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REVIEW ARTICLE

Practical application of a multi-layer scorecard workflow (MLSW) for
comprehensive mineral resource classification
V. Rocha and M. A. A. Bassani

Mining Engineering Department, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

ABSTRACT
The classification of mineral resources is crucial for public disclosure and is used to evaluate the
risk associated with the mineral deposit, enabling informed decisions. To address this need, this
study proposes the use of a multi-layer scorecard workflow (MLSW) for mineral resource
classification that considers multiple factors from different disciplines. This approach is
highly flexible as the competent user may adapt the scorecard workflow to the
particularities of each deposit. In this paper, we considered classical metrics for resource
classification, such as the number of samples, the slope of regression, kriging efficiency, and
kriging variance, combinedwith more modern ones (Risk Index), which contemplates the
combination of the estimation error, and geological continuity by a probabilistic approach.
The methodology can also incorporate qualitative information such as the geological
complexity. The proposed workflow has been applied in two different databases,
demonstrating its transparency, auditability, and applicability.
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Introduction

Mineral resource classification is extremely relevant
for investment decisions, reserve estimation, and
mine planning, and helps to provide a more informed
understanding of the potential risks of exploiting a
deposit. The economic viability of mining projects
depends on multiple factors, with resource classifi-
cation playing a crucial role throughout the mining
process. Accurate resource classification is essential
for a reliable assessment of risk within a mineral
deposit. Companies typically report their economic
assessment results to attract investments, and mineral
resource classification standards were established to
provide a clear framework for public disclosure of
mineral deposits.

The classification of resources aims to determine the
degree of confidence and is mandatory according to the
guidelines of the international codes (CRIRSCO 2013;
JORC 2012; SAMREC 2009). The geological confidence
of resources is assessed and categorised as Measured,
Indicated, and Inferred in descending order of geologi-
cal confidence (JORC 2012). This classification is based
on the level of geological knowledge, drilling density,
and data quality available for the deposit.

Various factors influence the classification of min-
eral resources, including the conditions and circum-
stances of the mining project, as well as geological
and technical considerations. Usually, the mineral
resources classification procedure is tailored to each
deposit. Despite the differences in each project, it is

essential that the mineral resources classification
must be robust and can be defendable by the Compe-
tent Person, who is the professional responsible for the
resources model.

The mineral resources classification procedure
should comply with the guidelines written in inter-
national reporting codes (CRIRSCO 2013; JORC
2012; SAMREC 2009). The international reporting
codes inform the general principles and good practices
but do not have a specific protocol for classifying min-
eral resources. Over time, various approaches have
been employed, such as determining classifications
based on nearby search areas, spacing between drill
holes, range of variability, kriging variance, regression
slope, and past experiences with similar deposits
(Verly and Parker 2021).

To provide a more multidisciplinary, comprehen-
sive, and traceable approach to mineral resource
classification, a multi-layer scorecard workflow is
advocated (Duggan et al. 2017; Mohanlal and Steven-
son 2010; Parker and Dohm 2014). This systematic
approach involves weighting or grading multiple lin-
ear parameters to determine the confidence level of a
mineral resource estimate and derive a final score
for classification. The method considers various fac-
tors that impact the estimation of resources, pro-
duction scheduling, and the costs associated with the
mining process.

An interesting metric used for mineral resource
classification is the Risk Index (Amorim and Ribeiro
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1996). The Risk Index combines the estimation error
and geological continuity with a probabilistic ore
and waste relationship. The geological continuity is
measured by an indicator kriging estimate, while the
estimation error is characterised by the kriging var-
iance. The Risk Index, akin to classical geostatistical
metrics for resource classification, such as the number
of samples, the slope of regression, kriging efficiency,
and kriging variance, is generally effective in evaluat-
ing massive ore bodies. However, it can be prone to
artefacts when the mineralisation consists of several
orebodies unconnected.

In this paper, we show two case studies of mineral
resources classification that incorporate the Risk
Index into the multi-layer scorecard framework. The
case studies consider data derived from real deposits.
The idea is to combine the strengths of several metrics
in a robust workflow. For instance, the Risk Index
incorporates the geological continuity and amount of
information but does not inform the quality of the
data used. To overcome this issue, an additional data-
quality score may be added to the multi-layer
scorecard.

