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Abstract
In the Peruvian Amazon, high biodiversity tropical forest is underlain by gold-enriched subsurface
alluviumdeposited from theAndes, which has generated a clash between short-term earnings for
miners and long-term environmental damage. Tropical forests sequester important amounts of
carbon, but deforestation and forest degradation continue to spread inMadre deDios, releasing
carbon to the atmosphere. Updated spatially explicit quantification of aboveground carbon emissions
caused by goldmining is needed to furthermotivate conservation efforts and to understand the effects
of illegalmining on greenhouse gases.We used satellite remote sensing, airborne LiDAR, and deep
learningmodels to create high-resolution, spatially explicit estimates of aboveground carbon stocks
and emissions fromgoldmining in 2017 and 2018. For an area of∼750 000 ha, we found high
variations in aboveground carbon density (ACD)withmeanACDof 84.6 (±36.4 standard deviation)
MgCha−1 and 83.9 (±36.0)MgCha−1 for 2017 and 2018, respectively. An alarming 1.12 TgCof
emissions occurred in a single year affecting 23,613 hectares, including in protected zones and their
ecological buffers. Ourmethods andfindings are preparatory steps for the creation of an automated,
high-resolution forest carbon emissionmonitoring system that will track near real-time changes and
will support actions to reduce the environmental impacts of goldmining and other destructive forest
activities.

1. Introduction

The Amazonian rainforest is under the chainsaw of
fast-growing economies and expanding populations.
Of these threats, gold mining poses one of the most
negatively impactful types of damage to the environ-
ment. The Peruvian Amazon, the sixth largest produ-
cer of gold with 155 metric tons removed in 2017
(Ober 2018), harbors gold-rich alluvium deposited
by erosion in layers of sediments in the lowland
ecosystems, including river floodplain forests (Asner
et al 2013). This attracted gold miners to the Madre
de Dios region of the Peruvian Amazon, which is
responsible for 70% of Peru’s gold production
(Swenson et al 2011).

Goldmining inMadre deDios has proliferated as a
gold rush responsible for 100 000 hectares of defor-
estation between 1984 and 2017, with 10% of defor-
estation occurred only in 2017 and 53% occurred

since 2011 (Caballero Espejo et al 2018). Multiple
factors have contributed to this intensification,
including an increase in international gold prices,
increased accessibility following paving of the
Interoceanic Highway (Moreno-Brush et al 2016), the
lack of formalization of artisanal and small-scale
mining activities (Salo et al 2016), and the hope of high
short-term earnings by mining and selling the gold
(Sanguinetti 2018), which also led to a migration of
people from nearby regions to Madre de Dios (Asner
and Tupayachi 2017). The three largest mines, Huepe-
tuhe, Delta-1, andGuacamayo (now called La Pampa),
used to dominate the landscape, with Huepetuhe
accounting for 76% of region-wide mining in 1999
(Asner et al 2013). However, in 2012, small mining,
clandestine operations accounted for 51% of total
mining activities in Madre de Dios (Asner et al 2013).
Most of themining activities are unregulated, artisanal
in nature, and most are illegal (Swenson et al 2011,

OPEN ACCESS

RECEIVED

9October 2019

REVISED

5December 2019

ACCEPTED FOR PUBLICATION

18December 2019

PUBLISHED

14 January 2020

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2020TheAuthor(s). Published by IOPPublishing Ltd

https://doi.org/10.1088/1748-9326/ab639c
https://orcid.org/0000-0002-4590-3807
https://orcid.org/0000-0002-4590-3807
https://orcid.org/0000-0001-7893-6421
https://orcid.org/0000-0001-7893-6421
mailto:ocsillik@asu.edu
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab639c&domain=pdf&date_stamp=2020-01-14
https://crossmark.crossref.org/dialog/?doi=10.1088/1748-9326/ab639c&domain=pdf&date_stamp=2020-01-14
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


Asner et al 2013). The environmental damage pro-
duced by artisanal miners is visible from space (Swen-
son et al 2011, Asner et al 2013) and consists of large
areas of deforestation and forest degradation, bare soil
andwater pools used in themining process.

