 I 60 60 High
71 28.304.984 −16.507.708 III 96 96 Very High
72 28.334.471 −16.489.994 II 54 54 Moderate
73 28.334.471 −16.489.994 II 54 54 Moderate
74 28.334.932 −16.491.067 II 54 54 Moderate
75 28.558.409 −16.205.669 III 36 36 Moderate
76 28.558.409 −16.205.669 II 54 54 Moderate
77 28.553.838 −16.208.707 III 78 78 High
78 28.559.011 −16.216.629 III 100 100 Very High
79 28.177.603 −16.673.352 II 54 54 Moderate
80 28.125.951 −16.660.136 III 78 78 High
81 28.159.374 −16.638.348 III 78 78 High
82 28.164.092 −16.638.387 III 42 100 Very High
83 28.208.221 −16.679.319 I 60 60 High
84 28.274.098 −16.728.251 I 72 72 High
85 28.274.095 −16.728.251 II 66 54 Moderate
86 28.266.742 −16.736.684 III 72 72 High
87 28.263.197 −16.737.592 III 100 78 High
88 28.231.522 −16.760.112 III 100 78 High
89 28.535 −16.198.333 III 90 78 High
90 28.526.389 −16.195.278 III 78 36 Moderate
91 28.517.444 −16.193.722 III 54 54 Moderate
92 28.511.389 −161.925 III 90 90 Very High
93 2.839.152.778 −166.252.472 I 42 42 Moderate
94 28.165.375 −166.365.306 III 90 90 Very High
95 28.224.167 −16.631.111 III 100 100 Very High

(*)Type I: Hard rock. Type II: Pyroclastic deposits. Type III: Sequence of layers with different strength. (**) ISVS
assigned is referred to actual behaviour of the slope stability (see Section 5).
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