Background on scorecard for resources
classification

The mineral resource classification process can be
enhanced by implementing a multi-layer scorecard
approach, which serves to evaluate the dependability
and excellence of the mineral resource data. The scor-
ecard encompasses various criteria that aid in classify-
ing and categorising the resource data, including but
not limited to the quantity and quality of the data,
the geology and geometallurgical traits of the deposit,
the consistency and precision of the data, and the level
of assurance in the resource estimate.

Mohanlal and Stevenson (2010), Parker and Dohm
(2014), and Duggan et al. (2017) have proposed the
use of scorecard methodology for resource classifi-
cation. Mohanlal and Stevenson’s approach combines
traditional geostatistical and non-geostatistical cri-
teria, such as QA/QC, geological aspects, the presence
of geophysical surveys, and mining history, to estab-
lish confidence thresholds. These criteria are weighted
based on their relative importance and combined to
generate a raw scorecard, which is then reviewed by
a Competent Person for final classification.

Parker and Dohm (2014) propose a systematic
approach for the evaluation and use of several key fac-
tors in the classification scorecard that depend on the
geological characteristics of the deposit and the most
significant aspects for its extraction. To ensure a com-
prehensive assessment, it is advisable to include the
geometry of the ore body, data integrity, spatial corre-
lation, estimation methodology, bulk density, and
other factors. To assign a resource classification

score to a block model, each factor is ranked (low,
medium, or high) based on its importance to the
deposit. Each factor is then multiplied by the confi-
dence rating to calculate a discrete score. The total
score for all factors is then compared to predefined
ranges for Inferred, Indicated, and Measured
Resources.

Duggan et al. (2017) suggest a semi-quantitative
scorecard approach to evaluate complex and unique
mineralisation styles, covering five critical criteria in
the resource estimation process: geology, grade,
volume, revenue, and density. Due to the geological
complexity and significant variability in grade, gem-
stone deposits, such as diamond deposits pose chal-
lenges for accurate mineral resource estimation. To
address this, the project geologist completes the five
scorecards, and the system is internally reviewed and
finally ratified by a Competent Person, providing a
consistent and repeatable depiction of confidence in
the company’s mineral resources.

Study methodology

This paper employs an approach that integrates mul-
tiple criteria. The main criteria are the kriging
efficiency, the slope of regression, number of samples,
search volume, and Risk Index, which are traditionally
used for mineral resources classification. The method
also uses the following complementary criteria: ore-
body geometry, data integrity and quality, bulk den-
sity, and other factors. The complementary criteria
are not used often in mineral resource classification
but are considered important.

The first step of the methodology is to convert the
multiple criteria into confidence scores using
thresholds. The thresholds are empirically determined
by the Competent Person. Each confidence score is
related to a resource category. The scores for each cat-
egory are shown in Table 1. We emphasise that the
categories assigned in this step are not the final classifi-
cation, they are a prior classification. The prior classifi-
cation is done for each criterion separately. The core
idea is to evaluate how each criterion contributes to
the final resource estimate confidence.

The final mineral resource classification is deter-
mined by the global score, which is a linear combi-
nation of the scores obtained previously. The
weights are defined by the Competent Person based
on experience and the deposit’s characteristics. For
instance, if data quality is critical for mineral resource
confidence, the criterion related to data quality

Table 1. Confidence categories and scores.
Confidence category Score

High confidence 1
Medium confidence 2
Low confidence 3
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receives more weight than the others. Usually, the
weights sum up to one or one hundred so that the con-
tribution of each criterion to the global score is
straightforward.

The last step is to assign the final resource
classification based on the global score. This is
accomplished by defining thresholds for the global
score. Similar to the thresholds used for the individ-
ual criteria, the global score thresholds are also
determined by the Competent Person. The criteria
used to calculate the global score are explained in
Sections 3.1–3.8.