Earth Observation satellites have become widely
used to report deforestation and improve intervention
(Finer et al 2018). Analyzing time series of free Landsat
satellite images at 30 m spatial resolution, forest loss
caused by gold mining averaged 4437 ha yr−1 between
1999 and 2016, with a total increase of estimated gold
mining area of 40% between 2012 and 2016 (Asner
and Tupayachi 2017). Landsat data were also used to
identify ∼15 500 ha of mining areas for the three lar-
gest mines by 2009 (Swenson et al 2011) and found
that∼65% of all artisanal small-scale mining occurred
outside the legal mining concessions (Elmes et al
2014), including protected areas, like the Tambopata
National Reserve and its buffer zone (Asner and
Tupayachi 2017). Asner et al (2013) combined Landsat
data with airborne mapping and field surveys to find a
400% increase in goldmining between 1999 and 2012,
with forest loss tripled in 2008. Aboveground carbon
stocks and emissions weremapped at 0.1 ha resolution
over 4.3 million ha in Madre de Dios using satellite
imaging, airborne LiDAR and field plots, totaling 395
Tg C (million metric tons of carbon) (Asner et al
2010). Gold mining areas had the lowest mean carbon
density (16.7 Mg C ha−1) when compared to forest
degradation and deforestation (35.6 and 27.8 Mg C
ha−1, respectively), while deforestation caused by gold
mining and logging concessions accounted for carbon
emissions of 0.42 Tg C yr−1 between 2006 and 2009
(Asner et al 2010). However, because land-use conver-
sion in Madre de Dios happens quickly and mostly
illegally, high-spatial and temporal resolution satellite
images are needed for ecosystem monitoring (Boyle
et al 2014).

Planet Inc. satellite data address both challenges in
terms of spatial and temporal resolution, offering daily
3.7 m spatial resolution Dove images with four spec-
tral bands (Planet Team 2018). Until now, Dove ima-
ges were mostly used in combination with other
geospatial datasets tomanually digitize land-use chan-
ges in the Peruvian Amazon region by conservation
projects like the Monitoring of the Andean Amazon
Project (MAAP) (Finer and Mamani 2018). Planet
Dove images were successfully used to map coral reefs
(Asner et al 2017) or agricultural environments (Ara-
gon et al 2018, Houborg and McCabe 2018), but were
not used to assess gold mining effects using robust and
automated approaches.

We developed high-resolution estimates of above-
ground carbon density (ACD) and emissions for the
region most affected by gold mining activities in
Madre de Dios for 2017 and 2018 by combining hun-
dreds of Planet Dove images, Sentinel-1, topography
and airborne LiDAR measurements using a deep
learning regression framework. We seek to build the

pillars for an automated monitoring system that will
help track the changes in near real-time and act
towards reducing the environmental impacts of gold
mining activities.

2.Data andmethods

2.1. Study area
Madre de Dios is a biodiversity hotspot lying at the
foothills of the Andes, whose Holocene alluvium
deposited important subsurface gold resources (Asner
et al 2013). Our study area is bounded by the Andes
(S), Rio Madre de Dios (N), Rio Colorado (W) and the
confluence on Inambari and Madre de Dios rivers (E)
(figure 1). Seasonal tropical moist forests have excep-
tionally high biological diversity in our region of
interest (Román-Dañobeytia et al 2015) with unique
functional, taxonomic and phylogenetic diversity. The
dry season spans between June and September, with
July being the driest month. Intense mining activities
are present in the Colorado, Puquiri, Inambari,
Malinowski, and Tambopata river catchments (Asner
andTupayachi 2017), around theTambopataNational
Reserve (multiple use), the Bahuaja-Sonene National
Park (strict protection) and the Communal Reserve
Amarakaeri (multiple use) (Alvarez-Berríos and
Mitchell Aide 2015). More than 59 000 miners were
estimated to perform illegal mining in 2015 (Amazon
Conservation Association 2015), with the region’s
capital city of Puerto Maldonado acting as the hotspot
of mining-related activities, like gold shops or amal-
gam roasting (Moreno-Brush et al 2016).