Kriging efficiency

Kriging Efficiency (KE), Krige (1996), is a relevant
metric for assessing the quality and precision of kri-
ging interpolation outcomes. It is determined by com-
paring the kriging variance with the theoretical
variance of the variable at block scale (Equation 1) –
(Silva 2015):

KE = BV − KV
BV

(1)

BV = Block Variance, KV = Kriging Variance.

Kriging efficiency close to one indicates that the kri-
ging variance is close to zero. This situation occurs
when many data correlated with the block to be esti-
mated are used in the estimation process.

Slope of regression for kriging estimators

The slope of linear regression (SR) in ordinary kriging
(OK) is a measure of the linear relationship between
the true and estimated values. Also, the SR indicates
that the Kriging estimate is conditionally unbiased.
Avoiding conditional bias is crucial in resource
classification as it reduces the risk of misclassifying
blocks (Deutsch et al. 2014; Deutsch 2007; Krige
1996; Rivoirard 1987; Silva 2015). Equation (2)
defines the slope of linear regression (SR):

SR = Cov {ZV , Z∗
V}

s2
Z∗
V

(2)

SR = Slope of Regression,

Cov {ZV , Z
∗
V} = Covariance the variable of interest

(ZV) and the estimated value (Z∗
V)

at the same volume V ,

s2
Z∗
V
= Variance of the estimated value of the

variable of interest (Z∗
V) at the same volume V.

Number of samples

Ordinary Kriging (Matheron 1963) involves estimat-
ing the value of a variable of interest at an unsampled

location using a set of data. The number of samples
(NS) refers to the quantity of data points utilised in
this process. The number of samples has a direct
impact on the precision and accuracy of the kriging
estimate. More samples generally result in a more
accurate estimate, but the ideal number of samples
also depends on the spatial distribution of the data
and the level of spatial autocorrelation. It is important
to have sufficient samples to accurately capture the
spatial pattern of the data and produce a reliable esti-
mate at the unsampled location.

In order to establish confidence thresholds for this
study, the range between the minimum and maximum
number of samples used in the estimation process (as
shown in Figure 1) was divided into three intervals.
Blocks estimated with many samples were classified
as high confidence for this criterion and received a
score of one. Similarly, blocks estimated with an inter-
mediate number of samples received a score of two
(medium confidence), and blocks estimated with a
small number of samples received a score of 3 (low
confidence). This approach is in accordance with the
method described by Mohanlal and Stevenson (2010).

Search volume

In Ordinary Kriging (Matheron 1963), the search
volume is a fundamental concept used to define the
search neighbourhood that comprises the set of data
points employed to estimate a value at an unsampled
location or point of interest. The size of the search
ellipse plays a crucial role in determining the number
of sample points included in the estimation process,
while the orientation of the ellipse reflects the direc-
tion of maximum variability in the data. Therefore,
the search volume is a critical parameter in the Ordin-
ary Kriging algorithm that significantly impacts the
accuracy and reliability of the estimates.

This concept of neighbourhood restrictions in
resource classification is related to the spatial relation-
ship of the data points and the influence of nearby

Figure 1. Range used for categorising the Number of Samples
used during the kriging process.

APPLIED EARTH SCIENCE 3



samples. It is common practice in geostatistical
resource classification to use spatial relationships
and spatial continuity to inform the modelling and
estimation of mineral resources. The Search Volume
is correlated with the continuity of the mineralisation
and is often used as a metric of resource classification
(Parker and Dohm 2014).

The resource classification usually involves using
multiple estimations passes with different search par-
ameters. The least restrictive pass is used to classify
blocks as Inferred, the intermediate restrictive pass is
used to define the Indicated category, and the most
restrictive pass determines the Measured blocks
(Emery et al. 2006; Parker and Dohm 2014; Silva 2015).

In this study, the search volume criteria used were
based on the variogram range of the main element
estimated. The criteria were ranked using a three-
level system of confidence, with a value of 1 assigned
to the first search radius (1/3 of the variogram
range) for high confidence, a value of 2 assigned to
the second search radius (2/3 of the variogram
range) for medium confidence, and a value of 3
assigned to the third search radius (variogram range)
for low confidence.