2.2. Airborne LiDAR canopy height and LiDAR-
basedACD
We used airborne LiDAR data acquired in 2011 and
2013 by the Global Airborne Observatory (GAO;
formerly Carnegie Airborne Observatory) (Asner et al
2012). The flight campaigns covered extensive areas of
gold mining and rivers, as well as large portions of the
floodplain, swamp and terra firme forests (Asner et al
2013). A 3-D LiDAR point cloud with a resolution of
2 m was obtained, with an average-on-the-ground
LiDAR points spacing of 4–8 shots per square meter
(Asner et al 2014). To account for the different
acquisition times for LiDAR and Planet Dove images,
we removed the LiDAR patches that suffered changes
through visual interpretation. Subtracting the digital
terrain model from the digital surface model, derived
from the last and first returns, respectively, resulted in
a top-of-canopy height (TCH) model at 2 m spatial
resolution and covering 164 563 hectares in our study
area of∼750 000 ha. TCHwas shown to be a very good
estimator of ACD, and we transformed the TCH into
estimates of ACD using the equation proposed by
Asner et al (2014), developed by correlating extensive
field-based estimates of ACDwith TCH at the national
level (equation (1)):
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= ´ACD 0.8245 TCH . 11.573 ( )

2.3. Satellite data for regional upscaling
To upscale the LiDAR ACD measurements to our
entire study area, we used a combination of different
remotely sensed geospatial datasets, like spectral
bands, radar, and topography.

Planet Dove images are acquired daily by an
orbiting constellation of more than 180 CubeSat
satellites, using multispectral imagers with four spec-
tral channels at a spatial resolution of 3.7 m, namely
blue, green, red, and near-infrared bands (Planet
Team 2018, 2017). We created two normalized seam-
less mosaics with a spatial resolution of 2.5 m for the
dry season (July–September) of 2017 and 2018 by
transforming hundreds of Dove surface reflectance
scenes using a linear fit of each scene to co-registered

Landsat images. We retained only the green, red and
near-infrared bands for the analysis and removed the
blue band due to its sensitivity to atmospheric
conditions.

We derived seven vegetation indices using
different combinations of the three Dove spectral
bands, as follows: Simple ratio (SR) (Jordan 1969),
Normalized Difference Vegetation Index (NDVI)
(Rouse et al 1974), Green NDVI (GNDVI) (Gitelson
et al 1996), Transformed Vegetation Index (TVI)
(Tucker 1979), Soil Adjusted Vegetation Index (SAVI)
(Huete 1988), Optimized SAVI (OSAVI) (Rondeaux
et al 1996), and Enhanced Vegetation Index (EVI)
(Jiang et al 2008). These vegetation condition indices
are contributing to an improved differentiation
between vegetation and non-vegetation and empha-
sizing variation in canopy biomass. Because most of

Figure 1. Study area location (red rectangle) in Southeastern Peru, inMadre deDios region (a). Themost important rivers and road
infrastructure, together with protected areas and their ecological buffers are shown in (b) (1—TambopataNational Reserve,
2—Bahuaja-SoneneNational Park, 3—Communal Reserve Amarakaeri, with 4 and 5 their corresponding buffer zones). The Planet
Dove natural colormosaic for 2018with LiDAR top-of canopy (TCH) overlapped (c) and two zoom-in subsets showing the LiDAR
TCHat 2 m resolution (d) and its corresponding PlanetDovemosaic at 2.5 m resolution (e). Backgroundmaps in (a) and (b) are from
OpenStreetMap (OpenStreetMapContributors 2017).
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these indices are highly correlated, we performed a
standardized principal component analysis (PCA) to
obtain a set of linearly uncorrelated variables. We
retained the first principal component, which descri-
bed 97.6% and 96.9% of the variation for 2017 and
2018, respectively.