Kriging variance

Kriging Variance (KV) is a measure of the uncer-
tainty associated with a kriging estimate (Journel
and Huijbregts 1978). KV is low when many
samples spatially correlated with the block to be esti-
mated are used in the estimation. It provides an
indication of the degree of confidence in the esti-
mated values, with lower values indicating higher
precision and higher values indicating lower pre-
cision. The main limitation of the KV is that the
variability of the grades is disregarded. Another
limitation is the occurrence of artefacts, known as
‘spotted dog’.

Indicator kriging

Indicator Kriging (IK) is a geostatistical interpolation
method proposed by Journel (1983) for the probabil-
ities of occurrence of a categorical variable, such as
the presence (ore) or absence (waste) of an ore type.
This approach provides a quantitative assessment of
the geological risk. Low geological risk is related to
high probabilities of being ore. For instance, if the
probability of being ore is above 90% for a given
block, the block is very likely ore. This block is a can-
didate to be classified as Measured.

Risk index

The Risk Index (RI) for resource classification was
proposed by Amorim and Ribeiro (1996) as a

method to evaluate the accuracy and reliability of
mineral resource estimates. The Risk Index considers
the estimation error and geological continuity using
an indicator kriging estimate. The idea is to provide
a quantitative assessment of the level of risk associ-
ated with a resource, rank and compare different
resources, and inform decision-making about the
resource and its potential for further development
(Ribeiro et al. 2012).

The Risk Index (RI), according to Amorim and
Ribeiro (1996), is calculated by combining two par-
ameters: the Indicator Kriging (IK) for the ore
material and the Standardised Kriging Variance
[KV/Sill]. The kriging variance of the indicator kriging
estimate is used to calculate the Standardised Kriging
variance. The RI is represented as a vector in a Carte-
sian plane formed by the parameters [1−IK] and [KV/
Sill] (as shown in Figure 2). The value of the RI vector
can be calculated using the following expression:

RI =
����������������������������
([1− IK]2)+ KV

Sill

[ ]2( )√√√√ (3)

IK = Indicator Kriging,
KV
Sill = Standardize Kriging Variance.

Risk areas: orebody geometry, data integrity
and quality, and other factors

The concept of risk areas for resource estimates refers
to the uncertainty surrounding the estimation of min-
eral resource tonnage and grades. The concept con-
siders the various factors that contribute to this
uncertainty, such as data integrity and quality, the
complexity of the deposit, variability of the

Figure 2. Risk Index vector (adapted from Amorim and Ribeiro
(1996)).
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mineralisation, and others (Parker and Dohm 2014).
The goal is to understand the level of confidence in
the resource estimate and to identify areas where
further work is needed to reduce the level of uncer-
tainty. In this workflow, the following criteria to ident-
ify risk areas were used:

. Orebody geometry: Accurate estimation of mineral
resources can be significantly influenced by geo-
logical complexity, particularly in deposits that
exhibit heterogeneity and discontinuity in their
geology. It is crucial to incorporate geological
expertise and knowledge into the estimation pro-
cess to better capture the complexities of the
deposit and enhance the accuracy of the estimates
(Isaaks and Srivastava 1989). The orebody geome-
try plays a key role in determining the level of geo-
logical confidence of a deposit. The complexity,
shape, size, and orientation of an orebody can
impact the estimation of resources, production
schedules, and the costs associated with the mining
process. Drill hole spacing for specific deposit-rel-
evant factors such as the level of exploration activity
and the stage of project development.

. Data integrity and quality: resources estimation and
classification must be based on high-quality and
reliable data. Maintaining data integrity through
the quality assurance and control process (QA/
QC), which verifies the accuracy, completeness,
and consistency of the data, is essential for the accu-
racy and confidence of the classification. The
interpretation of the data must also be consistent,
accurate, and supported by high-quality data.
Ensuring data integrity and quality throughout
the entire resource classification process is vital
for informed decision-making (Rossi and Deutsch
2014).

. Bulk density: provides valuable information on the
tonnage and grade of a deposit. It is an important
characteristic that must be accurately measured
and considered in the resource estimation process
to ensure the accuracy and reliability of the
resource classification (Parrish 1993; Rossi and
Deutsch 2014).

. Other factors: such as geometallurgical data, miner-
alogy, and penalty elements are all important con-
siderations in the classification of mineral
resources. This information is used to determine
the best extraction and processing methods, esti-
mate the costs associated with these methods, and
to ensure the accuracy and reliability of the
resource classification.

To categorise different risk criteria, confidence levels
are assigned based on their respective locations and
degrees of uncertainty, which can range from high
confidence (1), medium confidence (2), to low

confidence (3), depending on the specific purpose
and context of the assessment.

Scorecard and smoothing for final classification

The individual criteria are weighted based on their
relative importance and then combined to form a
raw scorecard. This scorecard is subsequently
reviewed visually and against the data by a Competent
Person for final classification. Subsequently, non-
probabilistic resource classification methods typically
require posterior smoothing on a block-by-block
basis to produce the final classification. To achieve
smoother volumes, one method is to manually inter-
pret, while another option is to use a smoothing algor-
ithm based on moving window statistics. Care must be
taken to avoid bias and significant alterations to the
global volumes defined by established criteria. It is rec-
ommended to check overall grade-tonnage curves by
resource class before and after smoothing to under-
stand the degree of changes introduced (Rossi and
Deutsch 2014). Furthermore, it is important to
acknowledge that the smoothing step is considered
good practice but not mandatory. The Competent Per-
son should assess its necessity and make an informed
decision accordingly.

Practical application

The present study applies a scorecard workflow for
resource classification to two distinct datasets, 2D
and 3D. This methodology serves to demonstrate
and illustrate the proposed workflow. The datasets
exhibit varying degrees of geological complexity that
are dependent on the deposit area. Additionally,
differences in drilling campaigns, data quality, and
other pertinent factors contribute to variations in the
confidence levels associated with the resources at
specific locations.

2D case study

The proposed method was implemented on a 2D data-
set that encompasses six mineralised orebodies exhi-
biting varying degrees of geological complexity and
drilling density. The drilling grid is irregular, compris-
ing an exploratory grid of 100 m × 100 m that was exe-
cuted in different campaigns over time, and it was
eventually complemented by infill drilling of a maxi-
mum 30 m × 30 m targeting high-grade areas. The
block size dimensions are 10 × 10 m. where the vari-
able lead (Pb) and the indicator Ore (1), were esti-
mated by ordinary kriging. Thus, the criteria such as
the number of samples, search volume, kriging
efficiency, slope of regression, and Risk Index were
used for categorisation from high confidence, medium
confidence, and low confidence (Figure 3). It should
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be noted that the presence of drilling artefacts affected
the classification for criteria such as KE (Figure 3(C))
and SR (Figure 3(D)). However, for criteria such as NS
(Figure 3(A)), Search Volume (Figure 3(B)), and RI
(Figure 3(E)), stronger continuity was observed
along the orebody.

The areas with the highest risk were identified and
classified according to their level of confidence for
each criterion (Figure 4). Geological areas with low
confidence in interpretation, as well as regions with
poor confidence in lithological logging, were identified
as having lower confidence (Figure 4(A)). Moreover,
historical data that lacked appropriate materiality
and quality assurance/quality control (QA/QC) proto-
col were given different confidence levels (Figure 4
(B)). Additionally, areas with historical drilling that
lacked density measurements were also identified
(Figure 4(C)). Finally, two different areas of confi-
dence were identified regarding geometallurgical and
mineralogical components, which could potentially
impact the ore processing (Figure 4(D)).

Once all the criteria were compiled, weight values
were assigned to each one based on its relative impor-
tance. These weights were then used to calculate the
final score. It’s important to note that all individual
criteria were categorised into confidence categories
ranging from 1 to 3.

Scorecard = [NS ∗ 0.1]+ [KE ∗ 0.05]
+ [SR ∗ 0.05]+ [SV ∗ 0.05]
+ [RI ∗ 0.2]+ [OG ∗ 0.2]
+ [DIQ ∗ 0.25]+ [BD ∗ 0.05]
+ [OF ∗ 0.05] (4)

NS = Number of samples, KE = Kriging Efficiency,
SR = Regression of slope, SV = Search Volume,
RI = Risk Index, OG = Orebody Geology,
DIQ = Data Integrity and Quality,
BD = Bulk Density, OF = Other Factor.