Sentinel-1 is a Synthetic Aperture Radar C-band
satellite that acquires images in an interferometric
wide swath mode of VH (Vertical transmit—Hor-
izontal receive) and VV (Vertical transmit—Vertical
receive) polarizations (Torres et al 2012). We created
twomosaics of the Sentinel-1 VH and VV overlapping
our Planet data for the dry seasons of 2017 and 2018
using the Google Earth Engine (Gorelick et al 2017), at
10 m spatial resolution. These scenes were pre-pro-
cessed for thermal noise removal, radiometric calibra-
tion and terrain correction. To account for the
influence of elevation in ACD distribution, we used
the ALOS DSM (Advanced Land Observing Satellite
Digital Surface Model) (Tadono et al 2014, Takaku
et al 2014) which has a spatial resolution of 30 m and
complete coverage of our study area.

In total, the seven variables used as predictors
(green, red, near-infrared bands, PCA of vegetation
indices, Sentinel-1 VH and VV, and ALOS DSM) and
the LiDAR ACD were resampled to 1 ha resolution to
create a perfectly overlapping stack of layers to be used
as input in the deep learning estimation of ACD.

2.4. Carbon stocks, emissions and uncertainty by
upscaling LiDARdata
Manymachine learning regression algorithms are used
to estimate the ACD from remotely sensed data
(Mascaro et al 2014). We used a deep learning neural
network since it has been shown to outperform many
popular machine learning models (Asner et al 2018).
Deep learning is a powerful supervised approach
capable of learning from complex nonlinear data by
using neurons to combine our input features to the
response variable (LiDAR ACD) (LeCun et al 2015).
We built and trained our deep learning models using
the high-level API Keras (Chollet 2015) using Tensor-
Flow-specific functionality (Abadi et al 2016). After
tuning the hyper-parameters of the neural network,
we created a wide and deep model using five layers,
with three similar hidden layers of 250 neurons each.
An activation function based on the rectified linear
unit was used for the input and hidden layers, and a
linear activation function for the output layer. We
used themean absolute error as a loss function with an
Adam optimizer (Kingma and Ba 2014). To ensure a
stable estimation of ACD, the final results of the neural
network were obtained by averaging results from
10 iterations.

The LiDAR ACD samples were split into 80% to
train the neural network and 20% were kept for the
final validation of ACD estimates. The 80% input for
the neural network was further split into 80% for

training and 20% for testing the network. Since a
neural network regression is sensitive to the range of
values of input variables, all the environmental vari-
ables were normalized beforehand using a min-max
normalizationwith a range of values between 0 and 1.

The uncertainty for our ACD estimations was esti-
mated following the procedure described in Asner et al
(2014). The ACD results were binned into 10 classes by
natural breaks and for each bin, the RMSE was com-
puted. A function was fitted using the 10 RMSE values
to obtain the absolute RMSE values (inMg C ha−1) for
each pixel of our estimated ACD map. Nevertheless,
the annual spatially explicit aboveground carbon
emissions were calculated by using the stock-differ-
ence method, as suggested by the IPCC (2006) guide-
lines at 1 ha.

2.5. Accessibility influence on aboveground carbon
emissions
We analyzed how the aboveground carbon emissions
vary in relation to the distance to roads and rivers, the
two main ways of transportation in the area, as well as
to the elevation. For this, we created a distance map
based on the roads and waterways layers available
from OpenStreetMap that maps well our study area
(OpenStreetMap Contributors 2017), while the ALOS
DSMwas used for the elevation analysis.

3. Results

3.1. The performance of deep learning estimation
ofACD
The final averaged ACD estimations for both years
were evaluated against the 32 913 ha of LiDAR ACD
not used in the deep learning process. For 2017, the
satellite-based ACD estimates had an R2 of 0.69 and
RMSE of 21.5 Mg C ha−1, while for 2018, our
satellite-derived ACD had an R2 of 0.67 and RMSE of
22.2 Mg C ha−1 (figure 2). During the deep learning
training and testing iterations, the averaged RMSEwas
22.2Mg C ha−1 for 2017 and 23.0Mg C ha−1 for 2018.
The combined RMSE for 2017 and 2018, which is
important to assess as the square root of the sum of the
two squared errors, was 30.9 Mg C ha−1. Considering
that we used seven simple predictors, we consider
these results as very good and a starting point for
future exploration.