Figure 3. This figure shows the different elements of the workflow that are categorised based on their level of confidence criteria.
The elements include (A) the Number of Samples, (B) Search Volume, (C) Kriging Efficiency, (D) Slope of Regression, and (E) Risk
Index. These criteria are used to assess the level of confidence in the mineral resource.
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The final classification of the deposit is determined
based on the scores obtained from the scorecard.
Scores falling between 1 and 1.3 are considered
Measured, scores ranging from 1.3 to 1.8 are con-
sidered Indicated, and scores exceeding 1.8 are
classified as Inferred. However, the raw scorecard
model (Figure 5(A)) may contain ‘spotted-dog’ pat-
terns or other irregularities that need to be post-pro-
cessed before the final resource classification.
Therefore, the scorecard model was smoothed to
remove these patterns and ensure a more accurate
final classification (Figure 5(B)).

3D case study

In accordance with confidentiality requirements, this
paper withholds the name, location, and commodities
of the studied deposit. The proposed methodology

was applied to a 3D dataset that encompasses a highly
structured polymetallic mineralisation with seven
known orebodies juxtaposed with a weathering
profile. The drilling grid is irregular and comprises an
exploratory grid executed in different campaigns over
time, which was eventually complemented by infill dril-
ling targeting high-grade and shallow areas. A confi-
dence level difference exists between the historical
drilling (100 m × 100 m) and the modern campaigns
(25 m × 25 m). Furthermore, bulk density measure-
ments were only taken during the modern campaigns,
which are crucial for the deposit due to the presence
of a specific mineral alteration, with a high-density
mineral that can diminish ore processing performance.
The block size dimensions are 8 × 8 × 8 m, which are
sub-blocked to a suitable minimum of 2 × 2 × 2 m.
Additionally, ordinary kriging was employed to esti-
mate the interested variable and the indicator Ore (1).

Figure 4. The figure above displays the risk areas identified in the proposed workflow for classifying mineral resources. These
areas are categorised into (A) Orebody Geometry, (B) Data Quality and Integrity, (C) Bulk Density, and (D) Other Factors.

Figure 5. The figure above illustrates the results of the final scoring workflow (A), and (B) the final scorecard resources classifi-
cation where the smoothing and ‘spotted dog’ treatment have been applied.

APPLIED EARTH SCIENCE 7



The results of the methodology are depicted in
Figure 6, which categorises the confidence levels into
high (1), medium (2), and low (3) based on each cri-
terion. The classification using KE (Figure 6(A)) and
NS (Figure 6(D)) presents artefacts and a ‘spotted
dog’ effect surrounding the drilling data. Furthermore,
the NS criteria exhibit artefacts on the orebody

boundaries due to drilling complexity and the OK kri-
ging anisotropy setup. On the other hand, the SR
(Figure 6(B)), RI (Figure 6(C)), and Search Volume
(Figure 6(E)) criteria have shown higher spatial conti-
nuity in high and medium confidence levels within
the high-density drilling grid area. Additionally, Figure
6(F,G) illustrates the classification criteria for Data

Figure 6. This figure illustrates various components of the workflow that are categorised based on their confidence level criteria.
The elements include (A) Kriging Efficiency, (B) Slope of Regression, (C) Risk Index, (D) Number of Samples (E) Search Volume, (F)
Data integrity and quality, and (G) Bulk Density. These criteria are utilised in combination to develop the scorecard classification.
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Integrity and Quality (DIQ) and Bulk Density (BD),
respectively. The DIQ criterion assesses the impact of
the new drilling based on distance, while the BD
classification examines the availability of bulk density
measurements.

After compiling all the criteria, weight values were
assigned to each one based on their relative impor-
tance. These weights were subsequently utilised to cal-
culate the final score (Figure 7(A)), considering the
varying degrees of confidence assigned to each cri-
terion, which was categorised into confidence cat-
egories ranging from 1 to 3. This approach consists
in factoring in the level of confidence assigned to
each criterion and its respective weight. The weight
values assigned to each criterion were based on the
empirical nature of the deposits described above, as
well as previous background knowledge. In this case,
the following weights were applied to each criterion:
5% for Search Volume, 5% for Kriging Efficiency,
5% for Slope of Regression, 5% for Number of

Samples, 15% for Risk Index, 25% for Bulk Density,
and 40% for Data Integrity and Quality. Therefore,
smoothing and ‘spotted dog’ treatment has been
implemented to result in the final resource classifi-
cation (Figure 7(B)). By utilising a weighted scoring
system, we were able to ensure that more important
criteria were given a higher degree of importance
when calculating the final score, ultimately providing
a comprehensive resource classification.

Figure 8 illustrates the tonnage of each criterion
that make up the scorecard and the final resource
classification. Note that there the proportion of ton-
nages distribution within the DIQ criterion is similar
to the final scorecard classification due to its high
importance in the process (40% weight assigned).

Figure 8 provides an insightful illustration of the
distribution of tonnage across each criterion that con-
stitutes the scorecard and the final resource classifi-
cation. It is worth noting that the proportion of
tonnage distribution within the Data Integrity and

Figure 7. The figure above displays the outcome of the final scoring workflow (A) Scorecard, and (B) the final Resource Classifi-
cation, where smoothing and ‘spotted dog’ treatment have been implemented.

Figure 8. The graph showcases all the different criteria that are utilised to create the Scorecard and, subsequently, the final
Resource Classification. These criteria include Search Volume, Kriging Efficiency, Slope of Regression, Number of Samples, Risk
Index, Bulk Density and Data Integrity and Quality. After applying smoothing techniques to the Scorecard, the final Resource
Classification is produced.
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Quality (DIQ) criterion is notably similar to the final
Resource Classification. This is due to the high signifi-
cance of the DIQ criterion in the resource evaluation
process, as it carries a weight of 40% in the scorecard.

Discussion and conclusions

The classification of mineral resources is a fundamen-
tal step in the evaluation of their economic viability
and the associated risk. In this paper, it is proposed
a multi-layer scorecard workflow (MLSW) for mineral
resource classification that considers multiple factors
from different disciplines to ensure a comprehensive
and well-rounded evaluation of mineral resources.
The methodology combines classical metrics, such as
the number of samples, the slope of regression, kriging
efficiency, and kriging variance, with modern ones,
such as the Risk Index, which incorporates the esti-
mation error and geological continuity by a probabil-
istic approach. Additionally, the workflow can also
integrate qualitative information obtained from the
expert geomodeler, such as the geological complexity,
to improve the accuracy of the classification.

The proposed workflow has been applied to two
different databases: one 2D and one 3D case, and the
results showed the applicability of the methodology
in classifying mineral resources while considering
information from multiple sources. The combination
of multiple factors is weighted, and the competent
user can adapt the scorecard workflow to the particu-
larities of each deposit. Therefore, it is essential for the
Competent Person to evaluate the thresholds that are
applicable to each parameter.

Moreover, additional techniques such as simulation
and uncertainty analysis could be integrated into the
methodology to provide a more comprehensive
approach. By incorporating these approaches, the
workflow could further improve the evaluation of min-
eral resources by capturing additional sources of uncer-
tainty and reducing the impact of bias on the final score.

We emphasise that a complete evaluation of a
mining project in terms of economic feasibility must
consider other qualitative aspects that play a pivotal
role in ensuring the project’s success and sustainabil-
ity. These aspects are analysed after the resources
model is built and include community license to oper-
ate, permitting, infrastructure constraints, safety, mar-
ket analysis, technical feasibility, financial viability,
and social/environmental impact assessments.

Overall, the proposed methodology offers integrat-
ing risk assessment, incorporating input from geology
and geoscience departments, adaptability, transpar-
ency, and audit trails. The multi-layer approach to
resource classification can help decision-makers
evaluate the maturity and risk associated with the min-
eral deposit and make informed decisions about the
economic viability of a project or operation.
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