3.2. ACD stocks anduncertainties
We estimated that our study region contained 63.3 Tg
C (millionmetric tons)±15.4 TgCRMSE of carbon in
2017, and 62.7 Tg C ±15.9 Tg C RMSE in 2018. The
range of ACD values was between 0 and 173.9 Mg
C ha−1 in 2017 and between 0 and 164.9Mg C ha−1 in
2018.However, in both cases, the ACD estimations are
nearly saturated above 130 Mg C ha−1, thereby
resulting in spurious estimations at those extremely
high carbon values (figure 2). The saturation of ACD
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estimates for high forest aboveground biomass volume
is a well-known challenge when using spectral reflec-
tance (Zhao et al 2016) or radar signals (Joshi et al
2017). The mean ACD for 2017 is 84.6 (±36.4
standard deviation) Mg C ha−1 and a median of 99.7
Mg C ha−1, while the mean ACD for 2018 is 83.9
(±36.0)MgCha−1 and amedian of 98.6MgCha−1.

In our study region, the heavily mined Colorado,
Inambari and Malinowski rivers, together with the
Madre de Dios river and the Interoceanic Highway,
shape the spatial distribution of human-caused forest
disturbance and ACD loss (figure 3). Gold mining
areas show near-zero values of ACD and below-aver-
age ACD in surrounding degraded forests. In contrast,
high ACD values are found in protected areas and in
areas that are relatively far away from the road network
or rivers. In addition to the highly concentrated areas
of low ACD, there are thousands of smaller low-ACD
areas mainly attributable to gold mining activities and
deforestation along and perpendicular to the Inter-
oceanicHighway (figure 3).

The uncertainties in our ACD estimations, in
terms of estimated absolute percent uncertainty, are
under 20% for the highest ACD values (>100 Mg C
ha−1), between 20 and 40% for ACD values between
65 and 100MgC ha−1 and the uncertainty increases as
the ACD approaches 0 Mg C ha−1 (figure 3). Con-
sidering that the highest ACD values are related to a
tall and healthy forest, the uncertainties below 20% are

viewed as very good and similar to the error rates from
afield-based estimation of ACD.

3.3. Aboveground carbon emissions from2017
to 2018
The fine-scale spatial variations from high to low ACD
values indicate that new deforestation and forest
degradation occur mostly in intact forests that harbor
more than 100MgC ha−1. The large goldmining areas
show highly variable carbon storage, such as in
Huepetuhe, the Upper Malinowski and La Pampa
mining area, situated in the Tambopata and Bahuaja-
Sonene buffer zones (figure 4). We considered the
combined RMSE error of 30.9 Mg C ha−1 for the two
ACD maps and calculated the emissions above this
threshold, which reached an alarming value of 1.12 Tg
C in a single year, representing 23 613 ha affected.

While the protection regime of Tambopata,
Bahuaja-Sonene, and Amarakaeri seem to maintain
relatively stable ACD stocks, there are visible signs of
mining intrusions inside the protected areas,mainly in
the Tambopata National Reserve (figure 5). The new-
est mining advancement is represented by the La
Pampa mining area between the Malinowski river and
Interoceanic Highway, in the buffer zone of protected
areas. This area is rapidly expanding towards the
southeast, parallel with the river, adding about 5.5 km
per year in length, while widening by roughly 1.0 km
(figure 5(a)). The northwest side of the La Pampa

Figure 2.Validation results of the ACDestimated by deep learningwhen comparedwith the LiDARACD for 2017 (a) and 2018 (b).
The uncertainty of these estimations is shown as RMSE values from the estimatedACD for 2017 (c) and 2018 (d),fittedwith a
polynomial functionwith confidence intervals shown. There is a strong correlation between the ACDestimation for 2017 and 2018
which is close to the 1:1 line (e).
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mining area is expanding southwest with two lobes,
with more compact 3.8 km and more sparsely 4.5 km
per year into the intact forest while the mining area
already existing in 2017 is widening with 0.2 up to 1.0
km (figure 5(b)).

The Upper Malinowski river has high carbon
emissions from the expansive mining activities in
areas where more than 100 Mg C ha−1 was present
(figure 5(c)). Following the river path, these mining
scars nowmeasure between 0.6 and 1.3 km and repre-
sent the common starting points of a fast-growing
large-scale gold mining. This is happening in the buf-
fer zone of the Bahuaja-Sonene National Park, but
there is still at a 4.5 km distance to the edge of the
national park (figure 5(c)). Numerous small-scale car-
bon emissions areas that are constantly expanding are
attributable to the easy-access granted by the Inter-
oceanic Highway, with both parallel and perpend-
icular forest clearings (figure 5(d)).

We refrain from detailing the carbon emissions in
the buffer zone of Amarakaeri Communal Reserve,

since cloud-related artifacts were present in the Planet
Dove 2018 mosaic, in the western part of Huepetuhe
mining area. These areas were removedwhen comput-
ing the 1.12 Tg C emissions. However, there are visible
signs that this mining area is expanding southwest and
east from the Colorado river while expanding also
internally by clearing the last forest patches already
surrounded by bare soil and mining water pools
(figure 4).

3.4. Accessibility influence on aboveground carbon
emissions
From the total of 1.12 Tg C of aboveground carbon
emissions, 0.49 Tg C occurred within the first km
accessible from a road or river, 0.70 Tg C within the
second km, and 0.86, 0.98 and 1.04 Tg C within the
third, fourth and fifth km, respectively (figure 6). Only
0.08 Tg C emissions occurred between 5 and 16 km to
a road or river. Mining activities in our study area
happen at a relatively low and accessible elevation,

Figure 3.Deep learning estimated aboveground carbon density (ACD, inMgCha−1) for the goldmining region ofMadre deDios at a
spatial resolution of 1 ha for the dry seasons of 2017 (a) and 2018 (b). The associated estimated relative uncertainty (%) of the estimated
ACD at 1 ha spatial resolution, for 2017 (c) and 2018 (d). An area ofmajor change inACDdue to goldmining activities between 2017
and 2018 is shown in (e) and (f), respectively. The location of this area is shownwith black rectangle in (a) and (b).
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contributing to 0.85 Tg C of emissions between
200–300 m and 1.04 Tg C between 200–400 m, from a
total of 1.12 Tg C (figure 6). Although not shown here,
evidence of gold mining at higher altitudes was found
southwest of our study area, in Quincemil, situated in
the Andean foothills (Asner et al 2013).

4.Discussion

The Peruvian Amazon and its Madre de Dios sub-
region are a well-known tropical biodiversity hotspot
(Stewart 1988). Formore than a decade, there has been
an ongoing clash between the economic benefits of
gold mining and the resulting environmental and
health issues in this region. Because the majority of
deforestation and small-scale mining happens in
remote places and is difficult to monitor (Elmes et al
2014), we fused multiple passive and active remote
sensing datasets to estimate aboveground carbon
stocks and emissions in 2017 and 2018. For a study
region of ∼750 000 ha in Madre de Dios, we found
1.12 Tg C emissions spread over 23 613 hectares,
caused by gold mining activities, deforestation and
human expansion along the Interoceanic Highway.
This observed trend of carbon emissions is in line with
other studies tackling increasing deforestation rates
through time in this region (Asner and Tupayachi
2017, Caballero Espejo et al 2018).

The migration of miners is facilitated by the exis-
tence of rivers and roads, acting as the main routes for
transportation. The high degree of fragmentation and
accessibility have a major impact on the high

biological diversity of theMadre deDios region, where
a multitude of floral and faunal species can be found
within a single hectare (Gentry 1988, Asner et al 2013).
Besides deforestation and forest degradation, another
threat is the mercury used to amalgamate fine gold
particles extracted from the river sediments, which is
polluting the waters (Castello and Macedo 2016) and
affecting the entire food web dynamics, including
nearby communities (Martinez et al 2018) and wildlife
(Alvarez-Berríos et al 2016). The lack of education for
miners are leading to unsustainable mining practices
and high exposure to mercury for the upstream and
downstream communities (Kahhat et al 2019).

An accurate high spatial and temporal monitor-
ing system will greatly benefit the actors responsible
for combating illegal gold mining. We estimated that
in 2018 more than 58 000 ha had ACD values
between 0 and 10 Mg C ha−1 (7.76% of the study
area), and such enormous losses continue to chal-
lenge efforts to stem the impacts of goldmining in the
region. The first line of defense, the buffer zones of
protected areas, are exposed to illegal mining activ-
ities because of a lack of coordination between
responsible agencies, corruption problems and
inadequate funding (Gardner 2012, Weisse and
Naughton-Treves 2016). There are ongoing commu-
nity-based efforts to monitor and mitigate the
impacts of gold mining, including land restoration
and reforestation of degraded forests (Sangui-
netti 2018). However, reforesting abandoned gold
mines with native species is challenging because of
poor soil quality and mercury contamination, slow
tree growth rates, but acceptable survivorship of the

Figure 4.Aboveground carbon emissions (MgCha−1) for the goldmining region ofMadre deDios (approx 750 000 hectares). The
four insets (in blue) represent aggressive expansions of goldmining and related deforestation, detailed in figure 5.
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trees, with reforestation costs ranging between $1662
and $3464 ha−1 in the first year (Román-Dañobeytia
et al 2015). The protected areas, especially the Tam-
bopataNational Reserve, are showing evident signs of
disturbance and carbon emissions. Disrupting

mining activities can have a sustainable alternative in
the form of ecotourism, which has a higher net
value than all other activities, of $1158 ha−1 and
will help sequester the aboveground carbon (Kirkby
et al 2010).

Figure 5. Four examples of the fast expansion of human influence in the region, as located infigure 4, with each example having the
2017 and 2018 false-color Planet Dove combination and the aboveground carbon emissionsmap (inMgCha−1). La Pampamining
area shown in (a) and (b)present the fastest andmost aggressive forest disturbance, with thousands of hectares of intact forests cleared
formining purposes. Both are in the TambopataNational Reserve’s buffer zone, with clear intrusions into the Tambopata’s protected
area (a). UpperMalinowski river shows a rapid expansion ofmining activities by forest clearance on both sides of the river, situated in
the Bahuaja-SoneneNational Park’s buffer zone (c). The effects of human presence are visible throughout the entire study area, with
numerous small-scale disturbances of intact forest following the construction of the InteroceanicHighway (d). Each of these examples
have areas of high aboveground carbon emissions highlightedwith dashed circles.
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Deep learning approaches are becoming essential
tools for large-scale spatial analyses (Brodrick et al
2019). To our knowledge, the use of deep learning
regression workflows to estimate ACD in tropical for-
ests is rather limited (Asner et al 2018). We selected a
deep learning approach because it resulted in a lower
RMSE error for ACD estimation when compared to
Random Forest regression (Breiman 2001), of 23.2Mg
C ha−1, or when compared to XGBoost, a scalable tree
boosting system (Chen and Guestrin 2016), of
24.9 Mg C ha−1, for the year of 2017. However, the
selection of numerous deep learning model hyper-
parameters and extensive computational time remains
two of the main challenges when applying such a
workflow. Our approach is not dependent on specific
input data, so alternatives to commercial Planet ima-
gery can be used, like Sentinel-2, with lower spatial
and temporal resolution, but higher spectral resolu-
tion, or Landsat missions for a deeper retrospective
analysis.

Madre de Dios is not the only region affected by
aggressive gold mining activities (Hilson 2002). In
many regions of the world, like northern Amazonian
countries (Kalamandeen et al 2018), Africa (Snapir
et al 2017) or Southeast Asia (Alonzo et al 2016), gold
mining is leaving a spatial footprint of deforestation
and land degradation. The United Nations Frame-
work Convention on Climate Change created an
initiative to reduce forest degradation and deforesta-
tion (REDD+) (Corbera and Schroeder 2011) by
paying incentives to developing countries that demon-
strate reduced carbon emissions. While most coun-
tries were found to report considerably less forest loss
than in reality due to various methods and limited
datasets (Nomura et al 2019), we see our methodology
as a future high spatial and temporal workflow to
accurately quantify the aboveground carbon emis-
sions. This way, the national and regional authorities
will have an objective, cost-effective and frequently
updated monitoring system of carbon emissions to
better control illegal activities and improve conserva-
tion efforts.
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